Details

Drug Delivery Strategies for Poorly Water-Soluble Drugs


Drug Delivery Strategies for Poorly Water-Soluble Drugs


Advances in Pharmaceutical Technology 1. Aufl.

von: Dionysios Douroumis, Alfred Fahr

130,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 19.12.2012
ISBN/EAN: 9781118444672
Sprache: englisch
Anzahl Seiten: 632

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Many newly proposed drugs suffer from poor water solubility, thus presenting major hurdles in the design of suitable formulations for administration to patients. Consequently, the development of<br /> techniques and materials to overcome these hurdles is a major area of research in pharmaceutical companies.</p> <p>Drug Delivery Strategies for Poorly Water-Soluble Drugs provides a comprehensive overview of currently used formulation strategies for hydrophobic drugs, including liposome formulation, cyclodextrin drug carriers, solid lipid nanoparticles, polymeric drug encapsulation delivery systems, self–microemulsifying drug delivery systems, nanocrystals, hydrosol colloidal dispersions, microemulsions, solid dispersions, cosolvent use, dendrimers, polymer- drug conjugates, polymeric micelles, and mesoporous silica nanoparticles. For each approach the book discusses the main instrumentation, operation principles and theoretical background, with a focus on critical<br /> formulation features and clinical studies. Finally, the book includes some recent and novel applications, scale-up considerations and regulatory issues.</p> <p>Drug Delivery Strategies for Poorly Water-Soluble Drugs is an essential multidisciplinary guide to this important area of drug formulation for researchers in industry and academia working in drug<br /> delivery, polymers and biomaterials.</p>
<p><i>List of Contributors xvii</i></p> <p><i>Series Preface xxi</i></p> <p><i>Preface xxiii</i></p> <p><b>1 Self-Assembled Delivery Vehicles for Poorly Water-Soluble Drugs: Basic Theoretical Considerations and Modeling Concepts 1</b><br /> <i>Sylvio May and Alfred Fahr</i></p> <p>1.1 Introduction 1</p> <p>1.2 Brief Reminder of Equilibrium Thermodynamics 3</p> <p>1.3 Principles of Self-Assembly in Dilute Solutions 7</p> <p>1.3.1 Linear Growth 9</p> <p>1.3.2 Cooperative Assembly 10</p> <p>1.4 Solubility and Partitioning of Drugs 11</p> <p>1.4.1 Simple Partitioning Equilibria 11</p> <p>1.4.2 Partitioning and Micellization 13</p> <p>1.4.3 Hydrophobicity and Ordering of Water 15</p> <p>1.5 Ways to Model Interactions in Colloidal Systems 16</p> <p>1.5.1 Electrostatic Interactions: The Poisson–Boltzmann Model 17</p> <p>1.5.2 Chain Packing Model 21</p> <p>1.6 Kinetics of Drug Transfer from Mobile Nanocarriers 23</p> <p>1.6.1 Collision Mechanism 25</p> <p>1.6.2 Diffusion Mechanism 26</p> <p>1.6.3 Internal Kinetics 26</p> <p>1.7 Conclusion 29</p> <p>Acknowledgments 31</p> <p>References 31</p> <p><b>2 Liposomes as Intravenous Solubilizers for Poorly Water-Soluble Drugs 37</b><br /> <i>Peter van Hoogevest, Mathew Leigh and Alfred Fahr</i></p> <p>2.1 Introduction 37</p> <p>2.2 Intravenous Administration of Poorly Water-Soluble Compounds (PWSC) 40</p> <p>2.2.1 Solubilizing Vehicles with Precipitation Risk upon Dilution 41</p> <p>2.2.2 Solubilizing Vehicles Maintaining Solubilization Capacity upon Dilution 43</p> <p>2.2.3 Mechanistic Release Aspects/Transfer Liposomal PWSC 45</p> <p>2.2.4 In Vivo Consequences 52</p> <p>2.2.5 Preclinical Parenteral Assessment Liposomal PWSC 56</p> <p>2.3 Conclusion 59</p> <p>References 60</p> <p><b>3 Drug Solubilization and Stabilization by Cyclodextrin Drug Carriers 67</b><br /> <i>Thorsteinn Loftsson and Marcus E. Brewster</i></p> <p>3.1 Introduction 67</p> <p>3.2 Structure and Physiochemical Properties 68</p> <p>3.3 Cyclodextrin Complexes and Phase Solubility Diagrams 72</p> <p>3.4 Cyclodextrin Complexes 76</p> <p>3.4.1 Self-Assembly of Cyclodextrins and their Complexes 76</p> <p>3.4.2 Thermodynamic and Driving Forces for Complexation 76</p> <p>3.5 Effects on Drug Stability 77</p> <p>3.6 Cyclodextrins and Drug Permeation through Biological Membranes 80</p> <p>3.7 Drug Solubilization in Pharmaceutical Formulations 82</p> <p>3.7.1 Oral Drug Delivery 84</p> <p>3.7.2 Sublingual, Buccal, Nasal, Pulmonary, Rectal and Vaginal Drug Delivery 86</p> <p>3.7.3 Ophthalmic Drug Delivery 87</p> <p>3.7.4 Dermal and Transdermal Drug Delivery 87</p> <p>3.7.5 Injectable Formulations 87</p> <p>3.8 Toxicology and Pharmacokinetics 89</p> <p>3.9 Regulatory Issues 90</p> <p>3.10 Conclusion 91</p> <p>References 91</p> <p><b>4 Solid Lipid Nanoparticles for Drug Delivery 103</b><br /> <i>Sonja Joseph and Heike Bunjes</i></p> <p>4.1 Introduction 103</p> <p>4.2 Preparation Procedures for Solid Lipid Nanoparticles 104</p> <p>4.2.1 Melt Dispersion Processes 104</p> <p>4.2.2 Other Top-Down Processes 109</p> <p>4.2.3 Precipitation from Homogeneous Systems 111</p> <p>4.2.4 Comparison of the Formulation Procedures and Scale-Up Feasibility 113</p> <p>4.2.5 Further Processing of Solid Lipid Nanoparticle Suspensions 115</p> <p>4.3 Structural Parameters and Their Influence on Product Quality and Pharmaceutical Performance 116</p> <p>4.3.1 Particle Size and Size Distribution 116</p> <p>4.3.2 Surface Properties 117</p> <p>4.3.3 Solid State Properties of Solid Lipid Nanoparticles 117</p> <p>4.3.4 Particle Morphology and Overall Structure of the Dispersions 121</p> <p>4.4 Incorporation of Poorly Soluble Drugs and In Vitro Release 123</p> <p>4.4.1 Drug Incorporation 123</p> <p>4.4.2 In Vitro Drug Release 126</p> <p>4.5 Safety Aspects, Toxicity and Pharmacokinetic Profiles 129</p> <p>4.5.1 In Vitro Behavior and Toxicity Studies 129</p> <p>4.5.2 Bioavailability and Pharmacokinetics 131</p> <p>4.6 Conclusion 133</p> <p>References 133</p> <p><b>5 Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugs 151</b><br /> <i>Naveed Ahmed, C.E. Mora-Huertas, Chiraz Jaafar-Maalej, Hatem Fessi and Abdelhamid Elaissari</i></p> <p>5.1 Introduction 151</p> <p>5.2 Safety and Biocompatibility of Polymers 152</p> <p>5.3 Encapsulation Techniques of Hydrophobic Drugs 156</p> <p>5.3.1 The Nanoprecipitation Method 156</p> <p>5.3.2 The Emulsification Methods 158</p> <p>5.3.3 Polymersome Preparation 164</p> <p>5.3.4 Supercritical Fluid Technology 166</p> <p>5.3.5 The Polymer-Coating Method 167</p> <p>5.3.6 The Layer-by-Layer Method 171</p> <p>5.4 Behavior of Nanoparticles as Drug Delivery Systems 173</p> <p>5.4.1 Mean Size 173</p> <p>5.4.2 Zeta Potential 173</p> <p>5.4.3 Encapsulation Efficiency 174</p> <p>5.4.4 Drug Release Properties 176</p> <p>5.4.5 General Performance of the Nanoparticles 176</p> <p>5.5 Conclusion 177</p> <p>References 180</p> <p><b>6 Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugs 199</b><br /> <i>Dagmar Fischer</i></p> <p>6.1 Introduction 199</p> <p>6.2 Drug Encapsulation by Monomer Polymerization 200</p> <p>6.2.1 Emulsion Polymerization 201</p> <p>6.2.2 Interfacial Polymerization 206</p> <p>6.2.3 Interfacial Polycondensation 207</p> <p>6.3 Polymeric Nanospheres and Nanocapsules Produced by Polymerization 209</p> <p>6.4 Formulation Components 210</p> <p>6.5 Control of Particle Morphology 212</p> <p>6.6 Toxicity and In Vivo Performance 213</p> <p>6.7 Scale-Up Considerations 214</p> <p>6.8 Conclusion 217</p> <p>Acknowledgements 217</p> <p>References 217</p> <p><b>7 Development of Self-Emulsifying Drug Delivery Systems (SEDDS) for Oral Bioavailability Enhancement of Poorly Soluble Drugs 225</b><br /> <i>Dimitrios G. Fatouros and Anette M¨ullertz</i></p> <p>7.1 Introduction 225</p> <p>7.2 Lipid Processing and Drug Solubilization 226</p> <p>7.3 Self-Emulsifying Drug Delivery Systems 227</p> <p>7.3.1 Excipients Used in SEDDS 227</p> <p>7.3.2 Self-Emulsification Mechanism 228</p> <p>7.3.3 Physicochemical Characterization of SEDDS 229</p> <p>7.3.4 Drug Incorporation in SEDDS 231</p> <p>7.4 In Vitro Digestion Model 232</p> <p>7.5 Enhancement of Oral Absorption by SEDDS 235</p> <p>7.6 Conclusion 238</p> <p>References 239</p> <p><b>8 Novel Top-Down Technologies: Effective Production of Ultra-Fine Drug Nanocrystals 247</b><br /> <i>C.M. Keck, S. Kobierski, R. Mauludin and R.H. M¨uller</i></p> <p>8.1 Introduction: General Benefits of Drug Nanocrystals (First Generation) 247</p> <p>8.2 Ultra-Fine Drug Nanocrystals (_100 Nm) and Their Special Properties 248</p> <p>8.3 Production of First Generation Nanocrystals: A Brief Overview 250</p> <p>8.3.1 Hydrosols 250</p> <p>8.3.2 Nanomorphs 251</p> <p>8.3.3 NanocrystalsTM by Bead Milling 251</p> <p>8.3.4 DissoCubes R _ by High Pressure Homogenization 251</p> <p>8.3.5 NANOEDGE by Baxter 252</p> <p>8.3.6 Summary of First Generation Production Technologies 252</p> <p>8.4 Production of Ultra-Fine Drug Nanocrystals: Smartcrystals 252</p> <p>8.4.1 Fine-Tuned Precipitation 252</p> <p>8.4.2 The SmartCrystal Concept 253</p> <p>8.5 Conclusion 259</p> <p>References 259</p> <p><b>9 Nanosuspensions with Enhanced Drug Dissolution Rates of Poorly Water-Soluble Drugs 265</b><br /> <i>Dennis Douroumis</i></p> <p>9.1 Introduction 265</p> <p>9.2 Crystal Growth and Nucleation Theory 266</p> <p>9.3 Creating Supersaturation and Stable Nanosuspensions 269</p> <p>9.4 Antisolvent Precipitation Via Mixer Processing 272</p> <p>9.5 Antisolvent Precipitation by Using Ultrasonication 277</p> <p>9.6 Nanoprecipitation Using Microfluidic Reactors 278</p> <p>9.7 Particle Engineering by Spray: Freezing into Liquid 279</p> <p>9.8 Precipitation by Rapid Expansion from Supercritical to Aqueous Solution 280</p> <p>9.9 Conclusion 282</p> <p>References 283</p> <p><b>10 Microemulsions for Drug Solubilization and Delivery 287</b><br /> <i>X.Q. Wang and Q. Zhang</i></p> <p>10.1 Introduction 287</p> <p>10.2 Microemulsion Formation and Phase Behavior 289</p> <p>10.2.1 Theories of Microemulsion Formation 289</p> <p>10.2.2 Structure of Microemulsions 289</p> <p>10.2.3 Phase Behavior 292</p> <p>10.3 HLB, PIT and Microemulsion Stability 293</p> <p>10.4 Microemulsion Physico-Chemical Characterization 293</p> <p>10.5 Components of Microemulsion Formulations 295</p> <p>10.5.1 Oils 296</p> <p>10.5.2 Surfactants 298</p> <p>10.5.3 Cosurfactants 300</p> <p>10.5.4 Drugs 302</p> <p>10.6 Preparation Methods 303</p> <p>10.7 In Vitro and In Vivo Biological Studies 303</p> <p>10.7.1 Microemulsions Used as an Oral Delivery System for Poorly Water-Soluble Compounds 303</p> <p>10.7.2 Microemulsions Used as a Parenteral Delivery System for Poorly Water-Soluble Compounds 311</p> <p>10.8 Recent Developments and Future Directions 314</p> <p>10.8.1 Develop Cremophor-Free Microemulsions 314</p> <p>10.8.2 Dried O/W Emulsions for Oral Delivery of Poorly Soluble Drugs 315</p> <p>10.8.3 Self-Microemulsifying Drug Delivery System (SMEDDS) 318</p> <p>References 319</p> <p><b>11 Hot Melt Extrusion: A Process Overview and Use in Manufacturing Solid Dispersions of Poorly Water-Soluble Drugs 325</b><br /> <i>Shu Li, David S. Jones and Gavin P. Andrews</i></p> <p>11.1 Introduction: Present Challenges to Oral Drug Delivery 325</p> <p>11.2 Solid Drug Dispersions for Enhanced Drug Solubility 327</p> <p>11.3 Hot Melt Extrusion (HME) as a Drug Delivery Technology 329</p> <p>11.3.1 Historical Review of HME 329</p> <p>11.3.2 Equipment 329</p> <p>11.3.3 Screw Geometry 331</p> <p>11.3.4 HME Processing 332</p> <p>11.3.5 Product Characteristics 335</p> <p>11.3.6 Materials Commonly Used in HME for Solubility Enhancement 337</p> <p>11.4 Solubility Enhancement Using HME 340</p> <p>11.4.1 Product Structure 340</p> <p>11.4.2 HME Matrix Carriers 341</p> <p>11.4.3 HME for the Manufacture of Pharmaceutical Co-Crystals 343</p> <p>11.5 Representative Case Studies with Enhanced Solubility 344</p> <p>11.5.1 Increased Dissolution Rate Due to Size Reduction or De-Aggregation 344</p> <p>11.5.2 Increased Dissolution Rate Due to Drug Morphology Change 345</p> <p>11.5.3 Controlled or Prolonged Release with Enhanced Release Extent 346</p> <p>11.5.4 Complexation to Enhance Dissolution Performance 346</p> <p>11.5.5 Co-Crystal Formation 347</p> <p>11.6 Conclusion 347</p> <p>References 348</p> <p><b>12 Penetration Enhancers, Solvents and the Skin 359</b><br /> <i>Jonathan Hadgraft and Majella E. Lane</i></p> <p>12.1 Introduction 359</p> <p>12.2 Interactions of Solvents and Enhancers with the Skin 360</p> <p>12.2.1 Small Solvents 361</p> <p>12.2.2 Solvents with Longer Carbon Chains 361</p> <p>12.3 Skin Permeation Enhancement of Ibuprofen 363</p> <p>12.3.1 Infinite Dose Conditions 364</p> <p>12.3.2 Finite Dose Conditions 368</p> <p>12.4 Conclusion 369</p> <p>References 369</p> <p><b>13 Dendrimers for Enhanced Drug Solubilization 373</b><br /> <i>Narendra K. Jain and Rakesh K. Tekade</i></p> <p>13.1 Introduction 373</p> <p>13.2 Current Solubilization Strategies 374</p> <p>13.3 Origin of Dendrimers 374</p> <p>13.4 What Are Dendrimers? 375</p> <p>13.5 Synthesis of Dendritic Architecture 375</p> <p>13.6 Structure and Intrinsic Properties of Dendrimeric Compartments 377</p> <p>13.7 Dendrimers in Solubilization 378</p> <p>13.8 Factors Affecting Dendrimer-Mediated Solubilization and Drug Delivery 381</p> <p>13.8.1 Nature of the Dendritic Core 381</p> <p>13.8.2 Dendrimer Generation 382</p> <p>13.8.3 Nature of the Dendrimer Surface 382</p> <p>13.8.4 Dendrimer Concentration 382</p> <p>13.8.5 pH of Solution 383</p> <p>13.8.6 Temperature 384</p> <p>13.8.7 Solvents 384</p> <p>13.9 Drug–Dendrimer Conjugation Approaches 386</p> <p>13.9.1 Physical Loading: Complexation of Water-Insoluble Drugs 386</p> <p>13.9.2 Covalent Loading: Synthesis of Drug–Dendrimer Conjugate 389</p> <p>13.10 Dendrimers’ Biocompatibility and Toxicity 393</p> <p>13.10.1 PEGylation Technology: A Way to Enhance Dendrimer Solubility and Biocompatibility 393</p> <p>13.11 Classification of PEGylated Dendrimers 394</p> <p>13.11.1 PEGylated Dendrimer 394</p> <p>13.11.2 Drug-Conjugated PEGylated Dendrimer 397</p> <p>13.11.3 PEG Cored Dendrimer 397</p> <p>13.11.4 PEG Branched Dendrimer 398</p> <p>13.11.5 PEG-Conjugated Targeted Dendrimer 398</p> <p>13.12 Conclusion 399</p> <p>References 400</p> <p><b>14 Polymeric Micelles for the Delivery of Poorly Soluble Drugs 411</b><br /> <i>Swati Biswas, Onkar S. Vaze, Sara Movassaghian and Vladimir P. Torchilin</i></p> <p>14.1 Micelles and Micellization 411</p> <p>14.1.1 Factors Affecting Micellization 413</p> <p>14.1.2 Thermodynamics of Micellization 414</p> <p>14.2 Chemical Nature and Formation Mechanism of Polymeric Micelles 416</p> <p>14.2.1 Core and Corona of the Polymeric Micelles 417</p> <p>14.2.2 Block Co-Polymers as Building Block of Polymeric Micelles 418</p> <p>14.3 Polymeric Micelles: Unique Nanomedicine Platforms 419</p> <p>14.3.1 Polymeric Micelles for the Delivery of Poorly Soluble Drugs 421</p> <p>14.4 Determination of Physico-Chemical Characteristics of Polymeric Micelles 430</p> <p>14.4.1 Critical Micelle Concentrations (CMC) 430</p> <p>14.4.2 Particle Size and Stability 432</p> <p>14.5 Drug Loading 435</p> <p>14.5.1 Drug-Loading Procedures 437</p> <p>14.6 Biodistribution and Toxicity 439</p> <p>14.7 Targeting Micellar Nanocarriers: Example: Drug Delivery to Tumors 443</p> <p>14.7.1 Passive Targeting 443</p> <p>14.7.2 Active Targeting: Functionalized Polymeric Micelles 445</p> <p>14.8 Site-Specific Micellar-Drug Release Strategies 449</p> <p>14.9 Intracellular Delivery of Micelles 452</p> <p>14.10 Multifunctional Micellar Nanocarriers 453</p> <p>14.11 Conclusion 455</p> <p>References 455</p> <p><b>15 Nanostructured Silicon-Based Materials as a Drug Delivery System for Water-Insoluble Drugs 477</b><br /> <i>Vesa-Pekka Lehto, Jarno Salonen, H´elder A. Santos and Joakim Riikonen</i></p> <p>15.1 Introduction 477</p> <p>15.2 Control of Particle Size and Pore Morphology 478</p> <p>15.3 Surface Functionalization 482</p> <p>15.3.1 Stabilization 482</p> <p>15.3.2 Biofunctionalization 483</p> <p>15.4 Biocompatibility and Cytotoxicity 485</p> <p>15.4.1 In Vitro Studies 486</p> <p>15.4.2 In Vivo and Ex Vivo Studies 490</p> <p>15.5 Nanostructured Silicon Materials as DDS 492</p> <p>15.5.1 Drug-Loading Procedures 492</p> <p>15.5.2 Enhanced Drug Release 495</p> <p>15.5.3 Intracellular Uptake 500</p> <p>15.6 Conclusion 502</p> <p>References 502</p> <p><b>16 Micro- and Nanosizing of Poorly Soluble Drugs by Grinding Techniques 509</b><br /> <i>Stefan Scheler</i></p> <p>16.1 Introduction 509</p> <p>16.2 Kinetics of Drug Dissolution 510</p> <p>16.3 Micronization and Nanosizing of Drugs 510</p> <p>16.3.1 Dissolution Enhancement by Micronization and Nanonization 510</p> <p>16.3.2 Dry and Wet Milling Technologies 511</p> <p>16.3.3 NanoCrystal R _ Technology 512</p> <p>16.4 Theory of Grinding Operations 512</p> <p>16.4.1 Fraction under Compressive Stress 512</p> <p>16.4.2 Brittle-Ductile Transition and Grinding Limit 514</p> <p>16.4.3 Milling Beyond the Brittle-Ductile Transition Limit 516</p> <p>16.4.4 Fatigue Fracture 517</p> <p>16.4.5 Agglomeration 517</p> <p>16.4.6 Amorphization 519</p> <p>16.5 Influence of the Stabilizer 520</p> <p>16.5.1 Effects of Stabilization 520</p> <p>16.5.2 Steric and Electrostatic Stabilization 521</p> <p>16.5.3 Surfactants 523</p> <p>16.5.4 Polymers 527</p> <p>16.6 Milling Equipment and Technology 527</p> <p>16.6.1 Grinding Beads 527</p> <p>16.6.2 Types of Media Mills 528</p> <p>16.6.3 Process Parameters 532</p> <p>16.7 Process Development from Laboratory to Commercial Scale 535</p> <p>16.7.1 Early Development 535</p> <p>16.7.2 Toxicological Studies 535</p> <p>16.7.3 Clinical Studies 536</p> <p>16.7.4 Drying 536</p> <p>16.7.5 Further Processing of Drug Nanoparticles 536</p> <p>16.8 Application and Biopharmaceutical Properties 537</p> <p>16.8.1 Oral Drug Delivery 538</p> <p>16.8.2 Parenteral Drug Delivery 540</p> <p>16.8.3 Extracorporal Therapy 542</p> <p>16.9 Conclusion 543</p> <p>References 543</p> <p><b>17 Enhanced Solubility of Poorly Soluble Drugs Via Spray Drying 551</b><br /> <i>Cordin Arpagaus, David R¨utti and Marco Meuri</i></p> <p>17.1 Introduction 551</p> <p>17.2 Advantages of Spray Drying 553</p> <p>17.3 Principles and Instrumentation of Spray Drying Processes 553</p> <p>17.3.1 Principal Function of a Spray Dryer 553</p> <p>17.3.2 Traditional Spray Dryers 558</p> <p>17.3.3 Recent Developments in Spray Drying 561</p> <p>17.4 Optimizing Spray Drying Process Parameters 563</p> <p>17.4.1 Drying Gas Flow Rate (Aspirator Rate) 563</p> <p>17.4.2 Drying Gas Humidity 563</p> <p>17.4.3 Inlet Temperature 564</p> <p>17.4.4 Spray Gas Flow 565</p> <p>17.4.5 Feed Concentration 565</p> <p>17.4.6 Feed Rate 565</p> <p>17.4.7 Organic Solvent Instead of Water 566</p> <p>17.5 Spray Drying of Water-Insoluble Drugs: Case Studies 566</p> <p>17.5.1 Nanosuspensions 566</p> <p>17.5.2 Solid Lipid Nanoparticles 568</p> <p>17.5.3 Silica-Lipid Hybrid Microcapsules 568</p> <p>17.5.4 Milled Nanoparticles 570</p> <p>17.5.5 Inhalation Dosage Forms 571</p> <p>17.5.6 Porous Products 572</p> <p>17.5.7 Microemulsions 572</p> <p>17.5.8 Application Examples: Summary 575</p> <p>17.6 Conclusion 582</p> <p><i>References 583</i></p> <p><i>Index 587</i></p>
<p><b>Dennis Douroumis</b><br /><i>University of Greenwich, UK</i></p> <p><b>Alfred Fahr</b><br /><i>Friedrich-Schiller University of Jena, Germany</i></p>
<p>Many newly proposed drugs suffer from poor water solubility, thus presenting major hurdles in the design of suitable formulations for administration to patients. Consequently, the development of<br /> techniques and materials to overcome these hurdles is a major area of research in pharmaceutical companies.</p> <p>Drug Delivery Strategies for Poorly Water-Soluble Drugs provides a comprehensive overview of currently used formulation strategies for hydrophobic drugs, including liposome formulation, cyclodextrin drug carriers, solid lipid nanoparticles, polymeric drug encapsulation delivery systems, self–microemulsifying drug delivery systems, nanocrystals, hydrosol colloidal dispersions, microemulsions, solid dispersions, cosolvent use, dendrimers, polymer- drug conjugates, polymeric micelles, and mesoporous silica nanoparticles. For each approach the book discusses the main instrumentation, operation principles and theoretical background, with a focus on critical<br /> formulation features and clinical studies. Finally, the book includes some recent and novel applications, scale-up considerations and regulatory issues.</p> <p>Drug Delivery Strategies for Poorly Water-Soluble Drugs is an essential multidisciplinary guide to this important area of drug formulation for researchers in industry and academia working in drug<br /> delivery, polymers and biomaterials.</p>

Diese Produkte könnten Sie auch interessieren:

Successful Drug Discovery, Volume 5
Successful Drug Discovery, Volume 5
von: Janos Fischer, Christian Klein, Wayne E. Childers
EPUB ebook
133,99 €
Industrial Carbon and Graphite Materials
Industrial Carbon and Graphite Materials
von: Hubert Jaeger, Wilhelm Frohs
EPUB ebook
331,99 €