Details

Early Main Group Metal Catalysis


Early Main Group Metal Catalysis

Concepts and Reactions
1. Aufl.

von: Sjoerd Harder

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 22.11.2019
ISBN/EAN: 9783527818037
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Early Main Group Metal Catalysis gives a comprehensive overview of catalytic reactions in the presence of group 1 and group 2 metals. Chapters are ordered to reaction type, contain educational elements and deal with concepts illustrated by examples that cover the main developments. After a short introduction on polar organometallic chemistry and synthesis of early main group metal complexes, a variety of catalytic reactions are described, e.g. polymerization of alkenes, hydroamination and phosphination reactions, hydrosilylation, hydroboration and hydrogenation catalysis, as well as enantioselective and Lewis-acid catalysis. The book addresses organic chemists and researchers in industry interested in the state-of-the-art and new possibilities of early main group metal catalysis as well as newcomers to the field. Written by a team of leaders in the field, it is a very welcome addition to the area of main group metal chemistry, and to the field of catalysis.
<p>Preface xiii</p> <p><b>1 Introduction to Early Main Group Organometallic Chemistry and Catalysis </b><b>1<br /></b><i>Sjoerd Harder</i></p> <p>1.1 Introduction 1</p> <p>1.2 s-Block Organometallics 1</p> <p>1.2.1 Short History 1</p> <p>1.2.2 Synthesis of Group 1 Organometallics 2</p> <p>1.2.3 Synthesis of Group 2 Organometallics 4</p> <p>1.2.4 Bonding and Structures of s-Block Organometallics 8</p> <p>1.2.5 Dynamics of s-Block Organometallics in Solution 13</p> <p>1.2.6 Low-Valent s-Block Chemistry 16</p> <p>1.3 s-Block Organometallics in Catalysis 17</p> <p>1.3.1 Working Principles in Lewis Acid Catalysis 17</p> <p>1.3.2 Working Principles in s-Block Organometallic Catalysis 19</p> <p>1.3.3 Substrate Activation by s-Block Metals 21</p> <p>1.3.4 Future of Early Main Group Metal Catalysis 23</p> <p>List of Abbreviations 24</p> <p>References 24</p> <p><b>2 Polymerization of Alkenes and Polar Monomers by Early Main Group Metal Complexes </b><b>31<br /></b><i>Sjoerd Harder</i></p> <p>2.1 Introduction 31</p> <p>2.2 Alkene Polymerization 32</p> <p>2.2.1 Styrene Polymerization 33</p> <p>2.2.2 Polymerization of Modified Styrene 40</p> <p>2.2.3 Polymerization of Butadiene or Isoprene 43</p> <p>2.3 Polymerization of Polar Monomers 45</p> <p>2.3.1 Polymerization of Lactides 45</p> <p>2.3.2 Copolymerization of Epoxides and CO<sub>2</sub> 50</p> <p>2.4 Conclusions 53</p> <p>List of Abbreviations 54</p> <p>References 54</p> <p><b>3 Intramolecular Hydroamination of Alkenes </b><b>59<br /></b><i>Sebastian Bestgen and Peter W. Roesky</i></p> <p>3.1 Introduction 59</p> <p>3.2 Hydroamination 60</p> <p>3.2.1 Scope 62</p> <p>3.3 s-Block Metal Catalysis 64</p> <p>3.3.1 General Remarks 64</p> <p>3.3.2 Mechanistic Aspects 65</p> <p>3.3.3 Group 1-Based Catalysis 68</p> <p>3.3.3.1 Concerted Reaction 68</p> <p>3.3.3.2 Radical-Mediated Intramolecular Hydroamination 71</p> <p>3.3.3.3 Reactions of <i>N</i>-Arylhydrazones and Ketoximes 72</p> <p>3.3.4 Group 2 Metal-Mediated Catalysis 74</p> <p>3.3.5 Group 2-Mediated Asymmetric Cyclohydroamination 83</p> <p>3.3.6 Lewis Acidic Metal Cation Catalysis 84</p> <p>3.3.7 Miscellaneous 85</p> <p>3.4 Outlook 86</p> <p>Acknowledgments 87</p> <p>List of Abbreviations 87</p> <p>References 88</p> <p><b>4 Molecular s-Block Catalysts for Alkene Hydrophosphination and Related Reactions </b><b>93<br /></b><i>Yann Sarazin and Jean-François Carpentier</i></p> <p>4.1 Introduction 93</p> <p>4.2 General Considerations 95</p> <p>4.3 Hydrophosphination of Alkenes 96</p> <p>4.3.1 Precatalysts with Nitrogen-Based Ligands 97</p> <p>4.3.2 Precatalysts with Oxygen-Based Ligands 110</p> <p>4.4 Hydrophosphination of Carbodiimides 112</p> <p>4.5 Miscellaneous Reactions 114</p> <p>4.5.1 Hydrophosphinylation of Alkenes and Enones 114</p> <p>4.5.2 Hydrophosphonylation of Aldehydes and Ketones 116</p> <p>4.6 Summary and Conclusions 117</p> <p>List of Abbreviations 118</p> <p>References 118</p> <p><b>5 H—Nand H—P Bond Addition to Alkynes and Heterocumulenes </b><b>123<br /></b><i>Sven Krieck and Matthias Westerhausen</i></p> <p>5.1 Introduction 123</p> <p>5.2 Hydroamination 124</p> <p>5.2.1 Hydroamination with Secondary Amines 125</p> <p>5.2.2 Hydroamination with Primary Amines 128</p> <p>5.2.3 Proposed Mechanisms for the Hydroamination of Butadiynes 130</p> <p>5.3 Hydrophosphanylation (Hydrophosphination) 134</p> <p>5.4 Hydrophosphorylation and Hydrophosphonylation 138</p> <p>5.5 Summary and Conclusions 143</p> <p>5.6 Acknowledgments 146</p> <p>5.7 Abbreviations 146</p> <p>References 146</p> <p><b>6 Early Main Group Metal-Catalyzed Hydrosilylation of Unsaturated Bonds </b><b>151<br /></b><i>Sjoerd Harder</i></p> <p>6.1 Introduction 151</p> <p>6.2 Historical Development 151</p> <p>6.3 Nonprecious Metal Hydrosilylation Catalysts 153</p> <p>6.4 C=C Bond Hydrosilylation with s-Block Metal Catalysts 155</p> <p>6.5 C=O Bond Hydrosilylation with s-Block Metal Catalysts 161</p> <p>6.6 C=N Bond Hydrosilylation with s-Block Metal Catalysts 167</p> <p>6.7 Conclusions 170</p> <p>References 171</p> <p><b>7 Early Main Group Metal Catalyzed Hydrogenation </b><b>175<br /></b><i>Heiko Bauer and Sjoerd Harder</i></p> <p>7.1 Introduction 175</p> <p>7.2 Hydrogenation of C<b>=</b>C Double Bonds 178</p> <p>7.3 Hydrogenation of C<b>=</b>N Double Bonds 187</p> <p>7.4 Hydrogenation of C<b>=</b>O Double Bonds 191</p> <p>7.5 Summary and Perspectives 194</p> <p>References 197</p> <p><b>8 Alkali and Alkaline Earth Element-Catalyzed Hydroboration Reactions </b><b>201<br /></b><i>Aaron D. Sadow</i></p> <p>8.1 Introduction and Overview 201</p> <p>8.2 Thermodynamic Considerations 203</p> <p>8.2.1 Hydroboration, Hydrosilylation, and Hydrogenation 203</p> <p>8.2.2 Thermochemistry of Metal–Oxygen Bonds and Element–Hydrogen Bonds 205</p> <p>8.3 Group 1-Catalyzed Hydroboration Reactions 207</p> <p>8.3.1 Overview 207</p> <p>8.3.2 Base-Catalyzed Hydroborations 207</p> <p>8.3.3 Alkali Metal Hydridoborate and Aluminate-Catalyzed Hydroboration 210</p> <p>8.4 Group 2-Catalyzed Hydroboration Reactions 214</p> <p>8.4.1 Overview 214</p> <p>8.4.2 β-Diketiminate Magnesium-Catalyzed Hydroborations 215</p> <p>8.4.3 Tris(4,4-dimethyl-2-oxazolinyl)phenylborato Magnesium-Catalyzed Hydroboration of Ester and Amides 217</p> <p>8.4.4 Magnesium Triphenylborate-Catalyzed Hydroboration 221</p> <p>8.4.5 Supported Catalysts for Hydroboration 221</p> <p>8.5 Summary and Conclusions 222</p> <p>References 222</p> <p><b>9 Dehydrocoupling and Other Cross-couplings </b><b>225<br /></b><i>Merle Arrowsmith</i></p> <p>9.1 Introduction 225</p> <p>9.2 Early Main Group-Catalyzed Cross-DHC of Amines and Boranes 228</p> <p>9.2.1 Early Stoichiometric Studies with s-Block Elements 228</p> <p>9.2.2 s-Block-Catalyzed Cross-dehydrogenative Synthesis of Diaminoboranes 229</p> <p>9.2.3 s-Block-Catalyzed DHC of DMAB 231</p> <p>9.2.4 Calcium-Catalyzed Dehydrocoupling of <i>tert</i>-Butylamine Borane 235</p> <p>9.2.5 s-Block-Catalyzed DHC of Amines and Monohydroboranes 235</p> <p>9.3 s-Block-Catalyzed Cross-DHC of Amines and Silanes 238</p> <p>9.3.1 Influence of Precatalysts and Substrates on Reactivity and Selectivity 238</p> <p>9.3.2 Mechanistic and Computational Analysis 240</p> <p>9.3.3 Application to the Synthesis of Oligo- and Polysilazanes 242</p> <p>9.4 Other s-Block-Catalyzed Cross-DHC Reactions 243</p> <p>9.4.1 Alkali Metal-Catalyzed DHC of Si—H and O—H Bonds 243</p> <p>9.4.2 s-Block-Catalyzed DHC of Si—H and C—H Bonds 243</p> <p>9.5 Early Main Group-Mediated Nondehydrogenative Cross-couplings 244</p> <p>9.6 Conclusion and Outlook 245</p> <p>References 246</p> <p><b>10 Enantioselective Catalysis with s-Block Organometallics </b><b>251<br /></b><i>Philipp Stegner and Sjoerd Harder</i></p> <p>10.1 Introduction 251</p> <p>10.2 Lithium-Based Catalysts 252</p> <p>10.2.1 Lithium Catalysts Based on Neutral Chiral Ligands 252</p> <p>10.2.2 Lithium Catalysts Based on Monoanionic Chiral Ligands 255</p> <p>10.2.3 Lithium Catalysts Based on Dianionic Chiral Ligands 257</p> <p>10.3 Potassium-Based Catalysts 259</p> <p>10.3.1 Potassium Catalysts Based on Monoanionic Chiral Ligands 260</p> <p>10.4 Magnesium-Based Catalysts 262</p> <p>10.4.1 Magnesium Catalysts Based on Monoanionic Chiral Ligands 263</p> <p>10.4.2 Magnesium Catalysts Based on Dianionic Chiral Ligands 266</p> <p>10.5 Calcium-Based Catalysts 269</p> <p>10.5.1 Calcium Catalysts Based on Monoanionic Chiral Ligands 269</p> <p>10.5.2 Calcium Catalysts Based on Dianionic Chiral Ligands 273</p> <p>10.6 Conclusion and Outlook 275</p> <p>List of Abbreviations 275</p> <p>References 276</p> <p><b>11 Early Main Group Metal Lewis Acid Catalysis </b><b>279<br /></b><i>Marian Rauser, Sebastian Schröder, and Meike Niggemann</i></p> <p>11.1 Introduction 279</p> <p>11.1.1 Lewis Acidity of s-Block Metal Cations 280</p> <p>11.1.2 Interactions with More than One Lewis Base 281</p> <p>11.1.3 Counter Anions 282</p> <p>11.1.4 Solvation 283</p> <p>11.1.5 Solubility and Aggregation 283</p> <p>11.1.6 Water Tolerance 284</p> <p>11.1.7 Relative Lewis Acid Activity of Alkaline and Alkaline Earth Metals 285</p> <p>11.1.8 Hidden Brønsted Acid 287</p> <p>11.2 Polarized Carbon–Heteroatom Double Bonds 287</p> <p>11.2.1 Carboxylates: Anhydrides and Carbonates 288</p> <p>11.2.2 Aldehydes, Ketones, and Formates 289</p> <p>11.2.3 α,β-Unsaturated Carbonyl Compounds 291</p> <p>11.2.4 Imines and Enamines 292</p> <p>11.2.5 Mannich Reactions 294</p> <p>11.2.6 Oxidation and Reduction 294</p> <p>11.2.7 Donor–Acceptor Cyclopropanes 294</p> <p>11.2.8 Diels–Alder Reaction and Cycloaddition 295</p> <p>11.3 Activation of Polarized Single Bonds 296</p> <p>11.3.1 Opening of Three-Membered Heterocycles 296</p> <p>11.3.2 Leaving Groups 297</p> <p>11.3.3 Ca<sup>2+</sup>-Catalyzed Dehydroxylation as a Special Case 299</p> <p>11.4 Activation of Unpolarized Double Bonds 305</p> <p>11.5 Summary and Conclusions 307</p> <p>References 307</p> <p><b>12 Enantioselective Group 2Metal Lewis Acid Catalysis </b><b>311<br /></b><i>Yasuhiro Yamashita, Tetsu Tsubogo, and Shū Kobayashi</i></p> <p>12.1 Introduction 311</p> <p>12.2 Catalytic Enantioselective Reactions Using Chiral Magnesium Complexes 313</p> <p>12.2.1 Chiral Magnesium-Catalyzed Diels–Alder and 1,3-Dipolar Cycloaddition Reactions 313</p> <p>12.2.2 Chiral Magnesium-Catalyzed 1,4-Addition Reactions 315</p> <p>12.2.3 Chiral Magnesium-Catalyzed Addition Reactions to Carbonyl Compounds 318</p> <p>12.2.4 Chiral Magnesium-Catalyzed Addition Reactions with Imines 319</p> <p>12.2.5 Chiral Magnesium-Catalyzed Ring-Opening Reactions of Epoxide and Aziridine 321</p> <p>12.2.6 Chiral Magnesium-Catalyzed α-Functionalization Reactions of Carbonyl Compounds 323</p> <p>12.2.7 Various Chiral Magnesium-Catalyzed Reactions 324</p> <p>12.3 Catalytic Enantioselective Reactions Using Chiral Calcium Complexes 324</p> <p>12.3.1 Chiral Calcium-Catalyzed Addition Reactions to Carbonyl Compounds 324</p> <p>12.3.2 Chiral Calcium-Catalyzed 1,4-Addition Reactions 326</p> <p>12.3.3 Chiral Calcium-Catalyzed Addition Reactions with Imines 331</p> <p>12.3.4 Chiral Calcium-Catalyzed α-Functionalization Reactions with Carbonyl Compounds 333</p> <p>12.3.5 Chiral Calcium-Catalyzed Cycloaddition Reactions 334</p> <p>12.3.6 Chiral Calcium-Catalyzed Hydroamination Reactions 334</p> <p>12.3.7 Chiral Calcium-Catalyzed Epoxidation Reactions 336</p> <p>12.3.8 Chiral Calcium-Catalyzed Aziridine Ring-Opening Reaction 337</p> <p>12.4 Catalytic Enantioselective Reactions Using Chiral Strontium Complexes 337</p> <p>12.4.1 Chiral Strontium-Catalyzed 1,4-Addition Reactions 337</p> <p>12.4.2 Chiral Strontium-Catalyzed Addition Reactions with Imines 338</p> <p>12.4.3 Chiral Strontium-Catalyzed Oxime Formation 339</p> <p>12.5 Catalytic Enantioselective Reactions Using Chiral Barium Complexes 339</p> <p>12.5.1 Chiral Barium-Catalyzed Addition Reactions to Carbonyl Compounds and Imines 339</p> <p>12.5.2 Chiral Barium-Catalyzed 1,4-Addition Reactions 340</p> <p>12.5.3 Chiral Barium-Catalyzed Diels–Alder Reactions 341</p> <p>12.6 Summary and Outlook 341</p> <p>References 342</p> <p><b>13 Miscellaneous Reactions </b><b>347<br /></b><i>Michael S. Hill</i></p> <p>13.1 Introduction 347</p> <p>13.2 Privileged Substrates and s-Block Reactivity 347</p> <p>13.3 Reactivity with Multiply Bonded Substrates 351</p> <p>13.3.1 Tishchenko Dimerization of Aldehydes 351</p> <p>13.3.2 Trimerization of Organic Isocyanates 352</p> <p>13.3.3 Hydroalkoxylation of Alkynyl Alcohols 353</p> <p>13.3.4 Catalytic Isomerization and C–C Coupling with Terminal Alkynes 354</p> <p>13.3.5 Activation and Deoxygenation of C—O Multiple Bonds 358</p> <p>13.4 Single-Electron Transfer Steps in s-Block-Centered Catalysis 361</p> <p>13.5 “Beyond” Hydrofunctionalization and Dehydrocoupling 363</p> <p>13.6 Conclusions and Conjecture 365</p> <p>References 367</p> <p>Index 373</p>
<p><b><i>Sjoerd Harder</i></b> <i>holds the Chair of Inorganic and Organometallic Chemistry at the University of Erlangen-Nuremberg, Germany. He has authored over 175 scientific publications, mainly on the topic of early main group metal chemistry and is considered a pioneer in heavier alkaline-earth metal chemistry and group 2 metal applications in catalysis.</i>
<p><b>An indispensable reference on early main group metals in catalysis for synthetic chemists in academia and industry</b> <p><i>Early Main Group Metal Catalysis: Concepts and Reactions</i> contains a comprehensive overview of catalytic reactions in the presence of group 1 and group 2 metals. The book's chapters are organized according to the type of reaction to help easily navigate information. Every chapter contains basic information as well as a short educational background on the elements covered, and fundamental concepts are enhanced with illustrative examples that cover the main developments. The text describes various reactions including: polymerization of alkenes, hydroamination and phosphination reactions, hydrosilylation, hydroboration and hydrogenation catalysis, and enantioselective and Lewis acid catalysis. <p>This important book: <ul> <li>Provides a short introduction on polar organometallic chemistry and synthesis of early main group metal complexes</li> <li>Reviews the chemistry of the early main group metals, such as calcium and magnesium, that are useful catalysts for various organic transformations</li> <li>Addresses catalytic chemists, chemists working with organometallics, organic chemists, and natural products chemists as well in industry as in academia.</li> </ul> <p>With contributions from leaders in the field, <i>Early Main Group Metal Catalysis: Concepts and Reactions</i> is a valuable guide on the most recent developments and new possibilities of early main group metals in catalysis.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €