Details

Copper Catalysis in Organic Synthesis


Copper Catalysis in Organic Synthesis


1. Aufl.

von: Gopinathan Anilkumar, Salim Saranya

133,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 24.06.2020
ISBN/EAN: 9783527826421
Sprache: englisch
Anzahl Seiten: 504

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The most current information on growing field of copper catalysis</b> <p><i>Copper Catalysis in Organic Synthesis</i> contains an up-to-date overview of the most important reactions in the presence of copper catalysts. The contributors—noted experts on the topic—provide an introduction to the field of copper catalysis, reviewing its development, scope, and limitations, as well as providing descriptions of various homo- and cross-coupling reactions. In addition, information is presented on copper-catalyzed C–H activation, amination, carbonylation, trifluoromethylation, cyanation, and click reactions. <p>Comprehensive in scope, the book also describes microwave-assisted and multi-component transformations as well as copper-catalyzed reactions in green solvents and continuous flow reactors. The authors highlight the application of copper catalysis in asymmetric synthesis and total synthesis of natural products and heterocycles as well as nanocatalysis. This important book: <ul> <li>Examines copper and its use in organic synthesis as a more cost-effective and sustainable for researchers in academia and industry</li> <li>Offers the first up-to-date book to explore copper as a first line catalyst for many organic reactions</li> <li>Presents the most significant developments in the area, including cross-coupling reactions, C–H activation, asymmetric synthesis, and total synthesis of natural products and heterocycles</li> <li>Contains over 20 contributions from leaders in the field</li> </ul> <p>Written for catalytic chemists, organic chemists, natural products chemists, pharmaceutical chemists, and chemists in industry, <i>Copper Catalysis in Organic Synthesis</i> offers a book on the growing field of copper catalysis, covering cross-coupling reactions, C–H activation, and applications in the total synthesis of natural products.
<p>Preface xvii</p> <p>Abbreviations xix</p> <p><b>1 Copper Catalysis: An Introduction </b><b>1<br /></b><i>Salim Saranya and Gopinathan Anilkumar</i></p> <p>References 4</p> <p><b>2 Cu-Catalyst in Reactions Involving Pyridinium and Indolizinium Moieties </b><b>7<br /></b><i>Bianca Furdui, Andrea V. Dediu (Botezatu), and RodicaM. Dinica</i></p> <p>2.1 Cu-Catalyst in Reactions Involving Pyridinium Moieties 7</p> <p>2.1.1 Introduction 7</p> <p>2.1.2 Synthesis and Functionalization of Pyridinium Compounds Catalyzed by Copper 7</p> <p>2.1.3 Green Methods for Pyridine Synthesis 13</p> <p>2.2 Cu-Catalyst in Reactions Involving Indolizinium Moieties 15</p> <p>2.2.1 Introduction 15</p> <p>2.2.2 Synthesis of Indolizinium Compounds Using a Copper Catalyst 15</p> <p>2.2.3 Cu-Catalyzed Green Synthesis of Indolizine Moieties 19</p> <p>2.3 Conclusions 21</p> <p>References 21</p> <p><b>3 Copper-Catalyzed Cross-Coupling Reactions of Organoboron Compounds </b><b>23<br /></b><i>Jan Nekvinda and Webster L. Santos</i></p> <p>3.1 Introduction 23</p> <p>3.2 Ring Opening Cross-Coupling Reactions 24</p> <p>3.3 Coupling Reactions with Atoms Other than Carbon 26</p> <p>3.3.1 Amines, Amides, and Sulfonamides 27</p> <p>3.3.2 Nitrones 33</p> <p>3.3.3 Sulfones 35</p> <p>3.3.4 Silyls 35</p> <p>3.3.5 Selanyls 36</p> <p>3.4 Coupling Reactions Involving Carbon 36</p> <p>3.4.1 Boronic Acid Esters 36</p> <p>3.4.2 Boronic Acids 41</p> <p>3.4.3 Single Electron Mechanism 42</p> <p>3.5 Conclusion 43</p> <p>References 43</p> <p><b>4 Cu-Catalyzed Homocoupling Reactions </b><b>51<br /></b><i>Ganesh C. Nandi, Sundaresan Ravindra, Cholakkaparambil Irfana Jesin, Parameswaran Sasikumar, and Kokkuvayil V. Radhakrishnan</i></p> <p>4.1 Introduction 51</p> <p>4.2 Synthesis of 1,3-Diynes via Homocoupling Reactions 51</p> <p>4.2.1 Synthesis of 1,3-Diynes with Homogeneous Cu Catalysis 52</p> <p>4.2.1.1 Synthesis of Symmetrical 1,3-Diynes with Substrates Other than Terminal Alkynes 54</p> <p>4.2.2 Synthesis of Symmetrical 1,3-Diynes with Heterogeneous Cu Catalysis 55</p> <p>4.2.3 Synthesis of Macrocycles Through Intramolecular Coupling of Terminal Alkynes 56</p> <p>4.3 Cu-Catalyzed Synthesis of Symmetrical Biaryls Through Homocoupling Reactions 57</p> <p>4.3.1 Homocoupling of Aryl Boronic Acids 58</p> <p>4.3.1.1 Homogeneous Cu-Catalyzed Homocoupling Reactions 58</p> <p>4.3.1.2 Heterogeneous Copper-Catalyzed Homocoupling Reactions 58</p> <p>4.3.2 Synthesis of Symmetrical Biaryls Through C–H Activation 59</p> <p>4.3.3 Homocoupling of Arylstannane/Silane Derivatives 62</p> <p>4.3.4 Cu-Catalyzed Homocoupling of Aryl Halides for the Synthesis of Biaryls 62</p> <p>4.3.4.1 Symmetrical Biaryl Formation Using Homogeneous Copper Catalyst 62</p> <p>4.3.4.2 Biaryl Formation Using Heterogeneous Cu Catalyst 65</p> <p>4.3.5 Cu-Catalyzed Homocoupling of Aryl Halides for the Formation of Biaryls in Natural Products 66</p> <p>4.4 Homocoupling of Alkenes 68</p> <p>4.5 Summary and Conclusions 69</p> <p>References 69</p> <p><b>5 Cu-Catalyzed Organic Reactions in Aqueous Media </b><b>73<br /></b><i>Noel Nebra and Joaquín García-Álvarez</i></p> <p>5.1 Introduction 73</p> <p>5.2 Cu-Catalyzed Azide–Alkyne Cycloaddition Reactions (CuAAC) 74</p> <p>5.2.1 Ligand-Accelerated Cu(I) Catalysts 74</p> <p>5.2.2 Supported Cu(I) Catalysts 75</p> <p>5.2.3 Micellar Cu(I) Catalysis 77</p> <p>5.2.4 Heterogeneous Catalysis: CuNPs 77</p> <p>5.2.5 Miscellaneous 80</p> <p>5.3 Cu-Mediated Cross-Coupling Reactions: C—C and C–Heteroatom Bond Formation 81</p> <p>5.3.1 The Ullmann Coupling 81</p> <p>5.3.2 The Chan–Lam–Evans (CEL) Coupling 83</p> <p>5.3.3 Cu-Catalyzed Cyclization Reactions via Cross-Coupling Events 85</p> <p>5.3.4 Cu-Catalyzed C—H Bond Functionalization Reactions 86</p> <p>5.4 Cu-Catalyzed Hydroelementation Reactions of Double and Triple C—C Bonds 89</p> <p>5.4.1 Michael-Type Additions: Enone Hydrations Enabled by Cu-Based Metallo-Hydratases 89</p> <p>5.4.2 Cu-Catalyzed Hydroelementation of α,β-Unsaturated Carbonyl Compounds 90</p> <p>5.4.3 Cu-Catalyzed Hydroelementation of Inactivated C—C Multiple Bonds 92</p> <p>5.5 Miscellaneous 96</p> <p>5.6 Summary and Conclusions 98</p> <p>Acknowledgments 98</p> <p>References 100</p> <p><b>6 Cu-Catalyzed Organic Reactions in <i>Deep Eutectic Solvents </i>(<i>DESs</i>) </b><b>103<br /></b><i>Noel Nebra and Joaquín García-Álvarez</i></p> <p>6.1 Introduction 103</p> <p>6.2 Cu-Catalyzed Azide–Alkyne Cycloaddition Reactions (CuAAC) in <i>DESs </i>106</p> <p>6.3 Cu-Catalyzed C—C and C—N Bond Formations in <i>DESs </i>108</p> <p>6.3.1 Cu-Catalyzed Sonogashira C–C Coupling Using the Eutectic Mixture 1CuCl/1Gly 108</p> <p>6.3.2 Synthesis of Heterocyclic Compounds via Cu-Catalyzed Cross-Coupling Reactions 110</p> <p>6.3.3 Cu-Catalyzed C—N Bond Formation in <i>DESs </i>110</p> <p>6.4 Cu-Catalyzed Atom Transfer Radical Polymerization Processes in <i>DESs </i>(SARA and ARGET) 112</p> <p>6.5 Summary and Conclusions 113</p> <p>Acknowledgments 114</p> <p>References 114</p> <p><b>7 Microwave-Assisted Cu-Catalyzed Organic Reactions </b><b>119<br /></b><i>Bogdan Štefane, Helena Brodnik-?ugelj, Uroš Grošelj, Jurij Svete, and Franc Po?gan</i></p> <p>7.1 Introduction 119</p> <p>7.2 Ring-Forming Reactions 121</p> <p>7.2.1 Synthesis of Heterocycles 121</p> <p>7.2.1.1 Cycloadditions 121</p> <p>7.2.1.2 Annulation Reactions 123</p> <p>7.2.1.3 Intramolecular Cyclizations 126</p> <p>7.2.1.4 Multicomponent Reactions (MCRs) 126</p> <p>7.2.2 Synthesis of Carbocycles 128</p> <p>7.3 Cross-Coupling Reactions 130</p> <p>7.3.1 Carbon–Carbon Couplings 130</p> <p>7.3.2 Carbon–Heteroatom Couplings 134</p> <p>7.3.2.1 C–N Couplings 134</p> <p>7.3.2.2 C–Chalcogen Couplings 138</p> <p>7.4 Multicomponent Reactions 141</p> <p>7.5 Miscellaneous Reactions 144</p> <p>7.6 Summary and Conclusions 146</p> <p>Acknowledgments 146</p> <p>References 146</p> <p><b>8 Cu-Catalyzed Asymmetric Synthesis </b><b>153<br /></b><i>Hidetoshi Noda, Naoya Kumagai, and Masakatsu Shibasaki</i></p> <p>8.1 Introduction 153</p> <p>8.1.1 Cu-Catalyzed Asymmetric Synthesis: Scope of This Chapter 153</p> <p>8.1.2 Structures of Chiral Ligands: Trends of the Last Decade 154</p> <p>8.2 <i>In Situ </i>Generation of Cu Nucleophiles from Unsaturated Hydrocarbons 155</p> <p>8.2.1 Reductive Aldol Reactions 155</p> <p>8.2.2 Intramolecular Oxy- and Amidocupration 156</p> <p>8.2.3 Hydrocupration of Unsaturated Compounds 158</p> <p>8.2.4 Borylcupuration of Unsaturated Compounds 163</p> <p>8.3 Generation of Cu Nucleophiles Under Proton Transfer Conditions 165</p> <p>8.4 Summary and Conclusions 172</p> <p>References 172</p> <p><b>9 Cu-Catalyzed Click Reactions </b><b>177<br /></b><i>Rajagopal Ramkumar and Pazhamalai Anbarasan</i></p> <p>9.1 Introduction 177</p> <p>9.2 Background 178</p> <p>9.2.1 Huisgen’s Cycloaddition Reaction 178</p> <p>9.2.2 Copper(I)-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) 178</p> <p>9.2.3 Mechanistic Study of Copper Azide–Alkyne Cycloaddition Reaction 179</p> <p>9.3 CuAAC for the Synthesis of Substituted 1,2,3-Triazoles 180</p> <p>9.4 Heterogeneous CuAAC Reactions 188</p> <p>9.5 Ligand-Stabilized Cu(I)-Catalyzed Click Reaction 191</p> <p>9.6 Synthesis of Rotaxanes and Catenanes Using CuAAC 196</p> <p>9.7 Synthesis of <i>N</i>-Sulfonyl-1,2,3-Triazoles and Their Applications 198</p> <p>9.8 CuAAC and Asymmetric Synthesis 198</p> <p>9.9 CuAAC for Synthesis of Biologically Active Molecules 202</p> <p>9.10 Summary 204</p> <p>References 204</p> <p><b>10 Cu-Catalyzed Multicomponent Reactions </b><b>209<br /></b><i>Thachapully D. Suja and Rajeev S. Menon</i></p> <p>10.1 Introduction 209</p> <p>10.2 Cu-Catalyzed MCRs of Alkynes 209</p> <p>10.2.1 Cu-Catalyzed Multicomponent Alkyne–Azide Cycloadditions 210</p> <p>10.2.1.1 CuAAC Reactions Initiated by Azide Generation 210</p> <p>10.2.1.2 CuAAC Reactions Initiated by Alkyne Generation 214</p> <p>10.2.1.3 Other Multicomponent CuAAC Reactions 214</p> <p>10.2.2 Cu-Catalyzed Generation and Interception of Ketenimines from Alkynes and Azides 216</p> <p>10.2.3 Cu-Catalyzed Aldehyde, Alkyne, and Amine (A<sup>3</sup>) Coupling 221</p> <p>10.2.3.1 A3-Coupling ReactionsThat Afford Propargyl Amine Derivatives 222</p> <p>10.2.3.2 Variation of the Reaction Components in A<sup>3</sup>-Coupling 224</p> <p>10.2.3.3 Asymmetric A<sup>3</sup> (AA<sup>3</sup>)-Coupling Reactions 226</p> <p>10.2.3.4 Synthetic Applications of Cu-Catalyzed A<sup>3</sup>-Coupling Reactions 227</p> <p>10.3 Other Cu-Catalyzed Multicomponent Reactions 229</p> <p>10.4 Summary and Conclusions 233</p> <p>References 233</p> <p><b>11 Copper-Catalyzed Aminations </b><b>239<br /></b><i>Nissy A. Harry and Rajenahally V. Jagadeesh</i></p> <p>11.1 Introduction 239</p> <p>11.2 Copper-Catalyzed Amination of Aryl and Alkenyl Electrophiles 240</p> <p>11.2.1 Ammonia as a Nucleophile 240</p> <p>11.2.2 Sodium Azide as Nucleophile 241</p> <p>11.2.3 Amines as Nucleophile 242</p> <p>11.2.4 Mechanism of Cu-Catalyzed Amination of Aryl/Alkyl Halides 244</p> <p>11.3 Chan–Lam Coupling Reaction 244</p> <p>11.4 Copper-Catalyzed Hydroaminations 246</p> <p>11.4.1 Hydroamination of Alkenes 247</p> <p>11.4.2 Hydroamination of Alkynes 250</p> <p>11.4.3 Hydroamination of Allenes 251</p> <p>11.5 Copper-Catalyzed C—H amination Reactions 251</p> <p>11.6 Conclusion 254</p> <p>References 254</p> <p><b>12 Cu-Catalyzed Carbonylation Reactions </b><b>261<br /></b><i>Parameswaran Sasikumar, Thoppe S. Priyadarshini, Sanjay Varma, Ganesh C. Nandi, and Kokkuvayil V. Radhakrishnan</i></p> <p>12.1 Introduction 261</p> <p>12.2 Single Carbonylation Reactions 262</p> <p>12.2.1 Copper-Catalyzed Carbonylative Coupling Reactions 262</p> <p>12.2.2 Cu-Catalyzed Carboxylation Reaction 268</p> <p>12.2.3 Cu-Catalyzed Oxidative Carbonylation Reactions 269</p> <p>12.2.4 Carbonylative Acetylation Reaction 272</p> <p>12.2.5 Aminocarbonylation Reaction 273</p> <p>12.2.6 Copper-Catalyzed Oxidative Amidation 275</p> <p>12.3 Cu-Catalyzed Double Carbonylation Reactions 275</p> <p>12.4 Summary and Conclusions 278</p> <p>References 278</p> <p><b>13 Ligand-Free, Cu-Catalyzed Reactions </b><b>279<br /></b><i>Muhammad F. Jamali, Sanoop P. Chandrasekharan, and Kishor Mohanan</i></p> <p>13.1 Introduction 279</p> <p>13.2 Heterocycle Synthesis 279</p> <p>13.2.1 Five-Membered Heterocycles 280</p> <p>13.2.2 Six-Membered Heterocycles 280</p> <p>13.2.3 Benzofused Five-Membered Heterocycles Containing One Heteroatom 281</p> <p>13.2.4 Benzofused Five-Membered Heterocycles Containing Two Heteroatoms 283</p> <p>13.2.5 Benzofused Five-Membered Heterocycles Containing Three Heteroatoms 284</p> <p>13.2.6 Benzofused Six-Membered Heterocycles 284</p> <p>13.2.7 Polycyclic Compounds 286</p> <p>13.2.8 Spirocyclic Compounds 286</p> <p>13.3 Carbon–Heteroatom Bond Formations 289</p> <p>13.3.1 C—N Bond Formation 289</p> <p>13.3.2 C—O Bond Formation 291</p> <p>13.3.3 C—S Bond Formation 291</p> <p>13.3.4 C—P Bond Formation 295</p> <p>13.3.5 C—B Bond Formation 295</p> <p>13.3.6 C—Se Bond Formation 295</p> <p>13.4 C–H Activation Reactions 297</p> <p>13.5 Cross-coupling Reactions 299</p> <p>13.6 Azide–Alkyne Cycloaddition Reactions (CuAAC) 301</p> <p>13.7 Trifluoromethylation Reactions 302</p> <p>13.8 Cyanation Reactions 303</p> <p>13.9 Carbonylation Reactions 304</p> <p>13.10 Conclusion 305</p> <p>References 305</p> <p><b>14 Copper-Catalyzed Decarboxylative Coupling </b><b>309<br /></b><i>Firas El-Hage and Jola Pospech</i></p> <p>14.1 Introduction 309</p> <p>14.2 Copper-Catalyzed Decarboxylation of Benzoic Acids 309</p> <p>14.3 Copper-Catalyzed Decarboxylation of Alkenyl Carboxylic Acids 315</p> <p>14.4 Copper-Catalyzed Decarboxylation of Alkynyl Carboxylic Acids 316</p> <p>14.5 Copper-Catalyzed Decarboxylation of Alkyl Carboxylic Acids 320</p> <p>14.6 Summary and Conclusions 325</p> <p>References 326</p> <p><b>15 Copper-Catalyzed C–H Activation </b><b>329<br /></b><i>Xun-Xiang Guo</i></p> <p>15.1 Introduction 329</p> <p>15.2 Carbon–Carbon Bond Formation via Cu-Catalyzed C–H Activation 329</p> <p>15.2.1 Cu-Catalyzed C(sp<sup>2</sup>)–H Activation 329</p> <p>15.2.2 Cu-Catalyzed C(sp<sup>3</sup>)–H Activation 332</p> <p>15.3 Carbon–Heteroatom Bond Formation via Cu-Catalyzed C–H Activation 334</p> <p>15.3.1 C—N Bond Formation 334</p> <p>15.3.2 C—O Bond Formation 339</p> <p>15.3.3 C—X Bond Formation 341</p> <p>15.3.4 C—P Bond Formation 345</p> <p>15.3.5 C—S Bond Formation 346</p> <p>15.4 Conclusion 347</p> <p>References 347</p> <p><b>16 Aerobic Cu-Catalyzed Organic Reactions </b><b>349<br /></b><i>Ahmad A. Almasalma and Esteban Mejía</i></p> <p>16.1 Introduction 349</p> <p>16.2 C—C Bond Formation Reactions 351</p> <p>16.2.1 Cross-dehydrogenative Couplings Under Thermal Conditions 352</p> <p>16.2.2 Cross-dehydrogenative Couplings Under Photochemical Conditions 354</p> <p>16.3 Carbonyl Synthesis via Oxidation of Alcohols 357</p> <p>16.3.1 “Copper-Only” Biomimetic Catalyst Systems 358</p> <p>16.3.2 Cu/Nitroxyl “Dual” Systems 360</p> <p>16.4 Summary and Conclusions 362</p> <p>References 363</p> <p><b>17 Copper-Catalyzed Trifluoromethylation Reactions </b><b>367<br /></b><i>Dzmitry G. Kananovich</i></p> <p>17.1 Introduction 367</p> <p>17.2 Trifluoromethylation of Arenes and Heteroarenes (C(sp<sup>2</sup>)—CF<sub>3</sub> Bond Formation) 370</p> <p>17.3 Trifluoromethylation of Alkenes and Alkynes 374</p> <p>17.4 Trifluoromethylation of Aliphatic Precursors (C(sp<sup>3</sup>)—CF<sup>3</sup> Bond Formation) 378</p> <p>17.4.1 Transformations via Functional Group Interconversions 378</p> <p>17.4.2 Direct C(sp<sup>3</sup>)–H Trifluoromethylation 382</p> <p>17.4.3 Ring-opening Trifluoromethylation 386</p> <p>17.5 Copper-Mediated Formation of CF<sub>3</sub>–Heteroatom Bonds 388</p> <p>17.6 Summary and Conclusions 388</p> <p>References 389</p> <p><b>18 Cu-Catalyzed Reactions for Carbon–Heteroatom Bond Formations </b><b>395<br /></b><i>Govindasamy Sekar, Subramani Sangeetha, Anuradha Nandy, and Rajib Saha</i></p> <p>18.1 Introduction 395</p> <p>18.2 Cu-Catalyzed Reactions for Carbon–Nitrogen Bond Formations 395</p> <p>18.2.1 Coupling Reactions with Ammonia and its Surrogates 396</p> <p>18.2.2 Coupling Reactions with Amines 396</p> <p>18.2.3 Coupling Reactions with Amides, Lactams, and Carbamates 398</p> <p>18.2.4 Coupling Reactions with Protected Hydrazines and Hydroxylamines 400</p> <p>18.2.5 Coupling Reactions with Guanidines 400</p> <p>18.2.6 Coupling Reactions with N-Heterocycles 401</p> <p>18.3 Cu-Catalyzed Reactions for Carbon–Oxygen Bond Formations 401</p> <p>18.3.1 Mechanism and Presence of Cu(I) Intermediate in Ullmann Ether Synthesis 402</p> <p>18.3.2 Role of Ligands in Copper-Catalyzed Ether Synthesis 403</p> <p>18.3.3 Copper-Catalyzed C—O Bond Formation for Synthesizing Phenols 404</p> <p>18.3.4 Copper-Catalyzed C—H Functionalization for C—O Bond Formation 405</p> <p>18.3.5 Copper-Catalyzed Synthesis of Oxygen Heterocycles 405</p> <p>18.3.6 Selectivity of Copper-Catalyzed C—O and C—N Bond Formation 406</p> <p>18.4 Cu-Catalyzed Reactions for Carbon–Sulfur Bond Formations 407</p> <p>18.5 Cu-Catalyzed Reactions for Carbon–Selenium and Carbon–Tellurium Bond Formations 413</p> <p>18.6 Cu-Catalyzed Reactions for Carbon–Phosphorous Bond Formations 414</p> <p>18.7 Cu-Catalyzed Reactions for Carbon–Silicon Bond Formations 415</p> <p>18.8 Cu-Catalyzed Reactions for Carbon–Halogen Bond Formations 415</p> <p>18.9 Conclusions 416</p> <p>References 416</p> <p><b>19 Cu-Assisted Cyanation Reactions </b><b>423<br /></b><i>Sumanta Garai and Ganesh A. Thakur</i></p> <p>19.1 Introduction 423</p> <p>19.2 Cyanation Reaction Using CN-Containing Source 423</p> <p>19.2.1 Metallic Bound CN-Source 423</p> <p>19.2.1.1 Metal Cyanide 423</p> <p>19.2.1.2 Potassium Ferrocyanide [K<sub>3</sub>Fe(CN)<sub>6</sub>] 427</p> <p>19.2.2 Nonmetallic CN-Source 427</p> <p>19.2.2.1 Acetone Cyanohydrin 427</p> <p>19.2.2.2 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) 428</p> <p>19.2.2.3 2,2′-Azobisisobutyronitrile (AIBN) 429</p> <p>19.2.2.4 Benzyl Cyanide 429</p> <p>19.2.2.5 Acetonitrile 432</p> <p>19.2.2.6 Malononitrile 435</p> <p>19.2.2.7 Cyanogen Iodide 436</p> <p>19.2.2.8 α-Cyanoacetate 436</p> <p>19.3 Cyanation Reaction Using Non-CN-Containing Source 437</p> <p>19.3.1 <i>N</i>,<i>N</i>-Dimethylformamide (DMF) 437</p> <p>19.3.2 Ammonium Iodide (NH<sub>4</sub>I) and <i>N</i>,<i>N</i>-Dimethylformamide (DMF) 439</p> <p>19.3.3 Nitromethane 441</p> <p>Acknowledgments 441</p> <p>References 441</p> <p><b>20 Application of Cu-Mediated Reactions in the Synthesis of Natural Products </b><b>443<br /></b><i>Anas Ansari and Ramesh Ramapanicker</i></p> <p>20.1 Introduction 443</p> <p>20.2 Classification 443</p> <p>20.3 Total Synthesis Employing Cu-Catalyzed C–C Coupling Reactions 445</p> <p>20.3.1 (+)-Nocardioazine B 445</p> <p>20.3.2 (−)-Rhazinilam 447</p> <p>20.3.3 Isohericenone and Erinacerin A 447</p> <p>20.3.4 (+)-Piperarborenine B 449</p> <p>20.3.5 Macrocarpines D and E 450</p> <p>20.4 Total Synthesis Employing Cu-Catalyzed C–N Coupling Reactions 454</p> <p>20.4.1 (−)-Aspergilazine A 454</p> <p>20.4.2 (−)-Psychotriasine 454</p> <p>20.4.3 (−)-Indolactam V 455</p> <p>20.4.4 (−)-Palmyrolide A 458</p> <p>20.5 Total Synthesis Employing Cu-Catalyzed C–O Coupling Reactions 458</p> <p>20.5.1 (±})-Untenone A 458</p> <p>20.5.2 Coumestrol and Aureol 460</p> <p>20.6 Total Synthesis Employing Cu-Catalyzed Domino Reactions 463</p> <p>20.6.1 (±})-Sacidumlignan D 463</p> <p>20.7 Conclusion 463</p> <p>References 465</p> <p>Index 469</p>
<p><b>Gopinathan Anilkumar, PhD.,</b> is professor of organic chemistry at the School of Chemical Sciences, Mahatma Gandhi University in Kottayam, Kerala, India. His research interests are in the areas of organic synthesis, medicinal chemistry, heterocyclic chemistry and catalysis, particularly on ruthenium-, iron-, zinc-, copper-, manganese-, cobalt- and nickel-catalyzed reactions.</p> <p><b>Salim Saranya</b> is a PhD student in the group of Prof. Gopinathan Anilkumar at the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India.</p>
<p><b>The most current information on growing field of copper catalysis</b> <p><i>Copper Catalysis in Organic Synthesis</i> contains an up-to-date overview of the most important reactions in the presence of copper catalysts. The contributors—noted experts on the topic—provide an introduction to the field of copper catalysis, reviewing its development, scope, and limitations, as well as providing descriptions of various homo- and cross-coupling reactions. In addition, information is presented on copper-catalyzed C–H activation, amination, carbonylation, trifluoromethylation, cyanation, and click reactions. <p>Comprehensive in scope, the book also describes microwave-assisted and multi-component transformations as well as copper-catalyzed reactions in green solvents and continuous flow reactors. The authors highlight the application of copper catalysis in asymmetric synthesis and total synthesis of natural products and heterocycles as well as nanocatalysis. This important book: <ul> <li>Examines copper and its use in organic synthesis as a more cost-effective and sustainable for researchers in academia and industry</li> <li>Offers the first up-to-date book to explore copper as a first line catalyst for many organic reactions</li> <li>Presents the most significant developments in the area, including cross-coupling reactions, C–H activation, asymmetric synthesis, and total synthesis of natural products and heterocycles</li> <li>Contains over 20 contributions from leaders in the field</li> </ul> <p>Written for catalytic chemists, organic chemists, natural products chemists, pharmaceutical chemists, and chemists in industry, <i>Copper Catalysis in Organic Synthesis</i> offers a book on the growing field of copper catalysis, covering cross-coupling reactions, C–H activation, and applications in the total synthesis of natural products.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
126,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
126,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €