Details

Electrokinetic Remediation for Environmental Security and Sustainability


Electrokinetic Remediation for Environmental Security and Sustainability


1. Aufl.

von: Alexandra B. Ribeiro, Majeti Narasimha Vara Prasad

206,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 22.03.2021
ISBN/EAN: 9781119670162
Sprache: englisch
Anzahl Seiten: 720

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Electrokinetic Remediation for Environmental Security and Sustainability</b> <p><b>Explore this comprehensive reference on the remediation of contaminated substrates, filled with cutting-edge research and practical case studies</b><p><i>Electrokinetic Remediation for Environmental Security and Sustainability</i> delivers a thorough review of electrokinetic remediation (EKR) for the treatment of inorganic and organic contaminants in contaminated substrates. The book highlights recent progress and developments in EKR in the areas of resource recovery, the removal of pollutants, and environmental remediation. It also discusses the use of EKR in conjunction with nanotechnology and phytoremediation.<p>Throughout the book, case studies are presented that involve the field implementation of EKR technologies. The book also includes discussions of enhanced electrokinetic remediation of dredged co-contaminated sediments, solar-powered bioelectrokinetics for the mitigation of contaminated agricultural soil, advanced electro-fenton for remediation of organics, electrokinetic remediation for PPCPs in contaminated substrates, and the electrokinetic remediation of agrochemicals such as organochlorine compounds. Other topics include:<li><bl>A thorough introduction to the modelling of electrokinetic remediation</bl></li><li><bl>An exploration of the electrokinetic recovery of tungsten and removal of arsenic from mining secondary resources</bl></li><li><bl>An analysis of pharmaceutically active compounds in wastewater treatment plants with a discussion of electrochemical advanced oxidation as an on-site treatment</bl></li><li><bl>A review of rare earth elements, including general concepts and recovery techniques, like electrodialytic extraction</bl></li><li><bl>A treatment of hydrocarbon-contaminated soil in cold climate conditions</bl></li><p>Perfect for environmental engineers and scientists, geologists, chemical engineers, biochemical engineers, and scientists working with green technology, <i>Electrokinetic Remediation for Environmental Security and Sustainability</i> will also earn a place in the libraries of academic and industry researchers, engineers, regulators, and policy makers with an interest in the remediation of contaminated natural resources.
<p>Preface xix</p> <p>Contributors xxiii</p> <p><b>1 An Overview of the Modeling of Electrokinetic Remediation </b><b>1<br /></b><i>Maria Villen-Guzman, Maria del Mar Cerrillo-Gonzalez, Juan Manuel Paz-Garcia, and Jose Miguel Rodriguez-Maroto</i></p> <p>1.1 Introduction 1</p> <p>1.2 Reactive Transport 3</p> <p>1.2.1 One-Dimensional Electromigration Model 3</p> <p>1.2.2 One-Dimensional Electromigration and Electroosmosis Model 7</p> <p>1.2.3 One-Dimensional Electrodialytic Model 9</p> <p>1.2.4 One-Dimensional Electroremediation Model Using Nernst-Planck-Poisson 16</p> <p>1.3 Chemical Equilibrium 18</p> <p>1.4 Models for the Future 24</p> <p>1.4.1 Combining Chemical Equilibrium and Chemical Reaction Kinetics 24</p> <p>1.4.2 Multiscale Models 26</p> <p>1.4.3 Two- and Three-Dimensional Models 29</p> <p>1.4.4 Multiphysics Modeling 29</p> <p>Acknowledgments 30</p> <p>References 30</p> <p><b>2 Basic Electrochemistry Tools in Environmental Applications </b><b>35<br /></b><i>Chanchal Kumar Mitra and Majeti Narasimha Vara Prasad</i></p> <p>2.1 Introduction 35</p> <p>2.1.1 Electrochemical Half-Cells 37</p> <p>2.1.2 Electrode Potential 38</p> <p>2.1.3 Electrical Double Layer 40</p> <p>2.1.4 Electrochemical Processes 41</p> <p>2.1.4.1 Polarization (Overvoltage) 41</p> <p>2.1.4.2 Slow Chemical Reactions 42</p> <p>2.2 Basic Bioelectrochemistry and Applications 44</p> <p>2.3 Industrial Electrochemistry and the Environment 44</p> <p>2.3.1 Isolation and Purification of Important Metals 44</p> <p>2.3.2 Production of Important Chemical Intermediates by Electrochemistry 45</p> <p>2.4 Electrokinetic Phenomena 45</p> <p>2.4.1 Electroosmosis in Bioremediation 46</p> <p>2.5 Electrophoresis and Its Application in Bioremediation 47</p> <p>2.6 Biosensors in Environmental Monitoring 48</p> <p>2.6.1 What Are Biosensors? 48</p> <p>2.6.2 Biosensors as Environmental Monitors 49</p> <p>2.7 Electrochemical Systems as Energy Sources 52</p> <p>2.8 Conclusions 55</p> <p>References 55</p> <p><b>3 Combined Use of Remediation Technologies with Electrokinetics </b><b>61<br /></b><i>Helena I. Gomes and Erika B. Bustos</i></p> <p>3.1 Introduction 61</p> <p>3.2 Biological Processes 62</p> <p>3.2.1 Electrobioremediation 62</p> <p>3.2.2 Electro-Phytoremediation 64</p> <p>3.3 Permeable Reactive Barriers 67</p> <p>3.4 Advanced Oxidation Processes 67</p> <p>3.4.1 Electrokinetics-Enhanced In Situ Chemical Oxidation (EK-ISCO) 67</p> <p>3.4.2 Electro-Fenton 70</p> <p>3.5 <i>In Situ </i>Chemical Reduction (ISCR) 71</p> <p>3.6 Challenges for Upscaling 71</p> <p>3.7 Concluding Remarks 73</p> <p>References 73</p> <p><b>4 The Electrokinetic Recovery of Tungsten and Removal of Arsenic from Mining Secondary Resources: The Case of the Panasqueira Mine </b><b>85<br /></b><i>Joana Almeida, Paulina Faria, António Santos Silva, Eduardo P. Mateus, and Alexandra B. Ribeiro</i></p> <p>4.1 Introduction 85</p> <p>4.2 Tungsten Mining Resources: The Panasqueira Mine 86</p> <p>4.2.1 The Development of the Industry 86</p> <p>4.2.2 Ore Extraction Processes 88</p> <p>4.2.3 Potential Risks 88</p> <p>4.3 The Circular Economy of Tungsten Mining Waste 89</p> <p>4.3.1 Panasqueira Old Slimes vs. Current Slimes 89</p> <p>4.3.2 Tungsten Recovery 90</p> <p>4.3.3 Building Material–Related Applications 92</p> <p>4.4 Social, Economic, and Environmental Impacts 93</p> <p>4.5 Final Remarks 94</p> <p>Acknowledgments 94</p> <p>References 95</p> <p><b>5 Electrokinetic Remediation of Dredged Contaminated Sediments </b><b>99<br /></b><i>Kristine B. Pedersen, Ahmed Benamar, Mohamed T. Ammami, Florence Portet-Koltalo, and Gunvor M. Kirkelund</i></p> <p>5.1 Introduction 99</p> <p>5.2 EKR Removal of Pollutants from Harbor Sediments 101</p> <p>5.2.1 Pollutants and Removal Efficiencies 101</p> <p>5.2.1.1 Metals 102</p> <p>5.2.1.2 Organic Pollutants and Organometallic Pollutants 104</p> <p>5.2.2 Influence of Experimental Settings and Sediment Properties on the Efficiency of EKR 105</p> <p>5.2.2.1 Enhancement of EKR – Changes in Design 106</p> <p>5.2.2.2 Enhancement of EKR – Chemical Agents and Surfactants 106</p> <p>5.2.2.3 Sediment Characteristics 108</p> <p>5.3 Case Studies of Enhancement Techniques 111</p> <p>5.4 Evaluation of the Best Available EKR Practice 120</p> <p>5.4.1 Energy Consumption 120</p> <p>5.4.2 Environmental Impacts 122</p> <p>5.5 Scaling Up EKR for Remediation of Polluted Harbor Sediments 123</p> <p>5.5.1 Results and Comments 125</p> <p>5.6 Future Perspectives 129</p> <p>References 131</p> <p><b>6 Pharmaceutically Active Compounds in Wastewater Treatment Plants: Electrochemical Advanced Oxidation as Onsite Treatment </b><b>141<br /></b><i>Ana Rita Ferreira, Paula Guedes, Eduardo P. Mateus, Alexandra B. Ribeiro, and Nazaré Couto</i></p> <p>6.1 Introduction 141</p> <p>6.1.1 Emerging Organic Contaminants 141</p> <p>6.1.2 Occurrence and Fate of EOCs 141</p> <p>6.1.2.1 EOCs in WWTPs 143</p> <p>6.1.3 Water Challenges 144</p> <p>6.1.4 Technologies forWastewater Treatment – Electrochemical Process 146</p> <p>6.2 Electrochemical Reactor for EOC Removal in WWTPs 148</p> <p>6.2.1 Experimental Design 148</p> <p>6.2.1.1 Analytical Methodology 148</p> <p>6.2.2 Electrokinetic Reactor Operating in a Continuous Vertical Flow Mode 150</p> <p>6.3 Conclusions 153</p> <p>Acknowledgments 153</p> <p>References 153</p> <p><b>7 Rare Earth Elements: Overview, General Concepts, and Recovery Techniques, Including Electrodialytic Extraction </b><b>159<br /></b><i>Nazaré Couto, Ana Rita Ferreira, Vanda Lopes, Stephen Peters, Sibel Pamukcu, and Alexandra B. Ribeiro</i></p> <p>7.1 Introduction 159</p> <p>7.1.1 Rare Earth Elements: Characterization, Applications, and Geo-Dependence 159</p> <p>7.1.2 REE Mining and Secondary Sources 162</p> <p>7.1.3 REE Extraction and Recovery from Secondary Resources 163</p> <p>7.2 Case Study 164</p> <p>7.3 Conclusions 166</p> <p>Acknowledgments 167</p> <p>References 167</p> <p><b>8 Hydrocarbon-Contaminated Soil in Cold Climate Conditions: Electrokinetic-Bioremediation Technology as a Remediation Strategy </b><b>173<br /></b><i>Ana Rita Ferreira, Paula Guedes, Eduardo P. Mateus, Pernille Erland Jensen, Alexandra B. Ribeiro, and Nazaré Couto</i></p> <p>8.1 Introduction 173</p> <p>8.1.1 Hydrocarbon Contamination 173</p> <p>8.1.2 Oil Spills in Arctic Environments 174</p> <p>8.1.3 Remediation of Petroleum-Contaminated Soil 175</p> <p>8.1.3.1 Electrokinetic Remediation (EKR) 176</p> <p>8.2 Case Study 177</p> <p>8.2.1 Description of the Site 177</p> <p>8.2.2 Soil Sampling 178</p> <p>8.2.3 Electrokinetic Remediation (EKR) Experiments 178</p> <p>8.2.4 Analytical Procedures 179</p> <p>8.2.4.1 Soil Characterization 179</p> <p>8.3 Determination of Metals and Phosphorus 180</p> <p>8.3.1 Results and Discussion 180</p> <p>8.3.1.1 Soil Characteristics 180</p> <p>8.3.1.2 EKR Experiments 182</p> <p>8.4 Conclusions 186</p> <p>Acknowledgments 186</p> <p>References 186</p> <p><b>9 Electrochemical Migration of Oil and Oil Products in Soil </b><b>191<i> <br /></i></b><i>V.A. Korolev and D.S. Nesterov</i></p> <p>9.1 Introduction 191</p> <p>9.2 Specific Nature of Soils Polluted by Oil and Its Products 192</p> <p>9.3 Influence of Mineral Composition 193</p> <p>9.4 Influence of Soil Dispersiveness 195</p> <p>9.5 Influence of Physical Soil Properties 198</p> <p>9.6 Influence of Physico-Chemical Soil Properties 201</p> <p>9.7 Influence of the InitialWater/Oil Ratio in a Soil 203</p> <p>9.8 Influence of the Oil Aging Process 207</p> <p>9.9 Influence of Oil Composition 211</p> <p>9.10 Conclusions 220</p> <p>Acknowledgments 222</p> <p>References 222</p> <p><b>10 Nanostructured TiO2-Based Hydrogen Evolution Reaction (HER) Electrocatalysts: A Preliminary Feasibility Study in Electrodialytic Remediation with Hydrogen Recovery </b><b>227<br /></b><i>Antonio Rubino, Joana Almeida, Catia Magro, Pier G. Schiavi, Paula Guedes, Nazare Couto, Eduardo P. Mateus, Pietro Altimari, Maria L. Astolfi, Robertino Zanoni, Alexandra B. Ribeiro, and Francesca Pagnanelli</i></p> <p>10.1 Introduction 227</p> <p>10.1.1 Electrokinetic Technologies: Electrodialytic Ex Situ Remediation 228</p> <p>10.1.2 Nanostructured TiO2 Electrocatalysts Synthesized Through Electrochemical Methods 230</p> <p>10.2 Case Study 231</p> <p>10.2.1 Aim and Scope 231</p> <p>10.2.2 Experimental 232</p> <p>10.2.2.1 TiO2 Based Electrocatalyst Synthesis and Characterization 232</p> <p>10.2.2.2 ED Experiments 233</p> <p>10.2.3 Discussion 235</p> <p>10.2.3.1 Blank Tests: Electrocatalysts Effectiveness toward HER 235</p> <p>10.2.3.2 ED Remediation for Sustainable CRMs Recovery 237</p> <p>10.3 Final Considerations 243</p> <p>Acknowledgments 244</p> <p>References 244</p> <p><b>11 Hydrogen Recovery in Electrodialytic-Based Technologies Applied to Environmental Contaminated Matrices </b><b>251<br /></b><i>Cátia Magro, Joana Almeida, Juan Manuel Paz-Garcia, Eduardo P. Mateus, and Alexandra B. Ribeiro</i></p> <p>11.1 Scope 251</p> <p>11.2 Technology Concept 253</p> <p>11.2.1 Potential Secondary Resources 253</p> <p>11.2.2 Electrodialytic Reactor 254</p> <p>11.2.2.1 Electrodes 254</p> <p>11.2.2.2 Ion-Exchange Membranes 256</p> <p>11.2.2.3 PEMFC System 258</p> <p>11.3 Economic Assessment of PEMFC Coupled with Electroremediation 260</p> <p>11.3.1 Scenario Analysis 260</p> <p>11.3.2 Hydrogen Business Model Canvas 262</p> <p>11.3.3 SWOT Analysis 264</p> <p>11.4 Final Remarks 265</p> <p>Acknowledgments 266</p> <p>References 266</p> <p><b>12 Electrokinetic-Phytoremediation of Mixed Contaminants in Soil </b><b>271<br /></b><i>Joana Dionísio, Nazaré Couto, Paula Guedes, Cristiana Gonçalves, and Alexandra B. Ribeiro</i></p> <p>12.1 Soil Contamination 271</p> <p>12.2 Phytoremediation 272</p> <p>12.3 Electroremediation 274</p> <p>12.3.1 EK Process Coupled with Phytoremediation 275</p> <p>12.3.2 EK-Assisted Bioremediation in the Treatment of Inorganic Contaminants 277</p> <p>12.3.3 EK-Assisted Bioremediation in the Treatment of Organic Contaminants 278</p> <p>12.4 Case Study of EK and Electrokinetic-Assisted Phytoremediation 279</p> <p>12.5 Conclusions 281</p> <p>Acknowledgments 282</p> <p>References 282</p> <p><b>13 Enhanced Electrokinetic Techniques in Soil Remediation for Removal of Heavy Metals </b><b>287<br /></b><i>Sadia Ilyas, Rajiv Ranjan Srivastava, Hyunjung Kim, and Humma Akram Cheema</i></p> <p>13.1 Introduction 287</p> <p>13.2 Electrokinetic Mechanism and Phenomenon 288</p> <p>13.3 Limitations of the Electrokinetic Remediation Process 289</p> <p>13.4 Need for Enhancement in the Electrokinetic Remediation Process 290</p> <p>13.5 Enhancement Techniques 292</p> <p>13.5.1 Surface Modification 292</p> <p>13.6 Cation-Selective Membranes 293</p> <p>13.7 Electro-Bioremediation 294</p> <p>13.8 Electro-Geochemical Oxidation 295</p> <p>13.9 LasagnaTM Process 296</p> <p>13.10 Other Potential Processes 296</p> <p>13.11 Summary 298</p> <p>Acknowledgments 299</p> <p>References 299</p> <p><b>14 Assessment of Soil Fertility and Microbial Activity by Direct Impact of an Electrokinetic Process on Chromium-Contaminated Soil </b><b>303<br /></b><i>Prasun Kumar Chakraborty, Prem Prakash, and Brijesh Kumar Mishra</i></p> <p>14.1 Introduction 303</p> <p>14.2 Experimental Section 304</p> <p>14.2.1 Soil Characteristics and Preparation of Contaminated Soil 304</p> <p>14.2.2 Electrokinetic Tests, Experimental Setup, and Procedure 305</p> <p>14.2.3 Testing Procedure 306</p> <p>14.2.4 Extraction and Analytical Methods 306</p> <p>14.2.5 Soil Nutrients 306</p> <p>14.2.6 Soil Microbial Biomass Carbon Analysis 307</p> <p>14.2.7 Quality Control and Quality Assurance 307</p> <p>14.3 Results and Discussion 308</p> <p>14.3.1 Electrokinetic Remediation of Chromium-Contaminated Soil 308</p> <p>14.3.1.1 Electrical Current Changes During the Electrokinetic Experiment 308</p> <p>14.3.2 pH Distribution in Soil During and After the Electrokinetic Experiment 309</p> <p>14.4 Removal of Cr 310</p> <p>14.4.1 The Distribution of Total Cr and Its Electroosmotic Flow During the Electrokinetic Experiment 310</p> <p>14.5 Effects of the Electrokinetic Process on Some Soil Properties 312</p> <p>14.5.1 Soil Organic Carbon 312</p> <p>14.5.2 Soil-Available Nitrogen, Phosphorus, Potassium, and Calcium 314</p> <p>14.5.3 Soil Microbial Biomass Carbon 318</p> <p>14.6 Conclusion 318</p> <p>References 319</p> <p><b>15 Management of Clay Properties Based on Electrokinetic Nanotechnology </b><b>323<br /></b><i>D.S. Nesterov and V.A. Korolev</i></p> <p>15.1 Introduction 323</p> <p>15.2 Objects of the Study 326</p> <p>15.3 Methods of the Study 328</p> <p>15.4 Results and Discussion 330</p> <p>15.4.1 Regulation of Soil rN 330</p> <p>15.4.2 Regulation of Oxidation-Reduction Potential 332</p> <p>15.4.3 Regulation of Soil Particle Surface-Charge Density 332</p> <p>15.4.4 EDL Parameter Regulation 339</p> <p>15.4.5 Regulation of Clay CEC 343</p> <p>15.4.6 Regulation of Physico-Chemical Parameters of Soils 345</p> <p>15.4.7 Regulation of Soil Texture and Structure 346</p> <p>15.4.8 Regulation of Physical Clay Properties 352</p> <p>15.4.9 Regulation of Soil Strength and Deformability 353</p> <p>15.5 Conclusions 354</p> <p>Acknowledgments 355</p> <p>Abbreviations 355</p> <p>References 357</p> <p><b>16 Technologies to Create Electrokinetic Protective Barriers </b><b>363<br /></b><i>D.S. Nesterov and V.A. Korolev</i></p> <p>16.1 Introduction 363</p> <p>16.2 Conventional Electrokinetic Barriers 366</p> <p>16.2.1 Cationic Contaminants 366</p> <p>16.2.2 Anionic Pollutants 367</p> <p>16.2.3 Advanced EKB Implementations 367</p> <p>16.2.4 Using EKBs for Soil Remediation 368</p> <p>16.3 Electrokinetic Barrier with Ion-Selective Membranes (IS-EKB) 369</p> <p>16.4 Electrokinetic Barrier Based on Geosynthetics (EKG-B) 370</p> <p>16.5 Bio-Electrokinetic Protective Barrier (Bio-EKB) 371</p> <p>16.6 Electrokinetic Permeable Reactive Barriers (EK-PRB) 376</p> <p>16.6.1 EK-PRBs Based on Activated Carbon 377</p> <p>16.6.2 EK-PRBs Based on Iron Compounds 378</p> <p>16.6.2.1 ZVI-Based EK-PRBs 379</p> <p>16.6.2.2 EK-PRBs Based on Ferric/Ferrous Compounds 381</p> <p>16.6.3 EK-PRBs Based on Red Mud 382</p> <p>16.6.4 EK-PRBs Based on Zeolites 383</p> <p>16.6.5 EK-PRBs Based on Clays or Modified Soils 383</p> <p>16.6.6 Other Materials for the Creation of EK-PRBs 384</p> <p>16.7 Electrokinetic Permeable Reactive Barriers to Prevent Radionuclide Contamination 397</p> <p>16.8 Conclusion 400</p> <p>Acknowledgments 401</p> <p>Abbreviations 401</p> <p>References 403</p> <p><b>17 Emerging Contaminants in Wastewater: Sensor Potential for Monitoring Electroremediation Systems </b><b>413<br /></b><i>Cátia Magro, Eduardo P. Mateus, Maria de Fátima Raposo, and Alexandra B. Ribeiro</i></p> <p>17.1 Scope 413</p> <p>17.2 Removal Technologies: Electroremediation Treatment 416</p> <p>17.3 Monitoring Tool: Electronic Tongues Devices 417</p> <p>17.3.1 Sensor Design 418</p> <p>17.3.1.1 Thin-Film Nanomaterials 419</p> <p>17.3.1.2 Promising Thin-Film Deposition Techniques 420</p> <p>17.3.1.3 Electrical Measurements: Impedance Spectroscopy 422</p> <p>17.3.2 Data Treatment 424</p> <p>17.4 Critical View on Coupling EK and Electronic Tongues 424</p> <p>17.5 Final Remarks 427</p> <p>Acknowledgments 428</p> <p>References 428</p> <p><b>18 Perspectives on Electrokinetic Remediation of Contaminants of Emerging Concern in Soil </b><b>433<br /></b><i>Paula Guedes, Nazaré Couto, Eduardo P. Mateus, Cristina Silva Pereira, and Alexandra B. Ribeiro</i></p> <p>18.1 Introduction 433</p> <p>18.1.1 Soil Pollution 433</p> <p>18.1.2 Contaminants of Emerging Concern 434</p> <p>18.2 Electrokinetic Process 436</p> <p>18.2.1 Removal Mechanisms 437</p> <p>18.2.2 Electro-Degradation Mechanisms 439</p> <p>18.2.3 Enhanced Bio-Degradation 442</p> <p>18.3 Conclusion 445</p> <p>Acknowledgments 446</p> <p>References 446</p> <p><b>19 Electrokinetic Remediation for the Removal of Organic Waste in Soil and Sediments </b><b>453<br /></b><i>S.M.P.A Koliyabandara, Chamika Siriwardhana, Sakuni M. De Silva, Janitha Walpita, and Asitha T. Cooray</i></p> <p>19.1 Introduction 453</p> <p>19.2 Organic Soil Pollution 453</p> <p>19.2.1 The Fate of Organic Soil Pollutants 455</p> <p>19.2.2 Biomagnification and Bioaccumulation of Soil Pollutants 455</p> <p>19.3 Soil Remediation Methods 456</p> <p>19.3.1 Physical Methods 456</p> <p>19.3.1.1 Capping 456</p> <p>19.3.1.2 Thermal Desorption 457</p> <p>19.3.1.3 Soil Vapor Extraction (SVE) 458</p> <p>19.3.1.4 Incineration 458</p> <p>19.3.1.5 Air Sparging 458</p> <p>19.3.2 Chemical Methods 458</p> <p>19.3.2.1 SoilWashing/Flushing 459</p> <p>19.3.2.2 Chemical Oxidation Remediation 459</p> <p>19.3.3 Bioremediation 460</p> <p>19.3.3.1 Microbial Remediation 460</p> <p>19.3.3.2 Phytoremediation 460</p> <p>19.4 Electrokinetic Remediation (EKR) 461</p> <p>19.4.1 Basic Principles of EKR 461</p> <p>19.4.1.1 Electrolysis of PoreWater 462</p> <p>19.4.1.2 Electromigration 462</p> <p>19.4.1.3 Electroosmosis 464</p> <p>19.4.1.4 Electrophoresis 464</p> <p>19.5 EKR for the Treatment of Soils and Sediments 464</p> <p>19.5.1 Enhancement Techniques Coupled with EKR 466</p> <p>19.5.1.1 Techniques Used to Enhance the Solubility of Contaminants 466</p> <p>19.5.1.2 Techniques to Control Soil pH 466</p> <p>19.5.1.3 Coupling with Other Remediation Techniques 467</p> <p>19.5.2 Facilitating Agents for PAH Removal 468</p> <p>19.5.2.1 Cyclodextrin-Enhanced EKR 468</p> <p>19.5.2.2 Surfactant-Enhanced EKR 468</p> <p>19.5.3 Cosolvent-Enhanced EKR 469</p> <p>19.5.4 Biosurfactant–Enhanced EKR 469</p> <p>19.6 Factors Affecting the Efficiency of Electrokinetic Remediation 470</p> <p>19.6.1 Effect of pH 470</p> <p>19.6.2 Effect of Electrolytes 470</p> <p>19.6.3 Effect of Soil Characteristics 470</p> <p>19.6.4 Effect of the Voltage Gradient 471</p> <p>19.7 Conclusions and Future Perspective 471</p> <p>Acknowledgments 471</p> <p>References 472</p> <p><b>20 The Integration of Electrokinetics and In Situ Chemical Oxidation Processes for the Remediation of Organically Polluted Soils </b><b>479<br /></b><i>Long Cang, Qiao Huang, Hongting Xu, and Mingzhu Zhou</i></p> <p>20.1 Introduction 479</p> <p>20.2 Principles Underlying EK-ISCO Remediation Technology 480</p> <p>20.2.1 Desorption and Migration of Organic Pollutants 480</p> <p>20.2.2 Oxidant Migration 482</p> <p>20.3 Factors that Influence EK-ISCO Technology 484</p> <p>20.3.1 Soil Properties 484</p> <p>20.3.2 Dosage and Methods Used to Add Oxidants to Soil 485</p> <p>20.3.3 Concentration and Aging of Organic Pollutants 486</p> <p>20.4 Enhanced EK-ISCO Remediation Methods 486</p> <p>20.4.1 Electro-Fenton Process 486</p> <p>20.4.2 pH Control 487</p> <p>20.4.3 Ion-Exchange Membranes 488</p> <p>20.4.4 Adding Solubilizers 488</p> <p>20.4.5 Electrode Activation/Electrode Thermal Activation 489</p> <p>20.4.6 Nanomaterial-Enhanced Methods 490</p> <p>20.5 Pilot/Field-Scale Studies of EK-ISCO Remediation Technologies 490</p> <p>20.5.1 Experimental Design 490</p> <p>20.5.1.1 Electrode Materials 490</p> <p>20.5.1.2 Configuring Electrode Settings 491</p> <p>20.5.1.3 Power Supply Modes 492</p> <p>20.5.2 Pilot Cases 493</p> <p>20.6 Conclusions 494</p> <p>Acknowledgments 494</p> <p>References 495</p> <p><b>21 Electrokinetic and Electrochemical Removal of Chlorinated Ethenes: Application in Low- and High-Permeability Saturated Soils </b><b>503<br /></b><i>Bente H. Hyldegaard and Lisbeth M. Ottosen</i></p> <p>21.1 Introduction 503</p> <p>21.1.1 Chlorinated Ethenes 503</p> <p>21.1.2 Low-Permeability Saturated Soils 506</p> <p>21.1.3 High-Permeability Saturated Soils 507</p> <p>21.2 Electrokinetically Enhanced Remediation in Low-Permeability Saturated Soils 508</p> <p>21.2.1 Electrokinetically Enhanced Bioremediation (EK-BIO) 508</p> <p>21.2.1.1 EK-Induced Delivery of Microbial Cultures and Electron Donors 509</p> <p>21.2.1.2 Current State of Development from an Applied Perspective 510</p> <p>21.2.2 Electrokinetically Enhanced In Situ Chemical Oxidation (EK-ISCO) 511</p> <p>21.2.2.1 EK-Induced Delivery of Oxidants 512</p> <p>21.2.2.2 Current State of Development from an Applied Perspective 513</p> <p>21.2.3 Electrokinetically Enhanced Permeable Reactive Barriers (EK-PRB) 514</p> <p>21.2.3.1 EK-Induced Mobilization of Chlorinated Ethenes 514</p> <p>21.2.3.2 EK-Controlled Reactivity of the Filling Material 515</p> <p>21.2.3.3 Current State of Development from an Applied Perspective 515</p> <p>21.3 Electrochemical Remediation in High-Permeability Saturated Soils 516</p> <p>21.3.1 Electrochemistry in Complex Environmental Settings 517</p> <p>21.3.2 Electrochemical Remediation in Complex Environmental Settings 519</p> <p>21.3.2.1 Electrochemically Induced Changes in Hydrogeochemistry 522</p> <p>21.3.2.2 Current State of Development from an Applied Perspective 525</p> <p>21.4 Summary 527</p> <p>References 528</p> <p><b>22 Chlorophenolic Compounds and Their Transformation Products by the Heterogeneous Fenton Process: A Review </b><b>541<br /></b><i>Cetin Kantar and Ozlem Oral</i></p> <p>22.1 Introduction 541</p> <p>22.2 Heterogeneous Fenton Processes 545</p> <p>22.2.1 Effect of Catalyst Type and Possible Reaction Mechanisms 546</p> <p>22.2.1.1 Iron Oxides 547</p> <p>22.2.1.2 Pyrite 552</p> <p>22.2.1.3 Zero-Valent Iron (ZVI) 553</p> <p>22.2.1.4 Multimetallic Iron-Based Catalysts 555</p> <p>22.2.1.5 Supported Iron-Based Catalyst Materials 560</p> <p>22.3 Factors Affecting CP Removal Efficiency in Heterogeneous Fenton Processes 565</p> <p>22.3.1 Effect of Catalyst Size 565</p> <p>22.3.2 Effect of Catalyst Dosage 565</p> <p>22.3.3 Effect of pH 566</p> <p>22.3.4 Effect of Hydrogen Peroxide Dose 567</p> <p>22.3.5 Effect of Organic Ligands 568</p> <p>22.4 Reaction By-Products 569</p> <p>22.5 Mode of Implementation, Reactor Configuration, and Biodegradability 571</p> <p>22.6 Conclusions 572</p> <p>References 574</p> <p><b>23 Clays and Clay Polymer Composites for Electrokinetic Remediation of Soil </b><b>587<br /></b><i>Jayasankar Janeni and Nadeesh M. Adassooriya</i></p> <p>23.1 Introduction 587</p> <p>23.2 Electrokinetic Remediation Technique: An Overview 588</p> <p>23.3 Clay Soil and Minerals 588</p> <p>23.4 Clay Mineral Classifications and Structure 589</p> <p>23.5 Layer Charge 590</p> <p>23.6 Active Bond Sites in Clay Minerals 590</p> <p>23.7 Properties of Clay Minerals 591</p> <p>23.8 Clay Minerals and Their Modifications 591</p> <p>23.9 Organoclays and Their Properties 591</p> <p>23.10 Factors Affecting the Mechanism of Transporting Contaminants in Clay Soils 593</p> <p>23.10.1 Structural Parameters 593</p> <p>23.10.2 Mass Transport 593</p> <p>23.10.3 Electrokinetic Potential (Zeta Potential) 595</p> <p>23.10.4 Polymeric Agent Enhanced Electrokinetic Decontamination of Clay Soils 596</p> <p>23.10.5 Future Perspectives 597</p> <p>23.11 Summary 598</p> <p>References 598</p> <p><b>24 Enhanced Remediation and Recovery of Metal-Contaminated Soil Using Electrokinetic Soil Flushing </b><b>603<br /></b><i>Yudha Gusti Wibowo and Bimastyaji Surya Ramadan</i></p> <p>24.1 Introduction 603</p> <p>24.2 Metal Contamination in Mining Areas 604</p> <p>24.3 Treatment of Metal-Contaminated Soil Using EKSF 605</p> <p>24.3.1 Soil Flushing 605</p> <p>24.3.2 Fundamental Equation for EK Remediation 606</p> <p>24.3.3 Electrokinetic Soil Flushing (EKSF) 609</p> <p>24.3.4 Flushing Fluid Enhanced EKSF Performance 610</p> <p>24.3.5 Preventing pH from Acidification 617</p> <p>24.3.6 Other Factors that Enhance EKSF Performance 618</p> <p>24.3.7 Energy Requirements and Future Perspectives 618</p> <p>24.4 Conclusion 620</p> <p>References 620</p> <p><b>25 Recent Progress on Pressure-Driven Electro-Dewatering (PED) of Contaminated Sludge </b><b>629<br /></b><i>Bimastyaji Surya Ramadan, Amelinda Dhiya Farhah, Mochtar Hadiwidodo, and Mochamad Arief Budihardjo</i></p> <p>25.1 Introduction 629</p> <p>25.2 Electro-Dewatering for Sludge Treatment 630</p> <p>25.2.1 Conventional Sludge Treatment Systems 630</p> <p>25.2.2 Overview of Electro-Dewatering Systems 630</p> <p>25.2.3 Fundamental Equations of EDWSystems 632</p> <p>25.3 Design Considerations for PED Systems 636</p> <p>25.3.1 Reducing Electrical Resistance in PED Systems 638</p> <p>25.3.2 Maintaining Optimum pH and Salinity 639</p> <p>25.3.3 Determining Sludge Characteristics and Properties 641</p> <p>25.3.4 Operating PED Under Constant Voltage or Current 641</p> <p>25.3.5 Determining Appropriate Electrodes (Anodes and Cathodes) 642</p> <p>25.3.6 Reducing Energy Consumption 643</p> <p>25.4 Future Perspectives 644</p> <p>25.5 Conclusion 647</p> <p>References 647</p> <p><b>26 Removing Ionic and Nonionic Pollutants from Soil, Sludge, and Sediment Using Ultrasound-Assisted Electrokinetic Treatment </b><b>653<br /></b><i>Bimastyaji Surya Ramadan, Marita Wulandari, Yudha Gusti Wibowo, Nurani Ikhlas, and Dimastyaji Yusron Nurseta</i></p> <p>26.1 Introduction 653</p> <p>26.2 Overview of Technologies 654</p> <p>26.2.1 Ultrasonication 654</p> <p>26.2.2 Electrokinetic Remediation 656</p> <p>26.3 Desorption and Degradation Mechanism 659</p> <p>26.3.1 Removing Contaminants by Ultrasonication 659</p> <p>26.3.2 UltrasonicWave Effect 660</p> <p>26.3.2.1 Cavitation 660</p> <p>26.3.2.2 Thermal Effect 661</p> <p>26.3.2.3 Chemical Effect 661</p> <p>26.3.2.4 Biological Effect 662</p> <p>26.3.3 Electrokinetic Remediation Process 662</p> <p>26.3.3.1 Electrolysis 662</p> <p>26.3.3.2 Electromigration and Electrophoresis 664</p> <p>26.3.3.3 Electroosmosis 664</p> <p>26.3.3.4 Electrooxidation/Reduction 665</p> <p>26.4 Ultrasonication-Assisted Electrokinetic Remediation 666</p> <p>26.4.1 Recent Progress in Ultrasonication-Assisted Electrokinetic Remediation (US-EK) 666</p> <p>26.4.2 Factors Affecting Performance 666</p> <p>26.4.2.1 System Parameters 666</p> <p>26.4.2.2 Contaminant and Environmental Parameters 669</p> <p>26.4.3 Future Directions 671</p> <p>26.5 Conclusions 671</p> <p>References 672</p> <p>Index 679</p>
<p><b>Alexandra B. Ribeiro</b>, is Associate Professor in Habilitation in Environmental Engineering at NOVA School of Sciences and Technology at NOVA University Lisbon in Portugal. She received her doctorate in Environmental Engineering at the Technical University of Denmark.</p><p><b>Majeti Narasimha Vara Prasad</b> is Emeritus Professor in the School of Life Sciences at the University of Hyderabad in India. He has published over 216 papers in scholarly journals and edited 34 books. He received his doctorate in Botany from Lucknow University, India in 1979. Based on an independent study by Stanford University scientists in 2020, he figured in the top 2% of scientists from India, ranked number 1 in Environmental Sciences (116 in world).</p>
<p><b>Explore this comprehensive reference on the remediation of contaminated substrates, filled with cutting-edge research and practical case studies</b></p><p><i>Electrokinetic Remediation for Environmental Security and Sustainability</i> delivers a thorough review of electrokinetic remediation (EKR) for the treatment of inorganic and organic contaminants in contaminated substrates. The book highlights recent progress and developments in EKR in the areas of resource recovery, the removal of pollutants, and environmental remediation. It also discusses the use of EKR in conjunction with nanotechnology and phytoremediation.</p><p>Throughout the book, case studies are presented that involve the field implementation of EKR technologies. The book also includes discussions of enhanced electrokinetic remediation of dredged co-contaminated sediments, solar-powered bioelectrokinetics for the mitigation of contaminated agricultural soil, advanced electro-fenton for remediation of organics, electrokinetic remediation for PPCPs in contaminated substrates, and the electrokinetic remediation of agrochemicals such as organochlorine compounds. Other topics include:</p><li><bl>A thorough introduction to the modelling of electrokinetic remediation</bl></li><li><bl>An exploration of the electrokinetic recovery of tungsten and removal of arsenic from mining secondary resources</bl></li><li><bl>An analysis of pharmaceutically active compounds in wastewater treatment plants with a discussion of electrochemical advanced oxidation as an on-site treatment</bl></li><li><bl>A review of rare earth elements, including general concepts and recovery techniques, like electrodialytic extraction</bl></li><li><bl>A treatment of hydrocarbon-contaminated soil in cold climate conditions</bl></li><p>Perfect for environmental engineers and scientists, geologists, chemical engineers, biochemical engineers, and scientists working with green technology, <i>Electrokinetic Remediation for Environmental Security and Sustainability</i> will also earn a place in the libraries of academic and industry researchers, engineers, regulators, and policy makers with an interest in the remediation of contaminated natural resources.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €