Details

Deep Eutectic Solvents


Deep Eutectic Solvents

Synthesis, Properties, and Applications
1. Aufl.

von: Diego J. Ramón, Gabriela Guillena

142,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 04.10.2019
ISBN/EAN: 9783527818471
Sprache: englisch
Anzahl Seiten: 384

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A useful guide to the fundamentals and applications of deep eutectic solvents <br> <br> Deep Eutectic Solvents contains a comprehensive review of the use of deep eutectic solvents (DESs) as an environmentally benign alternative reaction media for chemical transformations and processes. The contributors cover a range of topics including synthesis, structure, properties, toxicity and biodegradability of DESs. The book also explores myriad applications in various disciplines, such as organic synthesis and (bio)catalysis, electrochemistry, extraction, analytical chemistry, polymerizations, (nano)materials preparation, biomass processing, and gas adsorption. <br> <br> The book is aimed at organic chemists, catalytic chemists, pharmaceutical chemists, biochemists, electrochemists, and others involved in the design of eco-friendly reactions and processes. This important book: <br> <br> -Explores the promise of DESs as an environmentally benign alternative to hazardous organic solvents <br> -Covers the synthesis, structure, properties (incl. toxicity) as well as a wide range of applications <br> -Offers a springboard for stimulating critical discussion and encouraging further advances in the field <br> <br> Deep Eutectic Solvents is an interdisciplinary resource for researchers in academia and industry interested in the many uses of DESs as an environmentally benign alternative reaction media. <br>
<p>Preface xiii</p> <p><b>1 Synthesis and Properties 1<br /></b><i>Karine De Oliveira Vigier and Francois Jerome</i></p> <p>1.1 Introduction 1</p> <p>1.2 Synthesis 2</p> <p>1.3 Properties 4</p> <p>1.3.1 Freezing Point (<i>T</i><sub>f</sub>) 4</p> <p>1.3.2 Density 5</p> <p>1.3.3 Viscosity 11</p> <p>1.3.4 Ionic Conductivity 16</p> <p>1.3.5 Polarity 19</p> <p>1.3.6 Surface Tension 19</p> <p>1.4 Summary and Conclusions 21</p> <p>References 21</p> <p><b>2 Structure and Implications 25<br /></b><i>Oliver S. Hammond and Karen J. Edler</i></p> <p>2.1 Introduction 25</p> <p>2.2 Nanostructure of DES 26</p> <p>2.2.1 Complex Ion Model 26</p> <p>2.2.2 An Extended Hydrogen Bond Network Model: “Alphabet Soup” 27</p> <p>2.2.3 Non‐cholinium DES 36</p> <p>2.3 Conclusions and Implications 38</p> <p>Abbreviations 40</p> <p>References 40</p> <p><b>3 Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents 43<br /></b><i>Zhen Yang</i></p> <p>3.1 Introduction 43</p> <p>3.2 Toxicity to Microorganisms 44</p> <p>3.2.1 Toxicity to Bacteria 44</p> <p>3.2.2 Toxicity to Other Microorganisms 47</p> <p>3.3 Toxicity to Animals 48</p> <p>3.3.1 <i>In Vitro </i>Toxicity Tests on Vertebrates and Invertebrates 48</p> <p>3.3.2 Cytotoxicity 49</p> <p>3.3.3 <i>In Vivo </i>Acute Toxicity Tests and Pharmacokinetics 53</p> <p>3.4 Toxicity to Plants 55</p> <p>3.5 Biodegradability 56</p> <p>3.6 Summary and Conclusions 57</p> <p>Abbreviations 58</p> <p>References 59</p> <p><b>4 Natural Deep Eutectic Solvents: From Their Discovery to Their Applications 61<br /></b><i>Henni Vanda, Robert Verpoorte, Peter G. L. Klinkhamer, and Young H. Choi</i></p> <p>4.1 Introduction 61</p> <p>4.2 Natural Deep Eutectic Solvents is a Concept Based on How Physicochemical Features Could Be Used for Biological Functions 63</p> <p>4.3 Extraction and Solubilization of Non‐water‐Soluble Metabolites 66</p> <p>4.4 Solvents for Macromolecules 69</p> <p>4.4.1 Application of ILs and DES to Macromolecules 69</p> <p>4.4.2 Recent NADES Application for DNA, RNA, and Proteins 70</p> <p>4.5 Application to Enzyme Reactions 75</p> <p>4.6 Pharmaceutical Applications 76</p> <p>4.7 Perspective of NADES 76</p> <p>Abbreviations 79</p> <p>References 79</p> <p><b>5 Hydrophobic Deep Eutectic Solvents 83<br /></b><i>Samah E.E. Warrag and Maaike C. Kroon</i></p> <p>5.1 Introduction 83</p> <p>5.2 Physiochemical Properties of Hydrophobic DESs 84</p> <p>5.2.1 Density 85</p> <p>5.2.2 Viscosity 86</p> <p>5.3 Thermal Stability Window 86</p> <p>5.4 Applications of Hydrophobic DESs 87</p> <p>5.4.1 The Extraction of Fatty Acids and Biomolecules from Water 87</p> <p>5.4.2 The Removal of Transition Metal Ions from Water 89</p> <p>5.4.3 Impregnation in Membranes 90</p> <p>5.4.4 The Removal of Pesticides from Water 90</p> <p>5.4.5 CO<sub>2</sub> Capture 90</p> <p>5.5 Prediction of the Hydrophobic DESs Phase Behavior 91</p> <p>5.5.1 The Use of PC‐SAFT 91</p> <p>5.6 Outlook and Recommendations 92</p> <p>Abbreviations 92</p> <p>References 93</p> <p><b>6 Deep Eutectic Solvents: Exploring Their Role in Nature 95<br /></b><i>Rita Craveiro, Francisca Mano, Alexandre Paiva, and Ana Rita C. Duarte</i></p> <p>6.1 (Introduction) DES in Nature 95</p> <p>6.2 Honey 97</p> <p>6.2.1 Behind Beehive: How Honey is Really Produced? 98</p> <p>6.2.2 Honey and Its Properties 99</p> <p>6.2.3 Honey as the First THEDES 99</p> <p>6.3 Maple Syrup: How is Maple Syrup Produced? 100</p> <p>6.3.1 Maple Syrup Nutraceutical Value 101</p> <p>6.3.2 Maple Syrup and NADES 102</p> <p>6.4 Sugar Beet 102</p> <p>6.5 Resurrection Plants 106</p> <p>6.6 Summary and Conclusions 107</p> <p>Abbreviations 107</p> <p>Acknowledgments 108</p> <p>References 108</p> <p><b>7 Organic Synthesis in DESs 111<br /></b><i>Filippo M. Perna, Paola Vitale, and Vito Capriati</i></p> <p>7.1 Introduction 111</p> <p>7.2 DESs in Organocatalysis 112</p> <p>7.3 DESs in the Synthesis of Heterocycles 116</p> <p>7.3.1 Synthesis of Nitrogen‐ or Nitrogen‐ and Oxygen‐Containing Rings in DESs 117</p> <p>7.3.2 Synthesis of Thiophenes in DESs 119</p> <p>7.3.3 Synthesis of Benzo‐Condensed Rings in DESs 120</p> <p>7.4 Multicomponent Reactions in DESs 123</p> <p>7.4.1 Multicomponent Reactions in the Synthesis of Heterocycles 123</p> <p>7.4.2 Synthesis of Betti Bases in DESs 128</p> <p>7.4.3 Ugi and Passerini Reactions 128</p> <p>7.5 Miscellaneous Transformations in DESs 129</p> <p>7.6 Conclusion and Perspective 130</p> <p>Abbreviations 131</p> <p>References 132</p> <p><b>8 DES as Catalyst 135<br /></b><i>Mehran Shahiri‐Haghayegh and Najmedin Azizi</i></p> <p>8.1 Introduction 135</p> <p>8.2 DES Promoted Organic Transformations 136</p> <p>8.2.1 Fischer Indole Synthesis 136</p> <p>8.2.2 Carbon–Carbon Bond Formation 138</p> <p>8.2.3 Synthesis of Pyrroles 141</p> <p>8.2.4 Oxidation Reactions 141</p> <p>8.2.5 “Green” Multicomponent Reactions 142</p> <p>8.2.5.1 Isocyanide‐Based MCRs 143</p> <p>8.2.5.2 Mannich‐Type Reactions 144</p> <p>8.2.5.3 Biginelli Reaction 147</p> <p>8.2.5.4 Synthesis of Chromene, Pyran, and Spiroxindole Derivatives 149</p> <p>8.2.5.5 Multicomponent Synthesis of Pyrrole and Pyrazole 149</p> <p>8.2.5.6 Synthesis of Quinazoline 153</p> <p>8.2.5.7 A3‐Coupling Reaction 153</p> <p>8.3 Desulfurization of Fuels 154</p> <p>8.3.1 Olefin Alkylation of Thiophenic Sulfur 155</p> <p>8.3.2 Oxidative Desulfurization of Fuels 156</p> <p>8.4 Biodiesel Production 157</p> <p>8.4.1 Transesterification of Triglycerides 158</p> <p>8.4.2 Esterification of Free Fatty Acids 159</p> <p>8.4.3 Hydrolysis/Dehydration of Carbohydrates 160</p> <p>8.5 CO<sub>2</sub> Chemical Fixation 161</p> <p>8.6 Chemical Recycling of Polymers 163</p> <p>8.7 Epoxy Resin Crosslinking 165</p> <p>8.8 Supramolecular Macrocyclic Host Synthesis 166</p> <p>8.9 Conclusion 166</p> <p>References 167</p> <p><b>9 Metal‐Promoted Organic Transformation in DES 171<br /></b><i>Cristian Vidal and Joaquin Garcia‐Alvarez</i></p> <p>9.1 Introduction 171</p> <p>9.2 Design of New Synthetic Sustainable Organic Procedures Coupling Deep Eutectic Solvents and Highly‐Polarized Organometallic Reagents (RLi and RMgX) 173</p> <p>9.3 Transition‐Metal‐Catalyzed Organic Reactions in Deep Eutectic Solvents 177</p> <p>9.3.1 Palladium Catalyzed C–C Coupling Reactions in DESs 177</p> <p>9.3.2 Ruthenium Catalyzed Isomerization of Allylic Alcohols and Design of One‐Pot Tandem Reactions in DESs 179</p> <p>9.3.3 Gold Catalyzed Cycloisomerizations of Unsaturated Organic Substrates in DESs 180</p> <p>9.4 Summary and Conclusions 181</p> <p>Abbreviations 182</p> <p>Acknowledgments 182</p> <p>References 183</p> <p><b>10 Polymerizations 187<br /></b><i>Josue D. Mota‐Morales</i></p> <p>10.1 Introduction 187</p> <p>10.2 Deep Eutectic Solvents and Green Chemistry 188</p> <p>10.3 The Role of Deep Eutectic Solvents in Polymerizations 189</p> <p>10.3.1 Polymerizations Carried Out in Deep Eutectic Solvents 189</p> <p>10.3.2 Polymerization of Monomers Containing Deep Eutectic Solvents: DES Monomers 191</p> <p>10.3.3 DES as Cosolvents and Auxiliaries in Polymerizations 192</p> <p>10.3.4 Cooperative Hydrogen Bonding Network of Water Added to DESs 194</p> <p>10.4 Mechanisms of Polymerization Explored 194</p> <p>10.4.1 Polycondensation 194</p> <p>10.4.2 Free‐Radical Polymerization 197</p> <p>10.4.3 Ring Opening Polymerization 207</p> <p>10.4.4 Other Mechanisms of Polymerizations 209</p> <p>10.5 Outlook and Future Directions 210</p> <p>Abbreviations 212</p> <p>References 212</p> <p><b>11 Extraction of Bioactive Compounds 217<br /></b><i>Mohamad H. Zainal‐Abidin, Maan Hayyan, Gek C. Ngoh, Won F. Wong, and Adeeb Hayyan</i></p> <p>11.1 Introduction 217</p> <p>11.2 The Main Features of DESs as an Extractive Agent 218</p> <p>11.2.1 Effect of Water Addition on Extraction Efficiency 219</p> <p>11.3 DESs in the Bioactive Compound Extractions 221</p> <p>11.3.1 Phenolic Compounds 222</p> <p>11.3.1.1 Flavonoid Compounds 225</p> <p>11.3.2 Polysaccharides 226</p> <p>11.3.3 Proteins 227</p> <p>11.3.4 Hydrophobic Compounds 228</p> <p>11.4 Summary 230</p> <p>Abbreviations 230</p> <p>References 231</p> <p><b>12 Processing of Biomass in Deep Eutectic Solvents 235<br /></b><i>Miao Zuo, Xianhai Zeng, Yong Sun, Xing Tang, and Lu Lin</i></p> <p>12.1 Introduction 235</p> <p>12.2 Chemical Process of Products Extraction from Biomass in DESs 235</p> <p>12.2.1 Extraction and Solubility of Lignocellulose in DESs 235</p> <p>12.2.2 Value‐Added Products Extraction from Biomass in DESs 238</p> <p>12.3 Modification of Cellulose in DESs 240</p> <p>12.4 Catalytic Conversion of Carbohydrates in DESs 242</p> <p>12.4.1 Catalytic Conversion of Carbohydrates in Neat DESs 242</p> <p>12.4.2 HMF Production from Carbohydrates in Bio‐Based DESs 244</p> <p>12.4.3 Carbohydrates Dehydration in Biphasic DES/Organic Solvent Systems 246</p> <p>12.4.4 Carbohydrates Dehydration to Other Value‐Added Products in DESs 249</p> <p>12.5 Conclusions and Prospects 251</p> <p>Abbreviations 252</p> <p>Acknowledgments 252</p> <p>References 253</p> <p><b>13 Enzyme Catalysis: In DES, with DES, and in the Presence of DES 257<br /></b><i>Pablo Dominguez de Maria, Nadia Guajardo, and Selin Kara</i></p> <p>13.1 DESs as “Non‐Conventional Media” and “Non‐Conventional Solutions” for Biocatalysis 257</p> <p>13.2 Hydrolases and Deep Eutectic Solvents 259</p> <p>13.3 Oxidoreductases and Deep Eutectic Solvents 264</p> <p>13.4 Other Biocatalytic Concepts in Deep Eutectic Solvents 266</p> <p>13.5 Conclusions 267</p> <p>Abbreviations 268</p> <p>References</p> <p>268</p> <p><b>14 Nanoscale and Functional Materials 273<br /></b><i>Diego A. Alonso, Alejandro Baeza, Rafael Chinchilla, Cecilia Gomez, and Isidro M. Pastor</i></p> <p>14.1 Introduction 273</p> <p>14.2 Nanoparticulated Materials 274</p> <p>14.3 Nanofilms and Nanolayers 282</p> <p>14.4 Carbonaceous Materials 283</p> <p>14.5 Porous Materials 287</p> <p>14.6 DNA Manipulation 290</p> <p>14.7 Summary and Conclusions 291</p> <p>Abbreviations 292</p> <p>References 292</p> <p><b>15 Carbon Dioxide Capture 297<br /></b><i>Yingying Zhang, Xiaohua Lu, and Xiaoyan Ji</i></p> <p>15.1 Introduction 297</p> <p>15.2 Properties of DESs 299</p> <p>15.2.1 Thermophysical Properties 299</p> <p>15.2.1.1 Gas Solubility 299</p> <p>15.2.1.2 Viscosity 305</p> <p>15.2.1.3 Molar Heat Capacity 309</p> <p>15.2.2 Kinetic Property 312</p> <p>15.3 Screening and Evaluation of DESs for CO<sub>2</sub> Separation 313</p> <p>15.3.1 Property‐Based Method 313</p> <p>15.3.2 Thermodynamic Analysis‐Based Method 313</p> <p>15.3.3 Process Simulation‐Based Method 314</p> <p>15.4 Further Conversion with DESs 314</p> <p>15.5 Conclusions 314</p> <p>Abbreviations 315</p> <p>References 316</p> <p><b>16 DES‐Mediated Approaches Toward Green Analytical Chemistry 321<br /></b><i>Federico J.V. Gomez, Magdalena Espino, Maria de los A. Fernandez, Joana Boiteux, and Maria F. Silva</i></p> <p>16.1 Introduction 321</p> <p>16.2 Extraction Techniques and Deep Eutectic Solvents 323</p> <p>16.2.1 Ultrasound Assisted Extraction (UAE) 324</p> <p>16.2.2 Microwave Assisted Extraction (MAE) 325</p> <p>16.2.3 Liquid Phase Microextraction (LPME) 325</p> <p>16.2.4 Solid Phase Microextraction (SPME) 326</p> <p>16.3 Separation Techniques and DES 326</p> <p>16.3.1 Gas Chromatography and DES 327</p> <p>16.3.2 Liquid Chromatography and DES 327</p> <p>16.3.3 Capillary Electrophoresis and DES 328</p> <p>16.4 DES Detection Techniques Compatibility 328</p> <p>16.5 Future Trends and Challenges for Green Solvents in Analytical Chemistry 330</p> <p>Abbreviations 331</p> <p>Acknowledgments 332</p> <p>References 332</p> <p><b>17 Electrochemistry 335<br /></b><i>Zhimin Xue, Wancheng Zhao, and Tiancheng Mu</i></p> <p>17.1 Introduction 335</p> <p>17.2 Conductivity 336</p> <p>17.3 Electrochemical Stability 347</p> <p>17.4 Electrochemical Applications 350</p> <p>17.4.1 Electrodeposition 350</p> <p>17.4.2 Electropolishing 357</p> <p>17.5 Summary and Conclusions 359</p> <p>Abbreviations 359</p> <p>Acknowledgments 360</p> <p>References 360</p> <p>Index 363</p>
<p><i><b>Diego J. Ram??n</b> is full professor at the University of Alicante, Spain, since 2010. His current research interests lie in the eld of organometallic chemistry and asymmetric synthesis.</i> <p><i><b>Gabriela Guillena</b> is full professor and Head of the Department of Organic Chemistry at the University of Alicante, Spain. Her research is focused on new methodologies and asymmetric organocatalysis.</i>
<p><b>A useful guide to the fundamentals and applications of deep eutectic solvents</b> <p><i>Deep Eutectic Solvents</i> contains a comprehensive review of the use of deep eutectic solvents (DESs) as an environmentally benign alternative reaction media for chemical transformations and processes. The contributors cover a range of topics including synthesis, structure, properties, toxicity, and biodegradability of DESs. The book also explores myriad applications in various disciplines, such as organic synthesis and (bio) catalysis, electrochemistry, extraction, analytical chemistry, polymerizations, (nano) materials preparation, biomass processing, and gas adsorption. <p>The book is aimed at organic chemists, catalytic chemists, pharmaceutical chemists, biochemists, electrochemists, and others involved in the design of eco-friendly reactions and processes. This important book: <ul> <li>Explores the promise of DESs as an environmentally benign alternative to hazardous organic solvents</li> <li>Covers the synthesis, structure, properties (incl. toxicity) as well as a wide range of applications</li> <li>Offers a springboard for stimulating critical discussion and encouraging further advances in the field</li> </ul> <p><i>Deep Eutectic Solvents</i> is an interdisciplinary resource for researchers in academia and industry interested in the many uses of DESs as an environmentally benign alternative reaction media.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €