Details

Eco-generative Design for Early Stages of Architecture


Eco-generative Design for Early Stages of Architecture


1. Aufl.

von: Xavier Marsault

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.12.2017
ISBN/EAN: 9781119482581
Sprache: englisch
Anzahl Seiten: 224

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book can be first considered as a complete synthesis of the EcCoGen ANR project (2011-2012), involving researchers from different French labs (including MAP) and domains, breaking major difficulties of the real-time generative design in the early stages of a pre-architectural project. Then the scope becomes larger, and the authors introduce major prospects following recent advances on natural and artificial evolution.</p>
<p>Introduction xi</p> <p><b>Chapter 1. Context </b><b>1</b></p> <p>1.1. The environmental context 1</p> <p>1.1.1. Ecology: an ancient concept 1</p> <p>1.1.2. The Anthropocene and urban concentration 2</p> <p>1.1.3. The increase in the Earth’s temperature 3</p> <p>1.1.4. Architecture and environmental thinking 3</p> <p>1.2. The energy context 4</p> <p>1.2.1. The energy crisis 4</p> <p>1.2.2. Energy consumption in houses 5</p> <p>1.2.3. Strong measures 6</p> <p>1.2.4. “Smart city” versus energetic city 6</p> <p>1.3. The technological context 7</p> <p>1.4. The economic and social context 8</p> <p>1.5. The professional context 9</p> <p>1.5.1. The roles of the architect today 9</p> <p>1.5.2. Architectural design and the numerous constraints 10</p> <p>1.5.3. Issues that call into question the fields of development and the living environment 11</p> <p>1.6. The instrumental context 11</p> <p>1.6.1. Transformational tools unsuited to the creative process 11</p> <p>1.6.2. A lack of assessment tools from the sketching phase 12</p> <p>1.6.3. The need for computer-based modeling 13</p> <p>1.7. The programmatic context 14</p> <p>1.7.1. Sketching and creativity phases 14</p> <p>1.7.2. Support tools 15</p> <p>1.8. The cognitive, ergonomic and sensory contexts 17</p> <p>1.8.1. Psycho-cognitive issues 17</p> <p>1.8.2. Human–machine interfaces (HMI) 18</p> <p>1.8.3. Stimulating the creativity of architects in the sketching phase 18</p> <p>1.8.4. The comfort approach 19</p> <p><b>Chapter 2. Eco-design </b><b>21</b></p> <p>2.1. Eco-design of the built environment 21</p> <p>2.2. Eco-design: a continually developing process 22</p> <p>2.2.1. Passive tool, labeling and reference documents 23</p> <p>2.2.2. From HQE to HQE-Performance 24</p> <p>2.2.3. “Passive building” label 25</p> <p>2.2.4. BBCA label 25</p> <p>2.2.5. Learning to think BEPOS (E+) and low carbon (C−) 26</p> <p>2.2.6. The PEBN reference document 28</p> <p>2.2.7. Environmentally friendly building materials 29</p> <p>2.3. Life-cycle analysis (LCA) 30</p> <p>2.3.1. The benefits of LCA 30</p> <p>2.3.2. Main LCA software programs 31</p> <p>2.3.3. Associated databases 32</p> <p>2.3.4. Difficulties relating to LCA and its use 34</p> <p>2.4. Eco-design and BIM 36</p> <p>2.5. Eco-design and efficient morphologies 36</p> <p>2.5.1. Compactness indices of a structure 37</p> <p>2.5.2. The influence of building height 38</p> <p>2.5.3. Density, compactness, sprawl 39</p> <p>2.6. Examples of software environments adapted to generative eco-design 41</p> <p>2.6.1. Genomics 42</p> <p>2.6.2. Building Synthesizer 42</p> <p>2.6.3. ParagenTool: performance-oriented design of large passive solar roofs 43</p> <p>2.6.4. Eco.mod 43</p> <p>2.6.5. VizCab 45</p> <p><b>Chapter 3. Morphogenetics </b><b>49</b></p> <p>3.1. Scientific formalisms of natural morphogenesis 49</p> <p>3.1.1. Morphogenesis, growth and stability 49</p> <p>3.1.2. Structure is law 50</p> <p>3.1.3. Self-organization, Darwinism and structuralism 51</p> <p>3.2. Generation of forms for architecture 52</p> <p>3.2.1. Classic form modeling typology 52</p> <p>3.2.2. Parametric architecture 53</p> <p>3.2.3. Techno-organic architecture 54</p> <p>3.2.4. An old debate 54</p> <p>3.2.5. Generative architecture 55</p> <p>3.2.6. Performative architecture 56</p> <p>3.2.7. Eco-design and morphogenetics of energy 57</p> <p>3.3. The specific case of the voxels approach 58</p> <p>3.3.1. The evolving house 58</p> <p>3.3.2. VOxEL 59</p> <p>3.3.3. Other modular constructions 60</p> <p>3.4. Optimization through genetic algorithms 62</p> <p>3.4.1. Design and optimization 62</p> <p>3.4.2. Algorithms and evolutionary environments 62</p> <p>3.4.3. General plan of a genetic algorithm (GA) 63</p> <p>3.4.4. Pareto front 65</p> <p>3.4.5. Choice of fitnesses 66</p> <p>3.4.6. Multi-genomic algorithms 67</p> <p>3.5. Detailed presentation of a genetic algorithm 67</p> <p>3.5.1. Jaszkiewicz’s MOGLS 68</p> <p>3.5.2. Directional optimization 69</p> <p>3.5.3. Maintaining population diversity 70</p> <p>3.5.4. ACROMUSE 70</p> <p>3.5.5. Improvements and multi-objective extension 71</p> <p>3.5.6. Use of GA as a constraint solver 72</p> <p>3.6. Interactive evolutionary algorithms (IEA) 72</p> <p>3.6.1. Possibilities and limitations 72</p> <p>3.6.2. Multi-objective optimization combined with an IGA 74</p> <p>3.6.3. A multi-objective IGA for efficient and diversified solutions 74</p> <p><b>Chapter 4. Assessment Models and Meta-models </b><b>79</b></p> <p>4.1. The concept of a model 79</p> <p>4.2. Models and tools suited to the advanced phases of building design 80</p> <p>4.2.1. Detailed modeling of the energy behavior of a building 81</p> <p>4.2.2. Thermal regulations in France 82</p> <p>4.2.3. Software environments for project simulation 82</p> <p>4.3. Simplified modeling: difficulties and examples 85</p> <p>4.3.1. Geometric scales 85</p> <p>4.3.2. Processing speed 86</p> <p>4.3.3. Simplified thermal modeling in winter or summer conditions 86</p> <p>4.3.4. Solar gains received by the envelope of the buildings on a site 88</p> <p>4.3.5. DaylightGen 89</p> <p>4.4. Meta-modeling 89</p> <p>4.4.1. Choosing a type of meta-model 90</p> <p>4.4.2. Experimental designs 91</p> <p>4.4.3. Sensitivity analysis 91</p> <p>4.4.4. Study of three recent meta-models 92</p> <p>4.5. Some prospects with major scientific obstacles 96</p> <p>4.5.1. Aeraulic modeling for the upstream phase 96</p> <p>4.5.2. Taking climate change into account in upstream design 99</p> <p><b>Chapter 5. The EcoGen Software Program </b><b>105</b></p> <p>5.1. Genesis of the project 106</p> <p>5.1.1. EcoGen-N (MAP-Crai) 107</p> <p>5.1.2. EcoGen-L (MAP-Aria) 109</p> <p>5.2. General principles of EcoGen 109</p> <p>5.2.1. An original proposal 109</p> <p>5.2.2. A one-of-a-kind tool 110</p> <p>5.3. A generative and modular tool 111</p> <p>5.3.1. Operating methods 112</p> <p>5.3.2. Modularity 113</p> <p>5.4. Urban, morphological and programmatic contexts 114</p> <p>5.4.1. Site and operational context 114</p> <p>5.4.2. Morphological and functional description 115</p> <p>5.4.3. Description of a program 116</p> <p>5.5. Bioclimatic optimization of the generated solutions 117</p> <p>5.5.1. The example of EcoGen1 117</p> <p>5.5.2. Granularity of design 118</p> <p>5.6. EcoGen2 assessment criteria 119</p> <p>5.7. Interface and interactivity 123</p> <p>5.7.1. Description of the interface 123</p> <p>5.7.2. The command zone 127</p> <p>5.7.3. Launching a new session 128</p> <p>5.8. Assessment of “high-efficiency” solutions and calculations 128</p> <p>5.9. Short-term prospects 131</p> <p>5.9.1. Eco2Gen: a future prospect for project eco-design and economics 131</p> <p>5.9.2. LCA in the sketching phase 131</p> <p>5.9.3. Assessment of solar energy potential 132</p> <p>5.9.4. Interactions 133</p> <p>5.9.5. Prospects for moving beyond the voxel-based approach 133</p> <p>5.9.6. Phylogenetic representations of design dynamics 134</p> <p>5.10. Experiments, results, development 134</p> <p>5.10.1. Results 134</p> <p>5.10.2. Assessment of creativity in an evolutionary design environment 137</p> <p>5.10.3. Morphological generation, efficiency and innovation 139</p> <p>5.10.4. Potential targets, dissemination and training in professional environments 140</p> <p><b>Chapter 6. Bio-inspired Perspectives </b><b>143</b></p> <p>6.1. Biomimicry issues in architecture 143</p> <p>6.1.1. The genesis of bio-inspiration in architecture 144</p> <p>6.1.2. Biomimetic architecture: towards a rebirth of form? 144</p> <p>6.1.3. Methodologies and findings 146</p> <p>6.1.4. Conclusion 149</p> <p>6.2. A return to the theories of evolution 149</p> <p>6.2.1. A brief history of natural evolution 149</p> <p>6.2.2. What’s new since Darwin? 151</p> <p>6.3. New morphogenetic approaches 152</p> <p>6.3.1. Urban forms and pleiotropy 152</p> <p>6.3.2. Complexity and evolution of built environments 153</p> <p>6.3.3. Evolutionary creativity 154</p> <p>6.3.4. Structural or second-order evolution 155</p> <p>6.3.5. A proposal for bio-inspired architectural genetics 156</p> <p>6.4. Assisted creativity, coevolution and design of learning systems 158</p> <p>6.4.1. Ergonomics and design of coevolutionary and learning systems 158</p> <p>6.4.2. Computational resonance and artificial creativity 159</p> <p>Conclusion 161</p> <p>Bibliography 167</p> <p>Index 187</p> <p> </p>
Xavier Marsault, CNRS, France

Diese Produkte könnten Sie auch interessieren:

Green BIM
Green BIM
von: Eddy Krygiel, Brad Nies, Steve McDowell
PDF ebook
43,99 €
Materials for Sustainable Sites
Materials for Sustainable Sites
von: Meg Calkins
PDF ebook
90,99 €
Becoming a Landscape Architect
Becoming a Landscape Architect
von: Kelleann Foster
PDF ebook
30,99 €