Details

Electrostatic Kinetic Energy Harvesting


Electrostatic Kinetic Energy Harvesting


1. Aufl.

von: Philippe Basset, Elena Blokhina, Dimitri Galayko

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 03.03.2016
ISBN/EAN: 9781119007494
Sprache: englisch
Anzahl Seiten: 244

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Harvesting kinetic energy is a good opportunity to power wireless sensor in a vibratory environment. Besides classical methods based on electromagnetic and piezoelectric mechanisms, electrostatic transduction has a great perspective in particular when dealing with small devices based on MEMS technology. This book describes in detail the principle of such capacitive Kinetic Energy Harvesters based on a spring-mass system. Specific points related to the design and operation of kinetic energy harvesters (KEHs) with a capacitive interface are presented in detail: advanced studies on their nonlinear features, typical conditioning circuits and practical MEMS fabrication.</p>
<p>Preface ix</p> <p>Introduction: Background and Area of Application xi</p> <p><b>Chapter 1. Introduction to Electrostatic Kinetic Energy Harvesting 1</b></p> <p><b>Chapter 2. Capacitive Transducers 7</b></p> <p>2.1. Presentation of capacitive transducers 7</p> <p>2.2. Electrical operation of a variable capacitor 11</p> <p>2.3. Energy and force in capacitive transducers 12</p> <p>2.3.1. Energy of a capacitor 12</p> <p>2.3.2. Force of the capacitor 14</p> <p>2.3.3. Capacitive transducers biased by an electret layer 17</p> <p>2.4. Energy conversion with a capacitive transducer 20</p> <p>2.5. Optimization of the operation of a capacitive transducer 21</p> <p>2.6. Electromechanical coupling 23</p> <p>2.7. Conclusions 24</p> <p>2.8. Appendix: proof of formula [2.32] for the energy converted in a cycle 24</p> <p><b>Chapter 3. Mechanical Aspects of Kinetic Energy Harvesters: Linear Resonators 27</b></p> <p>3.1. Overview of mechanical forces and the resonator model 27</p> <p>3.1.1. Linear resonator as the main model of the mechanical part 27</p> <p>3.1.2. The nature and effect of the transducer force 30</p> <p>3.1.3. Remarks on mechanical forces 33</p> <p>3.2. Interaction of the harvester with the environment 36</p> <p>3.2.1. Power balance of KEHs 36</p> <p>3.2.2. Efficiency of KEHs 40</p> <p>3.3. Natural dynamics of the linear resonator 42</p> <p>3.3.1. Behavior of the resonator with no input 42</p> <p>3.3.2. Energy relation for the resonator with no input 44</p> <p>3.3.3. Forced oscillator and linear resonance 45</p> <p>3.3.4. Periodic external vibrations 49</p> <p>3.3.5. Energy relation for a forced resonator 50</p> <p>3.4. The mechanical impedance 52</p> <p>3.5. Concluding remarks 54</p> <p><b>Chapter 4. Mechanical Aspects of Kinetic Energy Harvesters: Nonlinear Resonators 55</b></p> <p>4.1. Nonlinear resonators with mechanically induced nonlinearities 55</p> <p>4.1.1. Equation of the nonlinear resonator 55</p> <p>4.1.2. Free oscillations of nonlinear resonator: qualitative description using potential wells 60</p> <p>4.1.3. Free oscillations of nonlinear resonator: semi-analytical approach 62</p> <p>4.1.4. Forced nonlinear resonator and nonlinear resonance 63</p> <p>4.2. Review of other nonlinearities affecting the dynamics of the resonator: impact, velocity and frequency amplification and electrical softening 68</p> <p>4.3. Concluding remarks: effectiveness of linear and nonlinear resonators 71</p> <p><b>Chapter 5. Fundamental Effects of Nonlinearity 75</b></p> <p>5.1. Fundamental nonlinear effects: anisochronous and anharmonic oscillations 75</p> <p>5.2. Semi-analytical techniques for nonlinear resonators 79</p> <p>5.2.1. Normalized form of nonlinear resonators 79</p> <p>5.2.2. Anharmonic oscillations demonstrated by straightforward expansion 81</p> <p>5.2.3. Anisochronous oscillations demonstrated by the LPM 84</p> <p>5.2.4. Multiple scales method 88</p> <p>5.2.5. Nonlinearity of a general form 91</p> <p>5.3. Concluding remarks 95</p> <p><b>Chapter 6. Nonlinear Resonance and its Application to Electrostatic Kinetic Energy Harvesters 97</b></p> <p>6.1. Forced nonlinear resonator and nonlinear resonance 97</p> <p>6.1.1. Analysis of forced oscillations using the multiple scales method 97</p> <p>6.1.2. Forced oscillations with a general form of nonlinear force 102</p> <p>6.2. Electromechanical analysis of an electrostatic kinetic energy harvester 105</p> <p>6.2.1. Statement of the problem 105</p> <p>6.2.2. Mathematical model of the constant charge circuit 106</p> <p>6.2.3. Steady-state nonlinear oscillations 109</p> <p>6.2.4. Dynamical effects and bifurcation behavior 113</p> <p>6.2.5. Other conditioning circuits 115</p> <p>6.3. Concluding remarks 119</p> <p><b>Chapter 7. MEMS Device Engineering for e-KEH 121</b></p> <p>7.1. Silicon-based MEMS fabrication technologies 121</p> <p>7.1.1. Examples of bulk processes 122</p> <p>7.1.2. Thin-film technology with sacrificial layer 123</p> <p>7.2. Typical designs for the electrostatic transducer 124</p> <p>7.2.1. Capacitive transducers with gap-closing electrode variation 125</p> <p>7.2.2. Strategies on the stopper’s location in gap-closing e-KEH 128</p> <p>7.2.3. Capacitive transducers with overlapping electrode motion 130</p> <p>7.3. e-KEHs with an electret layer 133</p> <p><b>Chapter 8. Basic Conditioning Circuits for Capacitive Kinetic Energy Harvesters 135</b></p> <p>8.1. Introduction 135</p> <p>8.2. Overview of conditioning circuit for capacitive kinetic energy harvesting 136</p> <p>8.3. Continuous conditioning circuit: generalities 138</p> <p>8.3.1. Qualitative discussion on operation of the circuit 139</p> <p>8.3.2. Analytical model in the electrical domain 140</p> <p>8.4. Practical study of continuous conditioning circuits 141</p> <p>8.4.1. Gap-closing transducer 141</p> <p>8.4.2. Area overlap transducer 145</p> <p>8.4.3. Simple conditioning circuit with diode rectifiers 148</p> <p>8.5. Shortcomings of the elementary conditioning circuits: auto-increasing of the biasing 149</p> <p>8.5.1. Appendix: listing of the Eldo netlist used to obtain the presented plots 152</p> <p><b>Chapter 9. Circuits Implementing Triangular QV Cycles 155</b></p> <p>9.1. Energy transfer in capacitive circuits 155</p> <p>9.1.1. Energy exchange between two fixed capacitors 155</p> <p>9.1.2. Case of a voltage source charging a capacitor 156</p> <p>9.1.3. Inductive DC-DC converters 157</p> <p>9.1.4. Use of a variable capacitor 161</p> <p>9.2. Conditioning circuits implementing triangular QV cycles 163</p> <p>9.2.1. Constant-voltage conditioning circuit 163</p> <p>9.2.2. Constant-charge conditioning circuits 165</p> <p>9.2.3. Analysis of the circuit implementing a constant-charge QV cycle 166</p> <p>9.2.4. Practical implementation 169</p> <p>9.3. Circuits implementing triangular QV cycles: conclusion 171</p> <p><b>Chapter 10. Circuits Implementing Rectangular QV Cycles, Part I 173</b></p> <p>10.1. Study of the rectangular QV cycle 173</p> <p>10.2. Practical implementation of the charge pump 178</p> <p>10.2.1. Evolution of the harvested energy 180</p> <p>10.3. Shortcomings of the single charge pump and required improvements 182</p> <p>10.3.1. Need for a flyback 182</p> <p>10.3.2. Auto-increasing of the internal energy 183</p> <p>10.4. Architectures of the charge pump with flyback 184</p> <p>10.4.1. Resistive flyback 184</p> <p>10.4.2. Inductive flyback 185</p> <p>10.5. Conditioning circuits based on the Bennet’s doubler 188</p> <p>10.5.1. Introduction of the principle . 188</p> <p>10.5.2. Analysis of the Bennet’s doubler conditioning circuit 191</p> <p>10.5.3. Simulation of a Bennet’s doubler 199</p> <p><b>Chapter 11. Circuits Implementing Rectangular QV Cycles, Part II 203</b></p> <p>11.1. Analysis of the half-wave rectifier with a transducer biased by an electret 203</p> <p>11.2. Analysis of the full-wave diode rectifier with transducer biased by an electret 205</p> <p>11.3. Dynamic behavior and electromechanical coupling of rectangular QV cycle conditioning circuits 210</p> <p>11.4. Practical use of conditioning circuits with rectangular QV cycle 215</p> <p>11.5. Conclusion on conditioning circuits for e-KEHs 216</p> <p>Bibliography 217</p> <p>Index 225</p>
<p><strong>Philippe Basset</strong>, Associate professor at Université Paris-Est, ESYCOM, ESIEE Paris, France <p><strong>Dimitri Galayko</strong>, associate professor at Sorbonne Universités, UPMC Univ., Paris, France <p><strong>Elena Blokhina</strong>, research manager at School of Electrical, Electronic and Communications Engineering, University College Dublin, Ireland

Diese Produkte könnten Sie auch interessieren:

Strategies to the Prediction, Mitigation and Management of Product Obsolescence
Strategies to the Prediction, Mitigation and Management of Product Obsolescence
von: Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht
PDF ebook
116,99 €