Details

Electromagnetic Fields


Electromagnetic Fields


IEEE Press Series on Electromagnetic Wave Theory, Band 19 2. Aufl.

von: Jean G. Van Bladel

201,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 23.05.2007
ISBN/EAN: 9780470124574
Sprache: englisch
Anzahl Seiten: 1184

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Professor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
<p>Preface xiii</p> <p><b>1. Linear Analysis 1</b></p> <p>1.1 Linear Spaces 2</p> <p>1.2 Linear Transformations 5</p> <p>1.3 The Inversion Problem 8</p> <p>1.4 Green’s Functions 11</p> <p>1.5 Reciprocity 14</p> <p>1.6 Green’s Dyadics 17</p> <p>1.7 Convergence of a Series 19</p> <p>1.8 Eigenfunctions 20</p> <p>1.9 Integral Operators 23</p> <p>1.10 Eigenfunction Expansions 26</p> <p>1.11 Discretization 30</p> <p>1.12 Matrices 33</p> <p>1.13 Solution of Matrix Equations: Stability 36</p> <p>1.14 Finite Differences 38</p> <p>1.15 Perturbations 43</p> <p><b>2. Variational Techniques 51</b></p> <p>2.1 Stationary functionals 52</p> <p>2.2 A Suitable Functional for the String Problem 53</p> <p>2.3 Functionals for the General <i>l Transformation 55</i></p> <p>2.4 Euler’s Equations of Some Important Functionals 58</p> <p>2.5 Discretization of the Trial Functions 60</p> <p>2.6 Simple Finite Elements for Planar Problems 62</p> <p>2.7 More Finite Elements 65</p> <p>2.8 Direct Numerical Solution of Matrix Problems 69</p> <p>2.9 Iterative Numerical Solution of Matrix Problems 70</p> <p><b>3. Electrostatic Fields in the Presence of Dielectrics 77</b></p> <p>3.1 Volume Charges in Vacuum 77</p> <p>3.2 Green’s Function for Infinite Space 80</p> <p>3.3 Multipole Expansion 83</p> <p>3.4 Potential Generated by a Single Layer of Charge 86</p> <p>3.5 Potential Generated by a Double Layer of Charge 91</p> <p>3.6 Potential Generated by a Linear Charge 94</p> <p>3.7 Spherical Harmonics 98</p> <p>3.8 Dielectric Materials 102</p> <p>3.9 Cavity Fields 105</p> <p>3.10 Dielectric Sphere in an External Field 108</p> <p>3.11 Dielectric Spheroid in an Incident Field 111</p> <p>3.12 Numerical Methods 115</p> <p><b>4. Electrostatic Fields in the Presence of Conductors 125</b></p> <p>4.1 Conductivity 125</p> <p>4.2 Potential Outside a Charged Conductor 127</p> <p>4.3 Capacitance Matrix 133</p> <p>4.4 The Dirichlet Problem 134</p> <p>4.5 The Neumann Problem 137</p> <p>4.6 Numerical Solution of the Charge Density Problem 139</p> <p>4.7 Conductor in an External Field 142</p> <p>4.8 Conductors in the Presence of Dielectrics 146</p> <p>4.9 Current Injection into a Conducting Volume 148</p> <p>4.10 Contact Electrodes 153</p> <p>4.11 Chains of Conductors 158</p> <p><b>5. Special Geometries for the Electrostatic Field 167</b></p> <p>5.1 Two-Dimensional Potentials in the Plane 167</p> <p>5.2 Field Behavior at a Conducting Wedge 171</p> <p>5.3 Field Behavior at a Dielectric Wedge 175</p> <p>5.4 Separation of Variables in Two Dimensions 177</p> <p>5.5 Two-Dimensional Integral Equations 181</p> <p>5.6 Finite Methods in Two Dimensions 185</p> <p>5.7 Infinite Computational Domains 188</p> <p>5.8 More Two-Dimensional Techniques 192</p> <p>5.9 Layered Media 196</p> <p>5.10 Apertures 199</p> <p>5.11 Axisymmetric Geometries 203</p> <p>5.12 Conical Boundaries 207</p> <p><b>6. Magnetostatic Fields 221</b></p> <p>6.1 Magnetic Fields in Free Space: Vector Potential 221</p> <p>6.2 Fields Generated by Linear Currents 224</p> <p>6.3 Fields Generated by Surface Currents 227</p> <p>6.4 Fields at Large Distances from the Sources 229</p> <p>6.5 Scalar Potential in Vacuum 232</p> <p>6.6 Magnetic Materials 234</p> <p>6.7 Permanent Magnets 236</p> <p>6.8 The Limit of Infinite Permeability 239</p> <p>6.9 Two-Dimensional Fields in the Plane 244</p> <p>6.10 Axisymmetric Geometries 249</p> <p>6.11 Numerical Methods: Integral Equations 251</p> <p>6.12 Numerical Methods: Finite Elements 253</p> <p>6.13 Nonlinear Materials 258</p> <p>6.14 Strong Magnetic Fields and Force-Free Currents 260</p> <p><b>7. Radiation in Free Space 277</b></p> <p>7.1 Maxwell’s Equations 277</p> <p>7.2 The Wave Equation 280</p> <p>7.3 Potentials 282</p> <p>7.4 Sinusoidal Time Dependence: Polarization 286</p> <p>7.5 Partially Polarized Fields 290</p> <p>7.6 The Radiation Condition 293</p> <p>7.7 Time-Harmonic Potentials 296</p> <p>7.8 Radiation Patterns 300</p> <p>7.9 Green’s Dyadics 303</p> <p>7.10 Multipole Expansion 307</p> <p>7.11 Spherical Harmonics 313</p> <p>7.12 Equivalent Sources 320</p> <p>7.13 Linear Wire Antennas 327</p> <p>7.14 Curved Wire Antennas: Radiation 333</p> <p>7.15 Transient Sources 337</p> <p><b>8. Radiation in a Material Medium 357</b></p> <p>8.1 Constitutive Equations 357</p> <p>8.2 Plane Waves 370</p> <p>8.3 Ray Methods 377</p> <p>8.4 Beamlike Propagation 388</p> <p>8.5 Green’s Dyadics 392</p> <p>8.6 Reciprocity 397</p> <p>8.7 Equivalent Circuit of an Antenna 402</p> <p>8.8 Effective Antenna Area 409</p> <p><b>9. Plane Boundaries 423</b></p> <p>9.1 Plane Wave Incident on a Plane Boundary 423</p> <p>9.2 Propagation Through a Layered Medium 442</p> <p>9.3 The Sommerfeld Dipole Problem 448</p> <p>9.4 Multilayered Structures 452</p> <p>9.5 Periodic Structures 460</p> <p>9.6 Field Penetration Through Apertures 478</p> <p>9.7 Edge Diffraction 490</p> <p><b>10. Resonators 509</b></p> <p>10.1 Eigenvectors for an Enclosed Volume 509</p> <p>10.2 Excitation of a Cavity 514</p> <p>10.3 Determination of the Eigenvectors 517</p> <p>10.4 Resonances 525</p> <p>10.5 Open Resonators: Dielectric Resonances 529</p> <p>10.6 Aperture Coupling 540</p> <p>10.7 Green’s Dyadics 544</p> <p><b>11. Scattering: Generalities 563</b></p> <p>11.1 The Scattering Matrix 563</p> <p>11.2 Cross Sections 568</p> <p>11.3 Scattering by a Sphere 574</p> <p>11.4 Resonant Scattering 582</p> <p>11.5 The Singularity Expansion Method 586</p> <p>11.6 Impedance Boundary Conditions 598</p> <p>11.7 Thin Layers 601</p> <p>11.8 Characteristic Modes 604</p> <p><b>12. Scattering: Numerical Methods 617</b></p> <p>12.1 The Electric Field Integral Equation 617</p> <p>12.2 The Magnetic Field Integral Equation 624</p> <p>12.3 The T-Matrix 629</p> <p>12.4 Numerical Procedures 633</p> <p>12.5 Integral Equations for Penetrable Bodies 639</p> <p>12.6 Absorbing Boundary Conditions 646</p> <p>12.7 Finite Elements 651</p> <p>12.8 Finite Differences in the Time Domain 654</p> <p><b>13. High- and Low-Frequency Fields 671</b></p> <p>13.1 Physical Optics 671</p> <p>13.2 Geometrical Optics 676</p> <p>13.3 Geometric Theory of Diffraction 681</p> <p>13.4 Edge Currents and Equivalent Currents 689</p> <p>13.5 Hybrid Methods 692</p> <p>13.6 Low-Frequency Fields: The Rayleigh Region 695</p> <p>13.7 Non-Conducting Scatterers at Low Frequencies 696</p> <p>13.8 Perfectly Conducting Scatterers at Low Frequencies 699</p> <p>13.9 Good Conductors 707</p> <p>13.10 Stevenson’s Method Applied to Good Conductors 711</p> <p>13.11 Circuit Parameters 715</p> <p>13.12 Transient Eddy Currents 719</p> <p><b>14. Two-Dimensional Problems 733</b></p> <p>14.1 E and H Waves 733</p> <p>14.2 Scattering by Perfectly Conducting Cylinders 738</p> <p>14.3 Scattering by Penetrable Circular Cylinders 743</p> <p>14.4 Scattering by Elliptic Cylinders 746</p> <p>14.5 Scattering by Wedges 749</p> <p>14.6 Integral Equations for Perfectly Conducting Cylinders 751</p> <p>14.7 Scattering by Penetrable Cylinders 759</p> <p>14.8 Low-Frequency Scattering by Cylinders 764</p> <p>14.9 Slots in a Planar Screen 770</p> <p>14.10 More Slot Couplings 778</p> <p>14.11 Termination of a Truncated Domain 786</p> <p>14.12 Line Methods 792</p> <p>16.2 Scattering by Bodies of Revolution: Integral Equations 908</p> <p>16.3 Scattering by Bodies of Revolution: Finite Methods 912</p> <p>16.4 Apertures in Axisymmetric Surfaces 915</p> <p>16.5 The Conical Waveguide 918</p> <p>16.6 Singularities at the Tip of a Cone 926</p> <p>16.7 Radiation and Scattering from Cones 930</p> <p><b>15. Cylindrical Waveguides 813</b></p> <p>15.1 Field Expansions in a Closed Waveguide 814</p> <p>15.2 Determination of the Eigenvectors 818</p> <p>15.3 Propagation in a Closed Waveguide 822</p> <p>15.4 Waveguide Losses 832</p> <p>15.5 Waveguide Networks 837</p> <p>15.6 Aperture Excitation and Coupling 844</p> <p>15.7 Guided Waves in General Media 859</p> <p>15.8 Orthogonality and Normalization 865</p> <p>15.9 Dielectric Waveguides 873</p> <p>15.10 Other Examples of Waveguides 882</p> <p><b>16. Axisymmetric and Conical Boundaries 905</b></p> <p>16.1 Field Expansions for Axisymmetric Geometries 905</p> <p><b>17. Electrodynamics of Moving Bodies 943</b></p> <p>17.1 Fields Generated by a Moving Charge 943</p> <p>17.2 The Lorentz Transformation 946</p> <p>17.3 Transformation of Fields and Currents 950</p> <p>17.4 Radiation from Sources: the Doppler Effect 955</p> <p>17.5 Constitutive Equations and Boundary Conditions 958</p> <p>17.6 Material Bodies Moving Uniformly in Static Fields 960</p> <p>17.7 Magnetic Levitation 962</p> <p>17.8 Scatterers in Uniform Motion 966</p> <p>17.9 Material Bodies in Nonuniform Motion 972</p> <p>17.10 Rotating Bodies of Revolution 974</p> <p>17.11 Motional Eddy Currents 979</p> <p>17.12 Accelerated Frames of Reference 984</p> <p>17.13 Rotating Comoving Frames 988</p> <p>Appendix 1. Vector Analysis in Three Dimensions 1001</p> <p>Appendix 9. Some Eigenfunctions and Eigenvectors 1105</p> <p>Appendix 2. Vector Operators in Several Coordinate Systems 1011</p> <p>Appendix 10. Miscellaneous Data 1111</p> <p>Appendix 3. Vector Analysis on a Surface 1025</p> <p>Appendix 4. Dyadic Analysis 1035</p> <p>Appendix 5. Special Functions 1043</p> <p>Appendix 6. Complex Integration 1063</p> <p>Appendix 7. Transforms 1075</p> <p>Appendix 8. Distributions 1089</p> <p>Bibliography 1117</p> <p>General Texts on Electromagnetic Theory 1117</p> <p>Texts that Discuss Particular Areas of Electromagnetic Theory 1118</p> <p>General Mathematical Background 1122</p> <p>Mathematical Techniques Specifically Applied to Electromagnetic Theory 1123</p> <p>Acronyms and Symbols 1127</p> <p>Author Index 1133</p> <p>Subject Index 1149</p>
The book appears to be very well written, and is excellently edited and produced.  There is no doubt that it will be received as well as its previous edition has been. (<i>Computing Reviews</i>, July 1, 1008)
<b>Professor Jean Van Bladel</b> is an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering. Over a distinguished career, he has been the recipient of many awards and honors. A Fellow of the IEEE, he was awarded the Henrich Hertz Medal of the IEEE in 1995 and the Distinguished Achievement Award of the IEEE Antennas and Propagation Society in 1997. With the International Union of Radio Science (URSI), he was secretary general from 1979 to 1993 and was named Honorary President in 1999. He is currently Professor Emeritus at Ghent University in Belgium.
<b>The definitive reference on electromagnetic field, updated and expanded</b> <p>This definitive text and reference on electromagnetic fields has been updated and expanded to twice its original content. It incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, <i>Electromagnetic Fields, Second Edition</i> includes:</p> <ul> <li> <p>Detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies</p> </li> <li> <p>Many analytical developments suitable for exploitation by the numerical analyst, including the popular method of moments</p> </li> <li> <p>Comprehensive discussion of singularities of sources and fields with delineations of field properties at edges and at sector and cone vertices</p> </li> <li> <p>Extensive appendices that of themselves are worth the cost of the book</p> </li> <li> <p>A large, useful, carefully compiled set of references</p> </li> </ul> <p>With descriptions of methods for solving problems and with many applications of theory to electromagnetic engineering, this is a valuable resource for students, professors, and practicing engineers. It is also a comprehensive textbook for graduate-level courses in various aspects of electromagnetic theory.</p>

Diese Produkte könnten Sie auch interessieren:

Classification, Parameter Estimation and State Estimation
Classification, Parameter Estimation and State Estimation
von: Bangjun Lei, Guangzhu Xu, Ming Feng, Yaobin Zou, Ferdinand van der Heijden, Dick de Ridder, David M. J. Tax
PDF ebook
101,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €