Details

Density Functional Theory


Density Functional Theory

A Practical Introduction
2. Aufl.

von: David S. Sholl, Janice A. Steckel

92,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 15.12.2022
ISBN/EAN: 9781119840886
Sprache: englisch
Anzahl Seiten: 224

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Density Functional Theory</b> <p><b>A concise and rigorous introduction to the applications of DFT calculations</b> <p>In the newly revised second edition of <i>Density Functional Theory: A Practical Introduction</i>, the authors deliver a concise and easy-to-follow introduction to the key concepts and practical applications of density functional theory (DFT) with an emphasis on plane-wave DFT. The authors draw on decades of experience in the field, offering students from a variety of backgrounds a balanced approach between accessibility and rigor, creating a text that is highly digestible in its entirety. <p>This new edition: <ul><li> Discusses in more detail the accuracy of DFT calculations and the choice of functionals</li> <li> Adds an overview of the wide range of available DFT codes</li> <li> Contains more examples on the use of DFT for high throughput materials calculations</li> <li> Puts more emphasis on computing phase diagrams and on open ensemble methods widely used in electrochemistry</li> <li> Is significantly extended to cover calculation beyond standard DFT, e.g., dispersion-corrected DFT, DFT+U, time-dependent DFT</li></ul> <p>Perfect for graduate students and postdoctoral candidates in physics and engineering, <i>Density Functional Theory: A Practical Introduction</i> will also earn a place in the libraries of researchers and practitioners in chemistry, materials science, and mechanical engineering.
<p>1 What Is Density Functional Theory?</p> <p>1.1 How to Approach This Book</p> <p>1.2 Examples of DFT in Action</p> <p>1.2.1 Ammonia Synthesis by Heterogeneous Catalysis</p> <p>1.2.2 Embrittlement of Metals by Trace Impurities</p> <p>1.2.3 Materials Properties for Modeling Planetary Formation</p> <p>1.2.4 High Throughput/Big Data Case Study</p> <p>1.3 The Schrödinger Equation</p> <p>1.4 Density Functional Theory—From Wave Functions to Electron Density</p> <p>1.5 Exchange– Correlation Functional</p> <p>1.6 The Quantum Chemistry Tourist</p> <p>1.6.1 Localized and Spatially Extended Functions</p> <p>1.6.2 Wave-Function-Based Methods</p> <p>1.6.3 Hartree– Fock Method</p> <p>1.6.4 Beyond Hartree–Fock</p> <p>1.7 What Can DFT Not Do?</p> <p>1.8 Which DFT Code Should I Use?</p> <p>1.9 Density Functional Theory in Other Fields</p> <p>1.10 How to Approach This Book</p> <p> </p> <p>2 DFT Calculations for Simple Solids</p> <p>2.1 Periodic Structures, Supercells, and Lattice Parameters</p> <p>2.2 Face-Centered Cubic Materials</p> <p>2.3 Hexagonal Close-Packed Materials</p> <p>2.4 Crystal Structure Prediction</p> <p>2.5 Phase Transformations</p> <p>Exercises</p> <p> </p> <p>3 Nuts and Bolts of DFT Calculations</p> <p>3.1 Reciprocal Space and k Points</p> <p>3.1.1 Plane Waves and the Brillouin Zone</p> <p>3.1.2 Integrals in k Space</p> <p>3.1.3 Choosing k Points in the Brillouin Zone</p> <p>3.1.4 Metals—Special Cases in k Space; DFT+U</p> <p>3.1.5 Summary of k Space</p> <p>3.2 Energy Cutoffs</p> <p>3.2.1 Pseudopotentials</p> <p>3.3 Numerical Optimization</p> <p>3.3.1 Optimization in One Dimension</p> <p>3.3.2 Optimization in More than One Dimension</p> <p>3.3.3 What Do I Really Need to Know about Optimization?</p> <p>3.4 DFT Total Energies—An Iterative Optimization Problem</p> <p>3.5 Geometry Optimization</p> <p>3.5.1 Internal Degrees of Freedom</p> <p>3.5.2 Geometry Optimization with Constrained Atoms</p> <p>3.5.3 Optimizing Supercell Volume and Shape</p> <p>Appendix: Calculation Details</p> <p> </p> <p>4 Thinking About Accuracy and Choosing Functionals for DFT Calculations</p> <p>4.1 How Accurate Are DFT Calculations?</p> <p>4.2 Choosing a Functional</p> <p>4.3 Examples of Physical Accuracy</p> <p>4.3.1 Benchmark Calculations for Molecular Systems—Energy and Geometry</p> <p>4.3.2 Benchmark Calculations for Molecular Systems—Vibrational Frequencies</p> <p>4.3.3 Crystal Structures and Cohesive Energies</p> <p>4.3.4 Adsorption Energies and Bond Strengths</p> <p>4.4 How to Use the Rest of this Book</p> <p> </p> <p>5 DFT Calculations for Surfaces of Solids and Interfaces in Crystals</p> <p>5.1 Importance of Surfaces</p> <p>5.2 Periodic Boundary Conditions and Slab Models</p> <p>5.3 Choosing k Points for Surface Calculations</p> <p>5.4 Classification of Surfaces by Miller Indices</p> <p>5.5 Surface Relaxation</p> <p>5.6 Calculation of Surface Energies</p> <p>5.7 Symmetric and Asymmetric Slab Models</p> <p>5.8 Surface Reconstruction</p> <p>5.9 Adsorbates on Surfaces</p> <p>5.9.1 Accuracy of Adsorption Energies</p> <p>5.10 Effects of Surface Coverage</p> <p>5.11 Grain Boundaries in Solids</p> <p>Exercises</p> <p>Appendix: Calculation Details</p> <p> </p> <p>6 DFT Calculations of Vibrational Frequencies</p> <p>6.1 Isolated Molecules</p> <p>6.2 Vibrations of a Collection of Atoms</p> <p>6.3 Molecules on Surfaces</p> <p>6.4 Zero-Point Energies</p> <p>6.5 Phonons and Delocalized Modes</p> <p>Exercises</p> <p> </p> <p>7 Calculating Rates of Chemical Processes Using Transition State Theory</p> <p>7.1 One-Dimensional Example</p> <p>7.2 Multidimensional Transition State Theory</p> <p>7.3 Finding Transition States</p> <p>7.3.1 Elastic Band Method</p> <p>7.3.2 Nudged Elastic Band Method and the Dimer Method</p> <p>7.3.3 Initializing NEB Calculations</p> <p>7.4 Finding the Right Transition States</p> <p>7.5 Connecting Individual Rates to Overall Dynamics</p> <p>7.6 Quantum Effects and Other Complications</p> <p>7.6.1 High Temperatures/Low Barriers</p> <p>7.6.2 Quantum Tunneling</p> <p>7.6.3 Zero-Point Energies</p> <p>Exercises</p> <p>Appendix: Calculation Details</p> <p> </p> <p>8 Equilibrium Phase Diagrams and Electrochemistry with Open Ensemble Methods</p> <p>8.1 Stability of Bulk Metal Oxides</p> <p>8.1.1 Examples Including Disorder—Configurational Entropy</p> <p>8.2 Stability of Metal and Metal Oxide Surfaces</p> <p>8.3 Multiple Chemical Potentials and Coupled Chemical Reactions</p> <p>8.4 DFT for Electrochemistry</p> <p>Exercises</p> <p>Appendix: Calculation Details</p> <p> </p> <p>9 Electronic Structure and Magnetic Properties</p> <p>9.1 Electronic Density of States</p> <p>9.2 Local Density of States and Atomic Charges</p> <p>9.3 Magnetism</p> <p>Exercises</p> <p> </p> <p>10 Ab Initio Molecular Dynamics</p> <p>10.1 Classical Molecular Dynamics</p> <p>10.1.1 Molecular Dynamics with Constant Energy</p> <p>10.1.2 Molecular Dynamics in the Canonical Ensemble</p> <p>10.1.3 Practical Aspects of Classical Molecular Dynamics</p> <p>10.2 Ab Initio Molecular Dynamics: Gaussian Basis Sets in Non-Plane Wave Codes</p> <p>10.3 Applications of Ab Initio Molecular Dynamics</p> <p>10.3.1 Exploring Structurally Complex Materials: Liquids and Amorphous Phases</p> <p>10.3.2 Exploring Complex Energy Surfaces</p> <p>10.4 Time-Dependent Density Functional Theory</p> <p>Exercises</p> <p>Appendix: Calculation Details</p> <p> </p> <p>11 Methods beyond “Standard” Calculations</p> <p>11.1 Choosing a Functional (Revisited)</p> <p>11.2 Estimating Uncertainties in DFT Results Using the BEEF Approach</p> <p>11.3 DFT+X Methods for Improved Treatment of Electron Correlation</p> <p>11.3.1 Dispersion Interactions and DFT-D and D2, D3, TS methods</p> <p>11.4 Self-Interaction Error, Strongly Correlated Electron Systems, and DFT+U</p> <p>11.5 RPA</p> <p>11.6 Larger System Sizes with Linear Scaling Methods and Classical Force Fields</p> <p>11.7 Conclusion</p>
<p><b>David S. Sholl</b> leads the Transformational Decarbonization Initiative at the Oak Ridge National Laboratory and is a Professor of Chemical & Biomolecular Engineering at the Georgia Institute of Technology. <p><b>Janice A. Steckel</b> is a Physical Scientist at the United States Department of Energy, National Energy Technology Laboratory in Pittsburgh, Pennsylvania.
<p><b>A concise and rigorous introduction to the applications of DFT calculations</b> <p>In the newly revised second edition of <i>Density Functional Theory: A Practical Introduction</i>, the authors deliver a concise and easy-to-follow introduction to the key concepts and practical applications of density functional theory (DFT) with an emphasis on plane-wave DFT. The authors draw on decades of experience in the field, offering students from a variety of backgrounds a balanced approach between accessibility and rigor, creating a text that is highly digestible in its entirety. <p>This new edition: <ul><li> Discusses in more detail the accuracy of DFT calculations and the choice of functionals</li> <li> Adds an overview of the wide range of available DFT codes</li> <li> Contains more examples on the use of DFT for high throughput materials calculations</li> <li> Puts more emphasis on computing phase diagrams and on open ensemble methods widely used in electrochemistry</li> <li> Is significantly extended to cover calculation beyond standard DFT, e.g., dispersion-corrected DFT, DFT+U, time-dependent DFT</li></ul> <p>Perfect for graduate students and postdoctoral candidates in physics and engineering, <i>Density Functional Theory: A Practical Introduction</i> will also earn a place in the libraries of researchers and practitioners in chemistry, materials science, and mechanical engineering.

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
136,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
215,99 €