Details

Cyanobacteria Biotechnology


Cyanobacteria Biotechnology


Advanced Biotechnology 1. Aufl.

von: Paul Hudson, Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos

162,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 20.04.2021
ISBN/EAN: 9783527824922
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Unites a biological and a biotechnological perspective on cyanobacteria, and includes the industrial aspects and applications of cyanobacteria</b></p> <p><i>Cyanobacteria Biotechnology</i> offers a guide to the interesting and useful features of cyanobacteria metabolism that keeps true to a biotechnology vision. In one volume the book brings together both biology and biotechnology to illuminate the core acpects and principles of cyanobacteria metabolism.</p> <p>Designed to offer a practical approach to the metabolic engineering of cyanobacteria, the book contains relevant examples of how this metabolic "module" is currently being engineered and how it could be engineered in the future. The author includes information on the requirements and real-world experiences of the industrial applications of cyanobacteria. This important book:</p> <ul> <li>Brings together biology and biotechnology in order to gain insight into the industrial relevant topic of cyanobacteria</li> <li>Introduces the key aspects of the metabolism of cyanobacteria</li> <li>Presents a grounded, practical approach to the metabolic engineering of cyanobacteria</li> <li>Offers an analysis of the requirements and experiences for industrial cyanobacteria</li> <li>Provides a framework for readers to design their own processes</li> </ul> <p>Written for biotechnologists, microbiologists, biologists, biochemists, <i>Cyanobacteria Biotechnology</i> provides a systematic and clear volume that brings together the biological and biotechnological perspective on cyanobacteria.</p>
<p>Foreword: Cyanobacteria Biotechnology xv</p> <p>Acknowledgments xviii</p> <p><b>Part I Core Cyanobacteria Processes </b><b>1</b></p> <p><b>1 Inorganic Carbon Assimilation in Cyanobacteria: Mechanisms, Regulation, and Engineering </b><b>3<br /></b><i>Martin Hagemann, Shanshan Song, and Eva-Maria Brouwer</i></p> <p>1.1 Introduction – The Need for a Carbon-Concentrating Mechanism 3</p> <p>1.2 The Carbon-Concentrating Mechanism (CCM) Among Cyanobacteria 4</p> <p>1.2.1 C<sub>i</sub> Uptake Proteins/Mechanisms 5</p> <p>1.2.2 Carboxysome and RubisCO 8</p> <p>1.3 Regulation of C<sub>i</sub> Assimilation 10</p> <p>1.3.1 Regulation of the CCM 10</p> <p>1.3.2 Further Regulation of Carbon Assimilation 13</p> <p>1.3.3 Metabolic Changes and Regulation During C<sub>i</sub> Acclimation 14</p> <p>1.3.4 Redox Regulation of C<sub>i</sub> Assimilation 15</p> <p>1.4 Engineering the Cyanobacterial CCM 16</p> <p>1.5 Photorespiration 17</p> <p>1.5.1 Cyanobacterial Photorespiration 17</p> <p>1.5.2 Attempts to Engineer Photorespiration 19</p> <p>1.6 Concluding Remarks 20</p> <p>Acknowledgments 21</p> <p>References 21</p> <p><b>2 Electron Transport in Cyanobacteria and Its Potential in Bioproduction </b><b>33<br /></b><i>David J. Lea-Smith and Guy T. Hanke</i></p> <p>2.1 Introduction 33</p> <p>2.2 Electron Transport in a Bioenergetic Membrane 34</p> <p>2.2.1 Linear Electron Transport 34</p> <p>2.2.2 Cyclic Electron Transport 37</p> <p>2.2.3 ATP Production from Linear and Cyclic Electron Transport 37</p> <p>2.3 Respiratory Electron Transport 38</p> <p>2.4 Role of Electron Sinks in Photoprotection 41</p> <p>2.4.1 Terminal Oxidases 41</p> <p>2.4.2 Hydrogenase and Flavodiiron Complexes 41</p> <p>2.4.3 Carbon Fixation and Photorespiration 43</p> <p>2.4.4 Extracellular Electron Export 44</p> <p>2.5 Regulating Electron Flux into Different Pathways 45</p> <p>2.5.1 Electron Flux Through the Plastoquinone Pool 45</p> <p>2.5.2 Electron Flux Through Fdx 46</p> <p>2.6 Spatial Organization of Electron Transport Complexes 47</p> <p>2.7 Manipulating Electron Transport for Synthetic Biology Applications 48</p> <p>2.7.1 Improving Growth of Cyanobacteria 49</p> <p>2.7.2 Production of Electrical Power in BPVs 49</p> <p>2.7.3 Hydrogen Production 50</p> <p>2.7.4 Production of Industrial Compounds 50</p> <p>2.8 Future Challenges in Cyanobacterial Electron Transport 51</p> <p>References 52</p> <p><b>3 Optimizing the Spectral Fit Between Cyanobacteria and Solar Radiation in the Light of Sustainability Applications </b><b>65<br /></b><i>Klaas J. Hellingwerf, Que Chen, and Filipe Branco dos Santos</i></p> <p>3.1 Introduction 65</p> <p>3.2 Molecular Basis and Efficiency of Oxygenic Photosynthesis 67</p> <p>3.3 Fit Between the Spectrum of Solar Radiation and the Action Spectrum of Photosynthesis 72</p> <p>3.4 Expansion of the PAR Region of Oxygenic Photosynthesis 74</p> <p>3.5 Modulation and Optimization of the Transparency of Photobioreactors 79</p> <p>3.6 Full Control of the Light Regime: LEDs Inside the PBR 81</p> <p>3.7 Conclusions and Prospects 82</p> <p>References 83</p> <p><b>Part II Concepts in Metabolic Engineering </b><b>89</b></p> <p><b>4 What We Can Learn from Measuring Metabolic Fluxes in Cyanobacteria </b><b>91<br /></b><i>Xiang Gao, Chao Wu, Michael Cantrell, Melissa Cano, Jianping Yu, and Wei Xiong</i></p> <p>4.1 Central Carbon Metabolism in Cyanobacteria: An Overview and Renewed Pathway Knowledge 91</p> <p>4.1.1 Glycolytic Routes Interwoven with the Calvin Cycle 91</p> <p>4.1.2 Tricarboxylic Acid Cycling 94</p> <p>4.2 Methodologies for Predicting and Quantifying Metabolic Fluxes in Cyanobacteria 95</p> <p>4.2.1 Flux Balance Analysis and Genome-Scale Reconstruction of Metabolic Network 95</p> <p>4.2.2 13C-Metabolic Flux Analysis 96</p> <p>4.2.3 Thermodynamic Analysis and Kinetics Analysis 99</p> <p>4.3 Cyanobacteria Fluxome in Response to Altered Nutrient Modes and Environmental Conditions 101</p> <p>4.3.1 Autotrophic Fluxome 101</p> <p>4.3.2 Photomixotrophic Fluxome 104</p> <p>4.3.3 Heterotrophic Fluxome 105</p> <p>4.3.4 Photoheterotrophic Fluxome 105</p> <p>4.3.5 Diurnal Metabolite Oscillations 106</p> <p>4.3.6 Nutrient States’ Impact on Metabolic Flux 107</p> <p>4.4 Metabolic Fluxes Redirected in Cyanobacteria for Biomanufacturing Purposes 108</p> <p>4.4.1 Restructuring the TCA Cycle for Ethylene Production 108</p> <p>4.4.2 Maximizing Flux in the Isoprenoid Pathway 109</p> <p>4.4.2.1 Measuring Precursor Pool Size to Evaluate Potential Driving Forces for Isoprenoid Production 109</p> <p>4.4.2.2 Balancing Intermediates for Increased Pathway Activity 110</p> <p>4.4.2.3 Kinetic Flux Profiling to Detect Bottlenecks in the Pathway 111</p> <p>4.5 Synopsis and Future Directions 112</p> <p>Acknowledgments 112</p> <p>References 112</p> <p><b>5 Synthetic Biology in Cyanobacteria and Applications for Biotechnology </b><b>123<br /></b><i>Elton P. Hudson</i></p> <p>5.1 Introduction 123</p> <p>5.2 Getting Genes into Cyanobacteria 123</p> <p>5.2.1 Transformation 123</p> <p>5.2.2 Expression from Episomal Plasmids 125</p> <p>5.2.3 Delivery of Genes to the Chromosome 127</p> <p>5.3 Basic Synthetic Control of Gene Expression in Cyanobacteria 129</p> <p>5.3.1 Quantifying Transcription and Translation in Cyanobacteria 130</p> <p>5.3.2 Controlling Transcription with Synthetic Promoters 134</p> <p>5.3.2.1 Constitutive Promoters 136</p> <p>5.3.2.2 Regulated Promoters that Are Sensitive to Added Compounds (Inducible) 137</p> <p>5.3.2.3 CRISPR Interference for Transcriptional Repression 139</p> <p>5.3.3 Controlling Translation 141</p> <p>5.3.3.1 Ribosome Binding Sites (Cis-Acting) 141</p> <p>5.3.3.2 Riboswitches (Cis-Acting) 142</p> <p>5.3.3.3 Small RNAs (Trans-Acting) 143</p> <p>5.4 Exotic Signals for Controlling Expression 143</p> <p>5.4.1 Oxygen 144</p> <p>5.4.2 Light Color 144</p> <p>5.4.3 Cell Density or Growth Phase 145</p> <p>5.4.4 Engineering Regulators for Altered Sensing Properties: State of the Art 147</p> <p>5.5 Advanced Regulation: The Near Future 148</p> <p>5.5.1 Logic Gates and Timing Circuits 148</p> <p>5.5.2 Orthogonal Transcription Systems 151</p> <p>5.5.3 Synthetic Biology Solutions to Increase Stability 152</p> <p>5.5.4 Synthetic Biology Solutions for Cell Separation and Product Recovery 154</p> <p>5.6 Conclusions 157</p> <p>Acknowledgments 158</p> <p>References 158</p> <p><b>6 Sink Engineering in Photosynthetic Microbes </b><b>171<br /></b><i>María Santos-Merino, Amit K. Singh, and Daniel C. Ducat</i></p> <p>6.1 Introduction 171</p> <p>6.2 Source and Sink 172</p> <p>6.3 Regulation of Sink Energy in Plants 177</p> <p>6.3.1 Sucrose and Other Signaling Carbohydrates 178</p> <p>6.3.2 Hexokinases 179</p> <p>6.3.3 Sucrose Non-fermenting Related Kinases 180</p> <p>6.3.4 TOR Kinase 181</p> <p>6.3.5 Engineered Pathways as Sinks in Photosynthetic Microbes 182</p> <p>6.3.6 Sucrose 183</p> <p>6.3.7 2,3-Butanediol 187</p> <p>6.3.8 Ethylene 187</p> <p>6.3.9 Glycerol 188</p> <p>6.3.10 Isobutanol 188</p> <p>6.3.11 Isoprene 189</p> <p>6.3.12 Limonene 189</p> <p>6.3.13 P450, an Electron Sink 190</p> <p>6.4 What Are Key Source/Sink Regulatory Hubs in Photosynthetic Microbes? 191</p> <p>6.5 Concluding Remarks 194</p> <p>Acknowledgment 195</p> <p>References 195</p> <p><b>7 Design Principles for Engineering Metabolic Pathways in Cyanobacteria </b><b>211<br /></b><i>Jason T. Ku and Ethan I. Lan</i></p> <p>7.1 Introduction 211</p> <p>7.2 Cofactor Optimization 212</p> <p>7.2.1 Recruiting NADPH-Dependent Enzymes Wherever Possible 215</p> <p>7.2.2 Engineering NADH-Specific Enzymes to Utilize NADPH 217</p> <p>7.2.3 Increasing NADH Pool in Cyanobacteria Through Expression of Transhydrogenase 218</p> <p>7.3 Incorporation of Thermodynamic Driving Force into Metabolic Pathway Design 219</p> <p>7.3.1 ATP Driving Force in Metabolic Pathways 220</p> <p>7.3.2 Increasing Substrate Pool Supports the Carbon Flux Toward Products 222</p> <p>7.3.3 Product Removal Unblocks the Limitations of Product Titer 223</p> <p>7.4 Development of Synthetic Pathways for Carbon Conserving Photorespiration and Enhanced Carbon Fixation 225</p> <p>7.5 Summary and Future Perspective on Cyanobacterial Metabolic Engineering 229</p> <p>References 229</p> <p><b>8 Engineering Cyanobacteria for Efficient Photosynthetic Production: Ethanol Case Study </b><b>237<br /></b><i>Guodong Luan and Xuefeng Lu</i></p> <p>8.1 Introduction 237</p> <p>8.2 Pathway for Ethanol Synthesis in Cyanobacteria 238</p> <p>8.2.1 Pyruvate Decarboxylase and Type II Alcohol Dehydrogenase 238</p> <p>8.2.2 Selection of Better Enzymes in the Pdc–AdhII Pathway 240</p> <p>8.2.3 Systematic Characterization of the Pdc<sub>ZM</sub>–Slr1192 Pathway 241</p> <p>8.3 Selection of Optimal Cyanobacteria “Chassis,” Strain for Ethanol Production 242</p> <p>8.3.1 <i>Synechococcus </i>PCC 6803 and <i>Synechococcus </i>PCC 7942 243</p> <p>8.3.2 <i>Synechococcus </i>PCC 7002 245</p> <p>8.3.3 <i>Anabaena </i>PCC 7120 245</p> <p>8.3.4 Nonconventional Cyanobacteria Species 246</p> <p>8.4 Metabolic Engineering Strategies Toward More Efficient and Stable Ethanol Production 246</p> <p>8.4.1 Enhancing the Carbon Flux via Overexpression of Calvin Cycle Enzymes 248</p> <p>8.4.2 Blocking Pathways that Are Competitive to Ethanol 248</p> <p>8.4.3 Arresting Biomass Formation 249</p> <p>8.4.4 Engineering Cofactor Supply 249</p> <p>8.4.5 Engineering Strategies Guided by <i>In Silico </i>Simulation 250</p> <p>8.4.6 Stabilizing Ethanol Synthesis Capacity in Cyanobacterial Cell Factories 251</p> <p>8.5 Exploring the Response in Cyanobacteria to Ethanol 253</p> <p>8.5.1 Response of Cyanobacterial Cells Toward Exogenous Added Ethanol 254</p> <p>8.5.2 Response of Cyanobacteria to Endogenous Synthesized Ethanol 255</p> <p>8.6 Metabolic Engineering Strategies to Facilitate Robust Cultivation Against Biocontaminants 256</p> <p>8.6.1 Engineering Cyanobacteria Cell Factories to Adapt for Selective Environmental Stresses 256</p> <p>8.6.2 Engineering Cyanobacteria Cell Factories to Utilize Uncommon Nutrients 258</p> <p>8.7 Conclusions and Perspectives 258</p> <p>References 259</p> <p><b>9 Engineering Cyanobacteria as Host Organisms for Production of Terpenes and Terpenoids </b><b>267<br /></b><i>João S. Rodrigues and Pia Lindberg</i></p> <p>9.1 Terpenoids and Industrial Applications 267</p> <p>9.2 Terpenoid Biosynthesis in Cyanobacteria 270</p> <p>9.2.1 Methylerythritol-4-Phosphate Pathway 270</p> <p>9.2.2 Formation of Terpene Backbones 272</p> <p>9.3 Natural Occurrence and Physiological Roles of Terpenes and Terpenoids in Cyanobacteria 274</p> <p>9.4 Engineering Cyanobacteria for Terpenoid Production 275</p> <p>9.4.1 Metabolic Engineering 277</p> <p>9.4.1.1 Terpene Synthases 277</p> <p>9.4.1.2 Increasing Supply of Terpene Backbones 285</p> <p>9.4.1.3 Engineering the Native MEP Pathway 286</p> <p>9.4.1.4 Implementing the MVA Pathway 287</p> <p>9.4.1.5 Enhancing Precursor Supply 288</p> <p>9.4.2 Optimizing Growth Conditions for Production 289</p> <p>9.4.3 Product Capture and Harvesting 291</p> <p>9.5 Summary and Outlook 292</p> <p>Acknowledgments 293</p> <p>References 293</p> <p><b>10 Cyanobacterial Biopolymers </b><b>301<br /></b><i>Moritz Koch and Karl Forchhammer</i></p> <p>10.1 Polyhydroxybutryate 301</p> <p>10.1.1 Introduction 301</p> <p>10.1.2 PHB Metabolism in Cyanobacteria 302</p> <p>10.1.3 Industrial Applications of PHB 305</p> <p>10.1.3.1 Physical Properties of PHB and Its Derivatives 305</p> <p>10.1.3.2 Biodegradability 306</p> <p>10.1.3.3 Application of PHB as a Plastic 306</p> <p>10.1.3.4 Reactor Types 306</p> <p>10.1.3.5 Production Process 307</p> <p>10.1.3.6 Downstream Processing 308</p> <p>10.1.4 Metabolic Engineering of PHB Biosynthesis 308</p> <p>10.1.5 Limitations and Potential of PHB Production in Cyanobacteria 310</p> <p>10.2 Cyanophycin Granules in Cyanobacteria 311</p> <p>10.2.1 Biology of Cyanophycin 311</p> <p>10.2.2 Genes and Enzymes of CGP Metabolism 315</p> <p>10.2.2.1 Cyanophycin Synthetase 315</p> <p>10.2.2.2 Cyanophycin Degrading Enzymes 316</p> <p>10.2.3 Regulation of Cyanophycin Metabolism 317</p> <p>10.2.4 Cyanophycin Overproduction and Potential Industrial Applications 318</p> <p>Acknowledgement 319</p> <p>References 319</p> <p><b>11 Biosynthesis of Fatty Acid Derivatives by Cyanobacteria: From Basics to Biofuel Production </b><b>331<br /></b><i>Akihito Kawahara and Yukako Hihara</i></p> <p>11.1 Introduction 331</p> <p>11.2 Overview of Fatty Acid Metabolism 332</p> <p>11.2.1 Fatty Acid Biosynthesis 332</p> <p>11.2.2 Fatty Acid Degradation and Turnover 335</p> <p>11.2.3 Accumulation of Storage Lipids 336</p> <p>11.3 Basic Technologies for Production of Free Fatty Acids 337</p> <p>11.3.1 Production of Free Fatty Acids in E. coli 337</p> <p>11.3.2 Production of Free Fatty Acids in Cyanobacteria 338</p> <p>11.4 Advanced Technologies for Enhancement of Free Fatty Acid Production 339</p> <p>11.4.1 Enhancement of Fatty Acid Biosynthesis 339</p> <p>11.4.2 Enhancement of Carbon Fixation Activity 345</p> <p>11.4.3 Engineering of Carbon Flow: Modification of Key Regulatory Factors 345</p> <p>11.4.4 Engineering of Carbon Flow: Deletion of Competitive Pathways 346</p> <p>11.4.5 Mitigation of the Toxicity of FFAs 347</p> <p>11.4.6 Enhancement of FFA Secretion 348</p> <p>11.4.7 Induction of Cell Lysis 349</p> <p>11.4.8 Recovery of Produced FFAs from Medium 350</p> <p>11.4.9 Identification of Cyanobacterial Strains Suitable for FFA Production 350</p> <p>11.5 Hydrocarbon Production in Cyanobacteria 351</p> <p>11.6 Advanced Technologies for Enhancement of Hydrocarbon Production 353</p> <p>11.6.1 Enhancement of Alk(a/e)ne Biosynthesis 353</p> <p>11.6.2 Improvement of the Performance of Alkane Biosynthetic Enzymes 354</p> <p>11.7 Basic Technologies for Production of Fatty Alcohols 355</p> <p>11.8 Advanced Technologies for Enhancement of Fatty Alcohol Production 355</p> <p>11.9 Basic Technologies for Production of Fatty Acid Alkyl Esters 356</p> <p>11.10 Perspectives 357</p> <p>References 358</p> <p><b>12 Product Export in Cyanobacteria </b><b>369<br /></b><i>Cátia F. Gonçalves, Steeve Lima, and Paulo Oliveira</i></p> <p>12.1 Introduction 369</p> <p>12.2 Secretion Mediated by Membrane-Embedded Systems 373</p> <p>12.2.1 Proteins 373</p> <p>12.2.2 Extracellular Polymeric Substances (EPS) 377</p> <p>12.2.3 Soluble Sugars and Organic Acids 379</p> <p>12.2.4 Fatty Acids 381</p> <p>12.2.5 Alcohols 382</p> <p>12.2.6 Terpenes 384</p> <p>12.3 MV-Mediated Secretion 386</p> <p>12.3.1 Structure and Biogenesis of Bacterial MVs 386</p> <p>12.3.1.1 Cyanobacterial MVs 388</p> <p>12.3.2 MVs as Novel Biotechnological Tools 389</p> <p>12.4 Concluding Remarks 391</p> <p>Acknowledgments 392</p> <p>References 392</p> <p><b>Part III Frontiers of Cyanobacteria Biotechnology </b><b>407</b></p> <p><b>13 Harnessing Solar-Powered Oxic N<sub>2</sub>-fixing Cyanobacteria for the BioNitrogen Economy </b><b>409<br /></b><i>James Young, Liping Gu, William Gibbons, and Ruanbao Zhou</i></p> <p>13.1 Introduction 409</p> <p>13.2 Physiology and Implications of Oxic Nitrogen Fixation 410</p> <p>13.2.1 Ecological Range 411</p> <p>13.2.2 Balancing Photosynthesis and Nitrogen Fixation 412</p> <p>13.2.3 Energetic Demands and How the Cells Adapt 412</p> <p>13.2.4 Impacts of Continuous Light vs Dark–Light Cycles 416</p> <p>13.3 Major Biotechnology Applications for Diazotrophic Cyanobacteria 417</p> <p>13.3.1 General Economic and Environmental Considerations of Diazotrophic Cyanobacteria 417</p> <p>13.3.2 Metabolic Engineering of N<sub>2</sub>-Fixing Cyanobacteria for Carbon Compound Production 420</p> <p>13.3.2.1 Direct Production of Biofuels 420</p> <p>13.3.2.2 Cyanobacteria as a Fermentable Substrate 420</p> <p>13.3.3 Metabolic Engineering of Nitrogen Fixing Cyanobacteria for Nitrogen-Rich Compound Production 422</p> <p>13.3.3.1 Ammonia 422</p> <p>13.3.3.2 Guanidine 423</p> <p>13.3.3.3 Cyanophycin 423</p> <p>13.3.3.4 Amino Acids and Proteins 423</p> <p>13.3.4 Application of Diazotrophic Cyanobacteria in Agriculture 425</p> <p>13.4 Conclusions 428</p> <p>References 428</p> <p><b>14 Traits of Fast-Growing Cyanobacteria </b><b>441<br /></b><i>Meghna Srivastava, Elton P. Hudson, and Pramod P. Wangikar</i></p> <p>14.1 Introduction 441</p> <p>14.2 Why is Growth Rate Significant? 442</p> <p>14.3 An Overview of Factors Affecting the Growth Rates of Cyanobacteria 446</p> <p>14.3.1 Light Intensity and Quality 448</p> <p>14.3.2 Mixotrophic Growth 451</p> <p>14.3.3 Circadian Rhythm 451</p> <p>14.3.4 Additional Factors Relating to Growth Rates in Cyanobacteria 452</p> <p>14.3.4.1 Cell Morphology 453</p> <p>14.3.4.2 Genome Size 453</p> <p>14.3.4.3 Saltwater Tolerance 454</p> <p>14.3.4.4 Nutrient Supplementation 454</p> <p>14.3.5 Carbon Storage 455</p> <p>14.4 Overview of the Fast-Growing Model Cyanobacteria 455</p> <p>14.4.1 <i>Synechococcus elongatus </i>UTEX 2973 455</p> <p>14.4.2 <i>Synechococcus elongatus </i>PCC 11801 456</p> <p>14.4.3 <i>Synechococcus </i>sp. PCC 11901 456</p> <p>14.4.4 <i>Synechococcus </i>sp. PCC 7002 457</p> <p>14.5 Relationship Between Light Usage and Growth Rate in Model Strains 458</p> <p>14.5.1 Case Study: The pmgA Mutant of <i>Synechocystis </i>458</p> <p>14.5.2 Case Study: The <i>S. elongatus </i>7942 and <i>S. elongatus </i>2973 Strains 460</p> <p>14.6 Molecular Determinants of Fast Growth of <i>S. elongatus </i>UTEX 2973 460</p> <p>14.7 Carbon Fluxes in Fast-Growing Strains Determined Using Metabolic Flux Analysis 463</p> <p>14.8 Engineering Cyanobacteria for Fast Growth 465</p> <p>14.8.1 Calvin Cycle Enzymes 465</p> <p>14.8.2 PEP Carboxylase 466</p> <p>14.8.3 Carbon and Light Uptake Proteins 467</p> <p>14.9 Conclusion 468</p> <p>References 468</p> <p><b>15 Cyanobacterial Biofilms in Natural and Synthetic Environments </b><b>477<br /></b><i>Christian David, Rohan Karande, and Katja Bühler</i></p> <p>15.1 Motivation 477</p> <p>15.2 Introduction to Biofilms: Biology and Applications 478</p> <p>15.3 Cyanobacteria in Natural Biofilms and Microbial Mats 483</p> <p>15.4 Introduction to (Photo-)biotechnology 484</p> <p>15.5 Benefits of Microscale Systems for (Photo-)biofilm Cultivation 487</p> <p>15.6 Oxygen Accumulation and Its Impacts 488</p> <p>15.7 Resource Management in Biofilms 491</p> <p>15.8 Applications of Photosynthetic Biofilms 493</p> <p>15.8.1 Biofilms Enable High Cell Densities 497</p> <p>15.8.2 Biofilms Enable Continuous Production 498</p> <p>15.9 Outlook 499</p> <p>References 499</p> <p><b>16 Growth of Photosynthetic Microorganisms in Different Photobioreactors Operated Outdoors </b><b>505<br /></b><i>Eleftherios Touloupakis and Pietro Carlozzi</i></p> <p>16.1 Background 505</p> <p>16.1.1 Photobiological Hydrogen Production 506</p> <p>16.1.2 Polyhydroxyalkanoate Production by Photosynthetic Microbes 508</p> <p>16.1.3 Photobioreactors 509</p> <p>16.2 Case Studies of Outdoor Cultivations of Photosynthetic Microorganisms 513</p> <p>16.2.1 Outdoor Cultures of Purple Non-Sulfur Bacteria for H<sub>2</sub> and PHB Production 513</p> <p>16.2.2 Outdoor Cultures of Cyanobacteria 516</p> <p>16.3 Conclusion 517</p> <p>Acknowledgments 519</p> <p>References 519</p> <p>Index 531</p>
Paul Hudson is an Associate Professor (2018) of Metabolic Engineering in the School of Engineering Sciences in Chemistry, Biotechnology, and Health at the Royal Institute of Technology (KTH) in Stockholm Sweden. He has a Ph.D. degree in Chemical Engineering from U.C. Berkeley (2009). He has published 26 research papers in the fields of protein science, microbial metabolic engineering, and systems biology. The main focus of his research is on systems and synthetic biology of cyanobacteria.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €