Details

Electronic Waste


Electronic Waste

Recycling and Reprocessing for a Sustainable Future
1. Aufl.

von: Maria E. Holuszko, Amit Kumar, Denise C. R. Espinosa

144,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 03.11.2021
ISBN/EAN: 9783527816422
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry </b></p> <p>In <i>Electronic Waste: Recycling and Reprocessing for a Sustainable Future</i>, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting value from electronic waste while aiming for a zero-waste scenario in industrial production. The book discusses the manufacturing and use of materials in electronic devices while presenting an overview of separation methods for industrial materials. </p> <p>Readers will also benefit from a global overview of various national and international regulations related to the topic of electronic and electrical waste. <br /><br /> A must-read resource for scientists and engineers working in the production and development of electronic devices, the authors provide comprehensive overviews of the benefits of achieving a zero-waste solution in electronic and electrical waste, as well as the risks posed by incorrectly disposed of electronic waste. </p> <p>Readers will enjoy: </p> <ul> <li>An introduction to electronic waste, including the opportunities presented by zero-waste technologies and solutions </li> <li>Explorations of e-waste management and practices in developed and developing countries and e-waste transboundary movement regulations in a variety of jurisdictions </li> <li>Practical discussions of approaches for estimating e-waste generation and the materials used in electronic equipment and manufacturing perspectives </li> <li>In-depth treatments of various recycling technologies, including physical separation, pyrometallurgy, hydrometallurgy, and biohydrometallurgy </li> </ul> <p>Perfect for materials scientists, electronic engineers, and metal processing professionals, <i>Electronic Waste: Recycling and Reprocessing for a Sustainable Future</i> will also earn a place in the libraries of industrial chemists and professionals working in organizations that use large amounts of chemicals or produce electronic waste. </p>
<p>Preface xiii</p> <p><b>1 Introduction, Vision, and Opportunities </b><b>1<br /> </b><i>Maria E. Holuszko, Denise C. R. Espinosa, Tatiana Scarazzato, and Amit Kumar</i></p> <p>1.1 Background 1</p> <p>1.2 E-Waste 2</p> <p>1.3 Outline 8</p> <p>References 9</p> <p><b>2 e-Waste Management and Practices in Developed and Developing Countries </b><b>15<br /> </b><i>Pablo Dias, Andréa M. Bernardes, and Nazmul Huda</i></p> <p>2.1 Introduction 15</p> <p>2.2 Overview on WEEE Management and Practices 16</p> <p>2.3 International WEEE Management and Transboundary Movement 18</p> <p>2.4 WEEE Management and Practices – Developed and Developing Countries 19</p> <p>2.5 Developed Countries 21</p> <p>2.5.1 Switzerland 21</p> <p>2.5.2 Japan 22</p> <p>2.5.3 Australia 22</p> <p>2.6 Developing Countries 23</p> <p>2.6.1 Brazil 23</p> <p>2.6.2 India 23</p> <p>2.6.3 South Africa 24</p> <p>2.6.4 Nigeria 25</p> <p>2.6.5 Taiwan 25</p> <p>2.7 Conclusions 26</p> <p>References 26</p> <p><b>3 e-Waste Transboundary Movement Regulations in Various Jurisdictions </b><b>33<br /> </b><i>Pablo Dias, Md Tasbirul Islam, Bin Lu, Nazmul Huda, and Andréa M. Bernarde</i></p> <p>3.1 Background 33</p> <p>3.2 International Legislation and Transboundary Movement 34</p> <p>3.3 Extended Producer Responsibility (EPR) 41</p> <p>3.4 Regulations in Various Jurisdictions 41</p> <p>3.4.1 Europe 43</p> <p>3.4.1.1 France 43</p> <p>3.4.1.2 Germany 43</p> <p>3.4.1.3 Switzerland 44</p> <p>3.4.1.4 Norway 44</p> <p>3.4.2 Americas 45</p> <p>3.4.2.1 United States of America 45</p> <p>3.4.2.2 Canada 46</p> <p>3.4.2.3 Brazil 47</p> <p>3.4.3 Asia 47</p> <p>3.4.3.1 Japan 47</p> <p>3.4.3.2 China 48</p> <p>3.4.3.3 Taiwan 49</p> <p>3.4.3.4 India 49</p> <p>3.4.4 Africa 49</p> <p>3.4.4.1 South Africa 49</p> <p>3.4.4.2 Nigeria 50</p> <p>3.4.5 Australia 50</p> <p>3.5 Conclusions 51</p> <p>References 52</p> <p><b>4 Approach for Estimating e-Waste Generation </b><b>61<br /> </b><i>Amit Kumar</i></p> <p>4.1 Background 61</p> <p>4.2 Econometric Analysis 61</p> <p>4.3 Consumption and Use/Leaching/Approximation 1 Method 62</p> <p>4.4 The Sales/Approximation 2 Method 63</p> <p>4.5 Market Supply Method 63</p> <p>4.5.1 Simple Delay 63</p> <p>4.5.2 Distribution Delay Method 63</p> <p>4.5.3 Carnegie Mellon Method/Mass Balance Method 64</p> <p>4.6 Time-Step Method 64</p> <p>4.7 Summary of Estimation Methods 65</p> <p>4.8 Lifespan of Electronic Products 65</p> <p>4.9 Global e-Waste Estimation 66</p> <p>References 69</p> <p><b>5 Materials Used in Electronic Equipment and Manufacturing Perspectives </b><b>73<br /> </b><i>Daniel D. München, Pablo Dias, and Hugo M. Veit</i></p> <p>5.1 Introduction 73</p> <p>5.2 Large Household Appliances (LHA) 75</p> <p>5.3 Small Household Appliance (SHA) 76</p> <p>5.4 IT and Telecommunications Equipment 78</p> <p>5.4.1 Computers and Notebooks 78</p> <p>5.4.2 Monitors and Screens 79</p> <p>5.4.3 Mobile Phones (MP) 81</p> <p>5.4.4 Printed Circuit Boards (PCB) 83</p> <p>5.5 Photovoltaic (PV) Panels 85</p> <p>5.6 Lighting Equipment 86</p> <p>5.7 Toys, Leisure, and Sport 86</p> <p>5.8 Future Trends in WEEE – Manufacturing, Design, and Demand 89</p> <p>References 91</p> <p><b>6 Recycling Technologies – Physical Separation </b><b>95<br /> </b><i>Amit Kumar, Maria E. Holuszko, and Shulei Song</i></p> <p>6.1 Introduction 95</p> <p>6.2 Dismantling 96</p> <p>6.3 Comminution/Size Reduction 97</p> <p>6.3.1 Shredders 97</p> <p>6.3.2 Hammer Mills 98</p> <p>6.3.3 High-Voltage Fragmentation 98</p> <p>6.3.4 Knife Mills 100</p> <p>6.3.5 Cryogrinding 100</p> <p>6.4 Particle Size Analysis 100</p> <p>6.5 Size Separation/Classification 102</p> <p>6.5.1 Screening 102</p> <p>6.5.2 Classification 104</p> <p>6.5.2.1 Centrifugal Classifier 104</p> <p>6.5.2.2 Gravitational Classifiers 105</p> <p>6.6 Magnetic Separation 106</p> <p>6.6.1 Low-Intensity Magnetic Separators 106</p> <p>6.6.2 High-Intensity Magnetic Separators 107</p> <p>6.7 Electrical Separation 108</p> <p>6.7.1 Corona Electrostatic Separation 108</p> <p>6.7.2 Triboelectric Separation 109</p> <p>6.7.3 Eddy Current Separation 110</p> <p>6.8 Gravity Separation 111</p> <p>6.8.1 Jigs 112</p> <p>6.8.2 Spirals 112</p> <p>6.8.3 Shaking Tables 113</p> <p>6.8.4 Zig-Zag Classifiers 114</p> <p>6.8.5 Centrifugal Concentrators 114</p> <p>6.8.6 Dense Medium Separation (DM Bath/Cyclone) 115</p> <p>6.9 Froth Flotation 116</p> <p>6.10 Sensor-Based Sorting 119</p> <p>6.11 Example Flowsheets 119</p> <p>References 123</p> <p><b>7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment </b><b>135<br /> </b><i>Jean-Philippe Harvey, Mohamed Khalil, and Jamal Chaouki</i></p> <p>7.1 Introduction 135</p> <p>7.2 Printed Circuit Boards 136</p> <p>7.3 Pyrometallurgical Processes 137</p> <p>7.3.1 Smelting 138</p> <p>7.3.1.1 Copper-Smelting Processes – Sulfide Route 138</p> <p>7.3.1.2 Copper-Smelting Processes – Secondary Smelters 142</p> <p>7.3.1.3 Lead-Smelting Processes 142</p> <p>7.3.1.4 Advantages and Limitations of Smelting Processes 146</p> <p>7.3.2 Electrochemical Processes 147</p> <p>7.3.2.1 High-Temperature Electrolysis 148</p> <p>7.3.2.2 Low-Temperature Electrolysis 149</p> <p>7.3.3 Other Pyrometallurgical Operations Used in ElectronicWaste Recycling 152</p> <p>7.3.3.1 Roasting 152</p> <p>7.3.3.2 Molten Salt Oxidation Treatment 152</p> <p>7.3.3.3 Distillation 153</p> <p>7.3.3.4 Pyrolysis 155</p> <p>References 157</p> <p><b>8 Recycling Technologies – Hydrometallurgy </b><b>165<br /> </b><i>Denise C. R. Espinosa, Rafael P. de Oliveira, and Thamiris A. G. Martins</i></p> <p>8.1 Background 165</p> <p>8.2 Waste Printed Circuit Boards (WPCBs) 167</p> <p>8.3 Photovoltaic Modules (PV) 172</p> <p>8.4 Batteries 176</p> <p>8.5 Light-Emitting Diodes (LEDs) 178</p> <p>8.6 Trends 180</p> <p>References 181</p> <p><b>9 Recycling Technologies – Biohydrometallurgy </b><b>189<br /> </b><i>Franziska L. Lederer and Katrin Pollmann</i></p> <p>9.1 Introduction 189</p> <p>9.2 Bioleaching: Metal Winning with Microbes 189</p> <p>9.3 Biosorption: Selective Metal Recovery from Waste Waters 191</p> <p>9.3.1 Biosorption Via Metal Selective Peptides 194</p> <p>9.3.2 Chelators Derived from Nature 196</p> <p>9.4 Bioflotation: Separation of Particles with Biological Means 197</p> <p>9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste 199</p> <p>9.6 Conclusion 201</p> <p>References 202</p> <p><b>10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization </b><b>213<br /> </b><i>Amit Kumar and Maria E. Holuszko</i></p> <p>10.1 Background 213</p> <p>10.2 Nonmetal Fraction Composition 214</p> <p>10.3 Benefits of NMF Recycling 215</p> <p>10.3.1 Economic Benefits 215</p> <p>10.3.2 Environmental Protection and Public Health 216</p> <p>10.4 Recycling of NMF 218</p> <p>10.4.1 Physical Recycling 218</p> <p>10.4.1.1 Size Classification 219</p> <p>10.4.1.2 Gravity Separation 219</p> <p>10.4.1.3 Magnetic Separation 220</p> <p>10.4.1.4 Electrical Separation 220</p> <p>10.4.1.5 Froth Flotation 220</p> <p>10.4.2 Chemical Recycling 221</p> <p>10.5 Potential Usage 221</p> <p>References 223</p> <p><b>11 Life Cycle Assessment of e-Waste – Waste Cellphone Recycling </b><b>231<br /> </b><i>Pengwei He, Haibo Feng, Gyan Chhipi-Shrestha, Kasun Hewage, and Rehan Sadiq</i></p> <p>11.1 Introduction 231</p> <p>11.2 Background 232</p> <p>11.2.1 Theory of Life Cycle Assessment 232</p> <p>11.3 LCA Studies on WEEE 234</p> <p>11.3.1 Applications on WEEE Management Strategy 234</p> <p>11.3.2 Applications on WEEE Management System 235</p> <p>11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling 236</p> <p>11.4 Case Study 236</p> <p>11.4.1 Goal and Scope Definition 237</p> <p>11.4.1.1 Functional Unit 237</p> <p>11.4.1.2 System Boundary 238</p> <p>11.4.2 Life Cycle Inventory 238</p> <p>11.4.2.1 Formal Collection 239</p> <p>11.4.2.2 Informal Collection 239</p> <p>11.4.2.3 Mechanical Dismantling 239</p> <p>11.4.2.4 Plastic Recycling 240</p> <p>11.4.2.5 Screen Glass Recycling 240</p> <p>11.4.2.6 Battery Disposal 240</p> <p>11.4.2.7 Electronic Refining for Materials 241</p> <p>11.4.3 Life Cycle Impact Assessment 241</p> <p>11.4.4 Results 241</p> <p>11.4.4.1 Feature Phone Formal Collection Scenario 241</p> <p>11.4.4.2 Feature Phone Informal Collection Scenario 243</p> <p>11.4.4.3 Smartphone Formal Collection Scenario 244</p> <p>11.4.4.4 Smartphone Informal Collection Scenario 246</p> <p>11.4.5 Discussion 247</p> <p>11.5 Conclusion 249</p> <p>References 250</p> <p><b>12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices </b><b>255<br /> </b><i>Abdelaziz Gouda, Manuel Reali, Alexandre Masson, Alexandra Zvezdin,</i><i>Nia Byway, Denis Rho, and Clara Santato</i></p> <p>12.1 Introduction 255</p> <p>12.1.1 Technological Innovation and Waste 255</p> <p>12.1.2 Eco-friendliness 257</p> <p>12.1.3 Organic Electronics 257</p> <p>12.1.4 Opportunities for Green Organic Electronics 258</p> <p>12.2 State of the Art in Biodegradable Electronics 258</p> <p>12.3 Organic Field-Effect Transistors (OFETs) 260</p> <p>12.3.1 Fundamentals 260</p> <p>12.3.2 Anthraquinone, Benzoquinone, and Acenequinone 262</p> <p>12.3.3 Quinacridones 262</p> <p>12.4 Electrochemical Energy Storage 264</p> <p>12.4.1 Quinones 264</p> <p>12.4.2 Dopamine 265</p> <p>12.4.3 Melanins 265</p> <p>12.4.4 Tannins 268</p> <p>12.4.5 Lignin 269</p> <p>12.5 Biodegradation in Natural and Industrial Ecosystems 269</p> <p>12.5.1 Degradation and Biodegradation 270</p> <p>12.5.2 Composting Process 271</p> <p>12.5.3 Materials Half-Life Under Composting Conditions 274</p> <p>12.5.4 Biodegradation in the Environment 275</p> <p>12.6 Microbiome in Natural and Industrial Ecosystems 276</p> <p>12.6.1 The Ruminant–Hay Natural Ecosystem 279</p> <p>12.6.2 The Termite–Wood Natural Ecosystem 280</p> <p>12.6.3 The Industrial Composter–Biowaste Ecosystem 281</p> <p>12.6.3.1 Municipal Composting Facility 281</p> <p>12.6.3.2 Engineered Composting Facility 282</p> <p>12.6.4 Specialized Inoculant Adapted to Organic Matter 282</p> <p>12.6.5 Specialized Inoculant Adapted to Heavy Metals 283</p> <p>12.7 Concluding Remarks and Perspectives 284</p> <p>Acknowledgment 285</p> <p>References 285</p> <p><b>13 Circular Economy in Electronics and the Future of e-Waste </b><b>299<br /> </b><i>Nani Pajunen and Maria E. Holuszko</i></p> <p>13.1 Introduction 299</p> <p>13.2 Digitalization and the Need for Electronic Devices 301</p> <p>13.3 Recycling and Circular Economy 302</p> <p>13.4 Challenges for e-Waste Recycling and Circular Economy 304</p> <p>13.5 Drivers for Change – Circular Economy 306</p> <p>13.6 Demand for Recyclable Products 309</p> <p>13.7 Summary 310</p> <p>References 312</p> <p>Index 315 </p>
<p><b><i>Maria E. Holuszko</b> is Assistant Professor at Norman B. Keevil Mining Engineering, University of British Columbia (Canada) she is Co-founder and Leading Scientist at Urban Mining Innovation Center. She studied Mineral Processing at the Silesian University of Technology (Poland) before gaining her Master’s and PhD degrees in Mineral Processing at the University of British Columbia Vancouver, Canada. Her current research interests are in recovery of value from industrial steams and in the recycling of electronic waste with the aim of recovery of critical metals and non-metal fractions to facilitate circularity in electronics.</i></p> <p><b><i>Amit Kumar</b> received his PhD from the University of British Columbia in e-waste recycling and completed his undergraduate studies in Mineral Engineering at the Indian School of Mines (India) and received his Master’s Degree at the University of British Columbia. His work is in the field of recycling of electrical and electronic wastes to achieve zero-waste scenario.</i> <p><b><i>Denise C.R. Espinosa </b>is an Associate Professor at the University of São Paulo (Brazil) and coordinates the Laboratory of Recycling, Waste Treatment, and Extraction (LAREX) at the Department of Chemical Engineering. She completed her Master’s and Ph.D. Degree in Department of Metallurgical and Materials Engineering at the University of São Paulo. Her work is in the recycling of electronic wastes and industrial and mining wastes towards sustainable development.</i>
<p><b>Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry </b></p> <p>In <i>Electronic Waste: Recycling and Reprocessing for a Sustainable Future,</i> a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting value from electronic waste while aiming for a zero-waste scenario in industrial production. The book discusses the manufacturing and use of materials in electronic devices while presenting an overview of separation methods for industrial materials. <p>Readers will also benefit from a global overview of various national and international regulations related to the topic of electronic and electrical waste. <p>A must-read resource for scientists and engineers working in the production and development of electronic devices, the authors provide comprehensive overviews of the benefits of achieving a zero-waste solution in electronic and electrical waste, as well as the risks posed by incorrectly disposed of electronic waste. <p>Readers will enjoy: <ul><li>An introduction to electronic waste, including the opportunities presented by zero-waste technologies and solutions </li> <li>Explorations of e-waste management and practices in developed and developing countries and e-waste transboundary movement regulations in a variety of jurisdictions </li> <li>Practical discussions of approaches for estimating e-waste generation and the materials used in electronic equipment and manufacturing perspectives </li> <li>In-depth treatments of various recycling technologies, including physical separation, pyrometallurgy, hydrometallurgy, and biohydrometallurgy </li></ul> <p>Perfect for materials scientists, electronic engineers, and metal processing professionals, <i>Electronic Waste: Recycling and Reprocessing for a Sustainable Future</i> will also earn a place in the libraries of industrial chemists and professionals working in organizations that use large amounts of chemicals or produce electronic waste.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €