Details

Design of Smart Power Grid Renewable Energy Systems


Design of Smart Power Grid Renewable Energy Systems


3. Aufl.

von: Ali Keyhani

119,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.06.2019
ISBN/EAN: 9781119573210
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids</b> </p> <p>The revised third edition of <i>Design of Smart Power Grid Renewable Energy Systems </i>integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems.</p> <p>In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simula­tion test bed. This important book:</p> <ul> <li>Reviews the basic principles underlying power systems</li> <li>Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods</li> <li>Describes the fundamental concepts in the design and operation of smart grid power grids</li> <li>Supplementary material includes a solutions manual and PowerPoint presentations for instructors</li> </ul> <p>Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of <i>Design of Smart Power Grid Renewable Energy Systems </i>is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources. </p>
<p>Preface xiii</p> <p>Acknowledgments xvi</p> <p>About the Companion Website xvii</p> <p><b>1 Energy and Civilization 1</b></p> <p>1.1 Introduction: Motivation 1</p> <p>1.2 Fossil Fuel 2</p> <p>1.3 Energy Use and Industrialization 2</p> <p>1.4 Nuclear Energy 4</p> <p>1.5 Global Warming 5</p> <p>1.6 The Age of the Electric Power Grid 9</p> <p>1.7 Green and Renewable Energy Sources 10</p> <p>1.8 Hydrogen 11</p> <p>1.9 Solar and Photovoltaic 11</p> <p>1.9.1 Wind Power 12</p> <p>1.9.2 Geothermal 13</p> <p>1.10 Biomass 13</p> <p>1.11 Ethanol 13</p> <p>1.12 Energy Units and Conversions 13</p> <p>1.13 Estimating the Cost of Energy 17</p> <p>1.14 New Oil Boom–Hydraulic Fracturing (Fracking) 20</p> <p>1.15 Estimation of Future CO<sub>2</sub> 21</p> <p>1.16 The Paris Agreement | UNFCCC 22</p> <p>1.17 Energy Utilization and Economic Growth 23</p> <p>1.18 Conclusion 23</p> <p>Problems 24</p> <p>Further Reading 26</p> <p><b>2 Power Grids 28</b></p> <p>2.1 Introduction 28</p> <p>2.2 Electric Power Grids 29</p> <p>2.2.1 Background 29</p> <p>2.2.2 The Construction of a Power Grid System 29</p> <p>2.3 Basic Concepts of Power Grids 33</p> <p>2.3.1 Common Terms 33</p> <p>2.3.2 Calculating Power Consumption 33</p> <p>2.4 Load Models 49</p> <p>2.5 Transformers in Electric Power Grids 53</p> <p>2.5.1 A Short History of Transformers 54</p> <p>2.5.2 Transmission Voltage 54</p> <p>2.5.3 Transformers 55</p> <p>2.6 Modeling a Microgrid System 59</p> <p>2.6.1 The Per Unit System 60</p> <p>2.7 Modeling Three-Phase Transformers 69</p> <p>2.8 Tap-Changing Transformers 72</p> <p>2.9 Modeling Transmission Lines 74</p> <p>Problems 87</p> <p>References 92</p> <p><b>3 Modeling of Converters in Power Grid Distributed Generation Systems 93</b></p> <p>3.1 Introduction 93</p> <p>3.2 Single-Phase DC/AC Inverters with Two Switches 94</p> <p>3.3 Single-Phase DC/AC Inverters with a Four-Switch Bipolar Switching Method 106</p> <p>3.3.1 Pulse Width Modulation with Unipolar Voltage Switching for a Single-Phase Full-Bridge Inverter 110</p> <p>3.4 Three-Phase DC/AC Inverters 113</p> <p>3.5 Pulse Width Modulation Methods 114</p> <p>3.5.1 The Triangular Method 114</p> <p>3.5.2 The Identity Method 119</p> <p>3.6 Analysis of DC/AC Three-Phase Inverters 120</p> <p>3.7 Microgrid of Renewable Energy Systems 130</p> <p>3.8 DC/DC Converters in Green Energy Systems 133</p> <p>3.8.1 The Step-Up Converter 134</p> <p>3.8.2 The Step-Down Converter 144</p> <p>3.8.3 The Buck–Boost Converter 151</p> <p>3.9 Rectifiers 156</p> <p>3.10 Pulse Width Modulation Rectifiers 160</p> <p>3.11 A Three-Phase Voltage Source Rectifier Utilizing Sinusoidal PWM Switching 163</p> <p>3.12 The Sizing of an Inverter for Microgrid Operation 167</p> <p>3.13 The Sizing of a Rectifier for Microgrid Operation 169</p> <p>3.14 The Sizing of DC/DC Converters for Microgrid Operation 170</p> <p>Problems 171</p> <p>References 176</p> <p><b>4 Smart Power Grid Systems 177</b></p> <p>4.1 Introduction 177</p> <p>4.2 Power Grid Operation 178</p> <p>4.3 Vertically and Market-Structured Power Grid 184</p> <p>4.4 The Operations Control of a Power Grid 187</p> <p>4.5 Load Frequency Control 187</p> <p>4.6 Automatic Generation Control 193</p> <p>4.7 Operating Reserve Calculation 198</p> <p>4.8 Basic Concepts of a Smart Power Grid 199</p> <p>4.9 The Load Factor 206</p> <p>4.10 The Load Factor and Real-Time Pricing 209</p> <p>4.11 A Cyber-Controlled Smart Grid 212</p> <p>4.12 Smart Grid Development 214</p> <p>4.13 Smart Microgrid Renewable and Green Energy Systems 216</p> <p>4.14 A Power Grid Steam Generator 223</p> <p>4.15 Power Grid Modeling 234</p> <p>Problems 240</p> <p>References 245</p> <p><b>5 Solar Energy Systems 247</b></p> <p>5.1 Introduction 247</p> <p>5.2 The Solar Energy Conversion Process: Thermal Power Plants 251</p> <p>5.3 Photovoltaic Power Conversion 253</p> <p>5.4 Photovoltaic Materials 253</p> <p>5.5 Photovoltaic Characteristics 255</p> <p>5.6 Photovoltaic Efficiency 258</p> <p>5.7 The Design of Photovoltaic Systems 262</p> <p>5.8 The Modeling of a Photovoltaic Module 277</p> <p>5.9 The Measurement of Photovoltaic Performance 278</p> <p>5.10 The Maximum Power Point of a Photovoltaic Array 278</p> <p>5.11 A Battery Storage System 292</p> <p>5.12 A Storage System Based on a Single-Cell Battery 294</p> <p>5.13 The Energy Yield of a Photovoltaic Module and the Angle of Incidence 317</p> <p>5.14 The State of Photovoltaic Generation Technology 318</p> <p>Problems 318</p> <p>References 326</p> <p><b>6 Microgrid Wind Energy Systems 328</b></p> <p>6.1 Introduction 328</p> <p>6.2 Wind Power 329</p> <p>6.3 Wind Turbine Generators 331</p> <p>6.4 The Modeling of Induction Machines 334</p> <p>6.4.1 Calculation of Slip 343</p> <p>6.4.2 The Equivalent Circuit of an Induction Machine 343</p> <p>6.5 Power Flow Analysis of an Induction Machine 346</p> <p>6.6 The Operation of an Induction Generator 351</p> <p>6.7 Dynamic Performance 366</p> <p>6.8 The Doubly Fed Induction Generator 372</p> <p>6.9 Brushless Doubly Fed Induction Generator Systems 375</p> <p>6.10 Variable-Speed Permanent Magnet Generators 376</p> <p>6.11 A Variable-Speed Synchronous Generator 377</p> <p>6.12 A Variable-Speed Generator with a Converter Isolated from the Grid 378</p> <p>Problems 380</p> <p>References 384</p> <p><b>7 Load Flow Analysis of Power Grids and Microgrids 386</b></p> <p>7.1 Introduction 386</p> <p>7.2 Voltage Calculation in Power Grid Analysis 387</p> <p>7.3 The Power Flow Problem 391</p> <p>7.4 Load Flow Study as a Power System Engineering Tool 392</p> <p>7.5 Bus Types 392</p> <p>7.6 General Formulation of the Power Flow Problem 397</p> <p>7.7 Algorithm for Calculation of Bus Admittance Model 400</p> <p>7.7.1 The History of Algebra, Algorithm, and Number Systems 400</p> <p>7.7.2 Bus Admittance Algorithm 402</p> <p>7.8 The Bus Impedance Algorithm 403</p> <p>7.9 Formulation of the Load Flow Problem 404</p> <p>7.10 The Gauss–Seidel <i>Y</i>BUS Algorithm 407</p> <p>7.11 The Gauss–Seidel <i>Z</i>BUS Algorithm 412</p> <p>7.12 Comparison of the <i>Y</i>BUS and <i>Z</i>BUS Power Flow Solution Methods 419</p> <p>7.13 The Synchronous and Asynchronous Operation of Microgrids 420</p> <p>7.14 An Advanced Power Flow Solution Method: The Newton–Raphson Algorithm 422</p> <p>7.14.1 The Newton–Raphson Algorithm 425</p> <p>7.15 General Formulation of the Newton–Raphson Algorithm 430</p> <p>7.16 The Decoupled Newton–Raphson Algorithm 434</p> <p>7.17 The Fast Decoupled Load Flow Algorithm 435</p> <p>7.18 Analysis of a Power Flow Problem 436</p> <p>Problems 448</p> <p>References 461</p> <p><b>8 Power Grid and Microgrid Fault Studies 462</b></p> <p>8.1 Introduction 462</p> <p>8.2 Power Grid Fault Current Calculation 464</p> <p>8.3 Symmetrical Components 468</p> <p>8.4 Sequence Networks for Power Generators 473</p> <p>8.5 The Modeling of Wind and PV Generating Stations 476</p> <p>8.6 Sequence Networks for Balanced Three-Phase Transmission Lines 477</p> <p>8.7 Ground Current Flow in Balanced Three-Phase Transformers 479</p> <p>8.8 Zero Sequence Network 481</p> <p>8.8.1 Transformers 481</p> <p>8.8.2 Load Connections 482</p> <p>8.8.3 Power Grid 484</p> <p>8.9 Fault Studies 487</p> <p>8.9.1 Balanced Three-Phase Fault Analysis 490</p> <p>8.9.2 Unbalanced Faults 508</p> <p>8.9.3 Single-Line-to-Ground Faults 508</p> <p>8.9.4 Double-Line-to-Ground Faults 511</p> <p>8.9.5 Line-to-Line Faults 513</p> <p>Problems 527</p> <p>References 533</p> <p><b>9 Smart Devices and Energy Efficiency Monitoring Systems 534</b></p> <p>9.1 Introduction 534</p> <p>9.2 Kilowatt-Hour Measurements 535</p> <p>9.3 Current and Voltage Measurements 536</p> <p>9.4 Power Measurements at 60 or 50HZ 537</p> <p>9.5 Analog-to-Digital Conversions 538</p> <p>9.6 Root Mean Square (RMS) Measurement Devices 538</p> <p>9.7 Energy Monitoring Systems 539</p> <p>9.8 Smart Meters 539</p> <p>9.9 Power Monitoring and Scheduling 540</p> <p>9.10 Communication Systems 541</p> <p>9.11 Network Security and Software 543</p> <p>9.12 Smartphone Applications 546</p> <p>9.13 Summary 546</p> <p>Problems 547</p> <p>Further Reading 548</p> <p><b>10 Load Estimation and Classification 549</b></p> <p>10.1 Introduction 549</p> <p>10.2 Load Estimation of a Residential Load 549</p> <p>10.3 Service Feeder and Metering 557</p> <p>10.3.1 Assumed Wattages 557</p> <p>Problems 560</p> <p>References 562</p> <p><b>11 Energy Saving and Cost Estimation of Incandescent and Light-Emitting Diodes 563</b></p> <p>11.1 Building Lighting with Incandescent Bulbs 563</p> <p>11.2 Comparative Performance of LED, Incandescent, and LFC Lighting 564</p> <p>11.3 Building Load Estimation 566</p> <p>11.4 Led Energy Saving 569</p> <p>11.5 Return on Investment on LED Lighting 571</p> <p>11.6 Annual Carbon Emissions 572</p> <p>Problems 572</p> <p>References 572</p> <p>Appendix A Complex Numbers 573</p> <p>Appendix B Transmission Line and Distribution Typical Data 576</p> <p>Appendix C Energy Yield of Photovoltaic Panels and Angle of Incidence 581</p> <p>Appendix D Wind Power 594</p> <p>Index 599</p>
<p><b>Ali Keyhani, PhD,</b> is a Professor in the Department of Electrical and Computer Engineering at Ohio State University. He is a Fellow of the IEEE and a recipient of Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW.
<p><b>The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids</b> <p>The revised third edition of <i>Design of Smart Power Grid Renewable Energy Systems</i> integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. <p>In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB<sup>®</sup> in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB<sup>®</sup> simulation test bed. This important book: <ul> <li>Reviews the basic principles underlying power systems</li> <li>Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods</li> <li>Describes the fundamental concepts in the design and operation of smart grid power grids</li> <li>Supplementary material includes a solutions manual and PowerPoint presentations for instructors</li> </ul> <p>Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of <i>Design of Smart Power Grid Renewable Energy Systems</i> is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €