Details

Contemporary Health Physics


Contemporary Health Physics

Problems and Solutions
2. Aufl.

von: Joseph John Bevelacqua

147,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 09.03.2009
ISBN/EAN: 9783527626793
Sprache: englisch
Anzahl Seiten: 722

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This is the first text specifically designed to train potential health physicists to think and respond like professionals. Written by a former chairman of the American Board of Health Physics Comprehensive Panel of Examiners with more than 20 years of professional and academic experience in the field, it offers a balanced presentation of all the theoretical and practical issues essential for a full working knowledge of radiation exposure assessments. As the only book to cover the entire radiation protection field, it includes detailed coverage of the medical, university, reactor, fuel cycle, environmental and accelerator areas, while exploring key topics in radiation basics, external and internal dosimetry, the biological effects of ionizing radiation, and much more besides. <p>Backed by more than 500 worked examples developed within the context of various scenarios and spanning the full spectrum of real-world challenges, it quickly instills in readers the professional acumen and practical skills they need to perform accurate radiation assessments in virtually any routine or emergency situation.</p> <p>The result is a valuable resource for upper-level students and anyone preparing to take the American Board of Health Physics Comprehensive Examination, as well as for professionals seeking to expand their scope and sharpen their skills.</p>
<p>Preface to the Second Edition vii</p> <p>Preface to the First Edition ix</p> <p>A Note on Units xi</p> <p><b>Part I Basic Concepts: Theory and Problems 1</b></p> <p><b>1 Introduction 3</b></p> <p>1.1 Scenarios 4</p> <p>Scenario 1.1 4</p> <p>Scenario 1.2 4</p> <p>Scenario 1.3 5</p> <p>Scenario 1.4 5</p> <p>Scenario 1.5 7</p> <p>Scenario 1.6 8</p> <p>Scenario 1.7 9</p> <p>Scenario 1.8 9</p> <p>Scenario 1.9 10</p> <p>Scenario 1.10 10</p> <p>Scenario 1.11 11</p> <p>Scenario 1.12 12</p> <p>Scenario 1.13 13</p> <p>Scenario 1.14 14</p> <p>Scenario 1.15 15</p> <p>Scenario 1.16 15</p> <p>Scenario 1.17 17</p> <p>Scenario 1.18 17</p> <p>Scenario 1.19 18</p> <p>Scenario 1.20 19</p> <p>Scenario 1.21 20</p> <p>Scenario 1.22 21</p> <p>Scenario 1.23 22</p> <p>Scenario 1.24 23</p> <p>Scenario 1.25 24</p> <p>Scenario 1.26 25</p> <p>Scenario 1.27 26</p> <p>Scenario 1.28 28</p> <p>Scenario 1.29 28</p> <p>Scenario 1.30 29</p> <p>Scenario 1.31 31</p> <p>Scenario 1.32 33</p> <p>Scenario 1.33 34</p> <p>Scenario 1.34 35</p> <p>Scenario 1.35 36</p> <p>Scenario 1.36 37</p> <p>Scenario 1.37 38</p> <p>Scenario 1.38 39</p> <p>References 40</p> <p><b>Part II Specialized Areas: Theory and Problems 45</b></p> <p><b>2 Medical Health Physics 47</b></p> <p>2.1 Historical Perspective 47</p> <p>2.2 Medical Accelerator Physics 48</p> <p>2.3 Diagnostic Nuclear Medicine 51</p> <p>2.3.1 X-rays 51</p> <p>2.3.2 Nuclear Medicine 52</p> <p>2.3.3 Computed Tomography 52</p> <p>2.3.4 Tracer Studies and Radioisotope Administration 53</p> <p>2.4 Therapeutic Nuclear Medicine 53</p> <p>2.4.1 Radionuclide Administration 53</p> <p>2.4.2 External Beam Therapy 55</p> <p>2.4.3 Brachytherapy 57</p> <p>2.5 Facility Design 58</p> <p>2.6 Shielding Design 59</p> <p>2.7 X-ray Shielding 60</p> <p>2.8 Ncrp-49 61</p> <p>2.8.1 Primary Barrier 61</p> <p>2.8.2 Secondary Barrier 62</p> <p>2.8.3 Leakage Radiation 63</p> <p>2.9 Ncrp-147 64</p> <p>2.9.1 Unshielded Air Kerma 64</p> <p>2.9.2 Shielding Calculations 65</p> <p>2.10 NCRP-151 66</p> <p>2.10.1 Primary Barrier 67</p> <p>2.10.2 Secondary Barriers 68</p> <p>2.10.3 Scattering 68</p> <p>2.10.4 Leakage 68</p> <p>2.11 Management of Radionuclide Therapy Patients 69</p> <p>2.12 Ventilation Considerations 70</p> <p>2.13 Scenarios 71</p> <p>Scenario 2.1 71</p> <p>Scenario 2.2 72</p> <p>Scenario 2.3 73</p> <p>Scenario 2.4 75</p> <p>Scenario 2.5 76</p> <p>Scenario 2.6 76</p> <p>Scenario 2.7 77</p> <p>Scenario 2.8 78</p> <p>Scenario 2.9 79</p> <p>Scenario 2.10 82</p> <p>References 82</p> <p><b>3 University Health Physics 87</b></p> <p>3.1 Research Utilizing Radionuclides 87</p> <p>3.1.1 H-3 88</p> <p>3.1.2 C-14 88</p> <p>3.1.3 P-32 88</p> <p>3.1.4 Co-60 89</p> <p>3.1.5 I-125/I-131 89</p> <p>3.1.6 Cf-252 90</p> <p>3.2 Engineering Considerations 90</p> <p>3.2.1 Engineering Controls 90</p> <p>3.3 Sample Counting 91</p> <p>3.4 Intake of Radionuclides 92</p> <p>3.5 Other Research Activities 93</p> <p>3.6 Agricultural/Environmental Research 93</p> <p>3.7 Research Reactors 94</p> <p>3.7.1 Operational Characteristics 94</p> <p>3.7.2 Reactor Systems and Associated Radionuclide Production 96</p> <p>3.7.3 Reactor Effluents 96</p> <p>3.7.4 Gaseous Effluents 96</p> <p>3.7.5 Liquid Effluents 97</p> <p>3.8 Particle Accelerators 97</p> <p>3.9 Materials Research Via X-ray Diffraction Techniques 97</p> <p>3.10 Fusion Energy Research 98</p> <p>3.11 Overview of an Initial Fusion Power Facility 100</p> <p>3.11.1 General Radiological Characteristics 101</p> <p>3.11.2 ALARA-Confinement Methods and Fusion Process Types 102</p> <p>3.12 Scenarios 103</p> <p>Scenario 3.1 103</p> <p>Scenario 3.2 105</p> <p>Scenario 3.3 106</p> <p>Scenario 3.4 108</p> <p>Scenario 3.5 110</p> <p>Scenario 3.6 111</p> <p>Scenario 3.7 112</p> <p>Scenario 3.8 113</p> <p>Scenario 3.9 113</p> <p>Scenario 3.10 114</p> <p>Scenario 3.11 115</p> <p>References 116</p> <p><b>4 Fuel Cycle Health Physics 119</b></p> <p>4.1 Radiation in Fuel Cycle Facilities 119</p> <p>4.1.1 Occupational Exposure 120</p> <p>4.2 Nuclear Fuel Cycle 121</p> <p>4.3 Uranium Fuel Cycle 121</p> <p>4.3.1 Open and Closed Fuel Cycles 123</p> <p>4.3.2 Uranium Ore and Chemical Processing 124</p> <p>4.3.3 Enrichment 125</p> <p>4.3.4 Gaseous Diffusion 125</p> <p>4.3.5 Gas Centrifuge 127</p> <p>4.3.6 Laser Isotope Separation 128</p> <p>4.3.6.1 MLIS 130</p> <p>4.3.6.2 AVLIS 130</p> <p>4.3.7 Spent Power Reactor Fuel 131</p> <p>4.4 Thorium Fuel Cycle 131</p> <p>4.5 Radioactive Waste 132</p> <p>4.5.1 High-Level Wastes 133</p> <p>4.6 Criticality 133</p> <p>4.6.1 Tokaimura Criticality 134</p> <p>4.6.2 Critical Mass 135</p> <p>4.6.3 Geometry or Shape 136</p> <p>4.6.4 Enrichment of the Fissile Isotope 136</p> <p>4.6.5 Moderation and Reflection 136</p> <p>4.6.6 Neutron Absorbers or Poison Material 137</p> <p>4.6.7 Consequences of a Criticality Event 138</p> <p>4.7 Dispersion of Radioactive Gas from a Continuous Source 138</p> <p>4.8 Dispersion of Radioactive Particulates from a Continuous Source 140</p> <p>4.9 Fuel Cycle Facilities 140</p> <p>4.10 Detection of Fuel Cycle Facility Activity 142</p> <p>4.11 Scenarios 143</p> <p>Scenario 4.1 143</p> <p>Scenario 4.2 144</p> <p>Scenario 4.3 147</p> <p>Scenario 4.4 149</p> <p>Scenario 4.5 150</p> <p>Scenario 4.6 151</p> <p>Scenario 4.7 151</p> <p>Scenario 4.8 153</p> <p>Scenario 4.9 154</p> <p>References 155</p> <p><b>5 Power Reactor Health Physics 157</b></p> <p>5.1 Overview 157</p> <p>5.2 Generation I, II, III, and IV Reactors 158</p> <p>5.3 Health Physics Hazards 160</p> <p>5.3.1 Buildup of Filter or Demineralizer Activity 161</p> <p>5.3.2 Activation of Reactor Components 162</p> <p>5.3.3 Cladding Failures 163</p> <p>5.3.4 Reactor Coolant System Leakage 164</p> <p>5.3.5 Hot-Particle Skin Dose 165</p> <p>5.4 NCRP-130 Hot Particle Recommendations 169</p> <p>5.5 Health Physics Program Elements 170</p> <p>5.5.1 ALARA 170</p> <p>5.5.2 Effluents 171</p> <p>5.5.3 Radioactive Waste 172</p> <p>5.5.4 Decontamination 172</p> <p>5.6 Outages 176</p> <p>5.7 Major Radiation Instrumentation Systems 176</p> <p>5.7.1 Primary System Monitors 176</p> <p>5.7.2 Secondary System Monitors 177</p> <p>5.8 Radiological Considerations During Reactor Accidents 178</p> <p>5.9 Mitigation of Accident Consequences 180</p> <p>5.10 Scenarios 181</p> <p>Scenario 5.1 181</p> <p>Scenario 5.2 183</p> <p>Scenario 5.3 185</p> <p>Scenario 5.4 188</p> <p>Scenario 5.5 190</p> <p>Scenario 5.6 192</p> <p>Scenario 5.7 194</p> <p>Scenario 5.8 195</p> <p>Scenario 5.9 196</p> <p>References 197</p> <p><b>6 Environmental Health Physics 201</b></p> <p>6.1 Naturally Occurring Radioactive Material 201</p> <p>6.2 Radon 203</p> <p>6.2.1 Buildup of Radon from Inleakage 206</p> <p>6.2.2 Evolution of Radon from the Household Water Supply 206</p> <p>6.2.3 Radon Risk Assessments 207</p> <p>6.3 Environmental Monitoring Programs 207</p> <p>6.4 Environmental Releases 208</p> <p>6.5 Accumulation of Activity in Ponds and Surfaces 208</p> <p>6.6 Pathways Associated with Open and Closed Fuel Cycles 210</p> <p>6.6.1 High-Level Waste 210</p> <p>6.6.2 Open Fuel Cycles 210</p> <p>6.6.3 Closed Fuel Cycles 211</p> <p>6.7 Regulatory Guidance for Effluent Pathways 211</p> <p>6.8 Doses from Liquid Effluent Pathways 212</p> <p>6.8.1 Potable Water 212</p> <p>6.8.2 Aquatic Foods 213</p> <p>6.8.3 Shoreline Deposits 214</p> <p>6.8.4 Irrigated Foods 214</p> <p>6.8.4.1 Irrigated Foods (Tritium) 214</p> <p>6.8.4.2 Irrigated Foods (Radionuclides Other than Tritium) 215</p> <p>6.9 Doses from Gaseous Effluent Pathways 216</p> <p>6.9.1 Annual Gamma Air Dose from Noble Gas Releases from Free- Standing Stacks Higher than 80 Meters 216</p> <p>6.9.2 Annual Air Dose from All Noble Gas Releases 217</p> <p>6.9.2.1 Annual Gamma Air Dose from All Noble Gas Releases 217</p> <p>6.9.2.2 Annual Beta Air Dose from All Noble Gas Releases 217</p> <p>6.9.2.3 Annual Total Body Dose Equivalent from Noble Gas Releases from Free-Standing Stacks More than 80 Meters High 218</p> <p>6.9.2.4 Annual Skin Dose from Noble Gas Releases from Free-Standing Stacks Higher than 80 Meters 218</p> <p>6.10 Annual Doses from All Other Noble Gas Releases 219</p> <p>6.10.1 Annual Total Body Dose Equivalent from All Other Noble Gas Releases 219</p> <p>6.10.2 Annual Skin Dose from All Other Noble Gas Releases 219</p> <p>6.11 Doses from Radioiodines and Other Radionuclides Released to the Atmosphere 220</p> <p>6.11.1 Annual Organ Dose from External Irradiation from Radionuclides Deposited Onto the Ground Surface 220</p> <p>6.11.2 Annual Organ Dose from Inhalation of Radionuclides in Air 220</p> <p>6.11.3 Annual Organ Dose from Ingestion of Atmospherically Released Radionuclides in Food 221</p> <p>6.12 Pathway Selection 222</p> <p>6.13 Model Parameters 222</p> <p>6.14 Intentional Dispersal of Radioactive Materials 222</p> <p>6.15 Protection of the Environment 225</p> <p>6.16 Scenarios 226</p> <p>Scenario 6.1 226</p> <p>Scenario 6.2 227</p> <p>Scenario 6.3 228</p> <p>Scenario 6.4 229</p> <p>Scenario 6.5 230</p> <p>Scenario 6.6 230</p> <p>Scenario 6.7 231</p> <p>Scenario 6.8 232</p> <p>Scenario 6.9 233</p> <p>References 234</p> <p><b>7 Accelerator Health Physics 237</b></p> <p>7.1 High-Energy Interactions 237</p> <p>7.2 Radiation Types 239</p> <p>7.3 Proton Accelerators 239</p> <p>7.4 Electron Accelerators 240</p> <p>7.4.1 Bremsstrahlung 240</p> <p>7.4.2 Synchrotron Radiation 242</p> <p>7.4.3 Electromagnetic Cascade 243</p> <p>7.5 Light Sources 243</p> <p>7.6 Heavy-Ion Accelerators 244</p> <p>7.7 Large Hadron Collider 245</p> <p>7.7.1 Antiprotons 245</p> <p>7.7.2 Proton Reactions 245</p> <p>7.7.3 Neutrons 246</p> <p>7.7.4 Muons 246</p> <p>7.7.5 Hadronic (Nuclear) Cascade 246</p> <p>7.8 Muon Colliders 248</p> <p>7.8.1 Bounding Neutrino Effective Dose – Linear Muon Collider 248</p> <p>7.8.2 Bounding Neutrino Effective Dose – Circular Muon Collider 249</p> <p>7.8.3 ALARA Impacts of Muon Colliders 250</p> <p>7.9 Radiation Types of Concern 250</p> <p>7.9.1 Residual Radioactivity 251</p> <p>7.9.2 Activation of Water 251</p> <p>7.9.3 Activation of the Soil 252</p> <p>7.9.4 Activation of Air 252</p> <p>7.9.5 Buildup of Radioactive and Toxic Gases in an Irradiation Cell 253</p> <p>7.9.6 Other Radiation Sources 253</p> <p>7.10 Shielding 255</p> <p>7.11 Accelerator Beam Containment 257</p> <p>7.12 Dose Equivalent Rate from the Accelerator Target 258</p> <p>7.13 Beam Current 258</p> <p>7.14 Pulsed Radiation Fields 259</p> <p>7.15 Scenarios 259</p> <p>Scenario 7.1 259</p> <p>Scenario 7.2 261</p> <p>Scenario 7.3 263</p> <p>Scenario 7.4 264</p> <p>Scenario 7.5 265</p> <p>Scenario 7.6 266</p> <p>Scenario 7.7 266</p> <p>Scenario 7.8 267</p> <p>Scenario 7.9 269</p> <p>References 271</p> <p><b>8 Nonionizing Radiation Health Physics 273</b></p> <p>8.1 Sources of Radiofrequency and Microwave Radiation 273</p> <p>8.2 Characteristics of Electromagnetic Waves 274</p> <p>8.3 Antennas 275</p> <p>8.3.1 Stationary Antennas 275</p> <p>8.3.2 Rotating Antennas 277</p> <p>8.4 Attenuation by Biological Systems 278</p> <p>8.5 Biological Effects 279</p> <p>8.6 Protection Standards 279</p> <p>8.7 Measurement of Electromagnetic Fields 280</p> <p>8.8 Laser Radiation 281</p> <p>8.8.1 Radiometric and Photometric Terms and Units 281</p> <p>8.8.2 Properties of the Laser 282</p> <p>8.9 Biological Effects from Laser Radiation 282</p> <p>8.9.1 Eye 283</p> <p>8.9.2 Skin 284</p> <p>8.10 Laser Standards 284</p> <p>8.10.1 Intrabeam Exposures 285</p> <p>8.10.2 Nominal Ocular Hazard Distance 286</p> <p>8.10.3 Diffuse Reflections 286</p> <p>8.10.4 Nominal Hazard Zone 287</p> <p>8.10.5 Skin Exposures 287</p> <p>8.11 Free Electron Lasers 288</p> <p>8.12 Federal Regulations and Laser Standards 289</p> <p>8.12.1 Laser Classes 289</p> <p>8.12.2 Laser Safety Calculations 291</p> <p>8.12.2.1 Limiting Aperture 292</p> <p>8.12.2.2 Exposure Time/Maximum Permissible Exposure 292</p> <p>8.13 Controlling Laser Radiation 293</p> <p>8.14 Personnel Protective Equipment 294</p> <p>8.15 Spectral Effectiveness of Ultraviolet Radiation 294</p> <p>8.16 Scenarios 295</p> <p>Scenario 8.1 295</p> <p>Scenario 8.2 296</p> <p>Scenario 8.3 297</p> <p>Scenario 8.4 298</p> <p>Scenario 8.5 300</p> <p>Scenario 8.6 302</p> <p>Scenario 8.7 302</p> <p>Scenario 8.8 303</p> <p>Scenario 8.9 304</p> <p>References 306</p> <p><b>Part III Answers and Solutions 309</b></p> <p>Solutions for Chapter 1 311</p> <p>Scenario 1.1 311</p> <p>Scenario 1.2 312</p> <p>Scenario 1.3 313</p> <p>Scenario 1.4 313</p> <p>Scenario 1.5 314</p> <p>Scenario 1.6 316</p> <p>Scenario 1.7 317</p> <p>Scenario 1.8 318</p> <p>Scenario 1.9 319</p> <p>Scenario 1.10 321</p> <p>Scenario 1.11 322</p> <p>Scenario 1.12 325</p> <p>Scenario 1.13 326</p> <p>Scenario 1.14 327</p> <p>Scenario 1.15 328</p> <p>Scenario 1.16 329</p> <p>Scenario 1.17 329</p> <p>Scenario 1.18 331</p> <p>Scenario 1.19 334</p> <p>Scenario 1.20 336</p> <p>Scenario 1.21 338</p> <p>Scenario 1.22 339</p> <p>Scenario 1.23 341</p> <p>Scenario 1.24 343</p> <p>Scenario 1.25 344</p> <p>Scenario 1.26 345</p> <p>Scenario 1.27 348</p> <p>Scenario 1.28 352</p> <p>Scenario 1.29 355</p> <p>Scenario 1.30 356</p> <p>Scenario 1.31 357</p> <p>Scenario 1.32 358</p> <p>Scenario 1.33 359</p> <p>Scenario 1.34 360</p> <p>Scenario 1.35 364</p> <p>Scenario 1.36 366</p> <p>Scenario 1.37 369</p> <p>Scenario 1.38 372</p> <p>Solutions for Chapter 2 375</p> <p>Scenario 2.1 375</p> <p>Scenario 2.2 378</p> <p>Scenario 2.3 381</p> <p>Scenario 2.4 384</p> <p>Scenario 2.5 386</p> <p>Scenario 2.6 388</p> <p>Scenario 2.7 389</p> <p>Scenario 2.8 391</p> <p>Scenario 2.9 395</p> <p>Scenario 2.10 398</p> <p>Solutions for Chapter 3 403</p> <p>Scenario 3.1 403</p> <p>Scenario 3.2 406</p> <p>Scenario 3.3 408</p> <p>Scenario 3.4 410</p> <p>Scenario 3.5 412</p> <p>Scenario 3.6 413</p> <p>Scenario 3.7 417</p> <p>Scenario 3.8 419</p> <p>Scenario 3.9 421</p> <p>Scenario 3.10 423</p> <p>Scenario 3.11 425</p> <p>Solutions for Chapter 4 433</p> <p>Scenario 4.1 433</p> <p>Scenario 4.2 435</p> <p>Scenario 4.3 438</p> <p>Question 4.12 439</p> <p>Scenario 4.4 440</p> <p>Scenario 4.5 442</p> <p>Scenario 4.6 444</p> <p>Scenario 4.7 445</p> <p>Scenario 4.8 449</p> <p>Scenario 4.9 452</p> <p>Solutions for Chapter 5 455</p> <p>Scenario 5.1 455</p> <p>Scenario 5.2 457</p> <p>Scenario 5.3 459</p> <p>Scenario 5.4 460</p> <p>Scenario 5.5 462</p> <p>Scenario 5.6 466</p> <p>Scenario 5.7 468</p> <p>Scenario 5.8 470</p> <p>Scenario 5.9 472</p> <p>Solutions for Chapter 6 475</p> <p>Scenario 6.1 475</p> <p>Scenario 6.2 477</p> <p>Scenario 6.3 480</p> <p>Scenario 6.4 483</p> <p>Scenario 6.5 485</p> <p>Scenario 6.6 486</p> <p>Scenario 6.7 488</p> <p>Scenario 6.8 489</p> <p>Scenario 6.9 491</p> <p>Solutions for Chapter 7 499</p> <p>Scenario 7.1 499</p> <p>Scenario 7.2 501</p> <p>Scenario 7.3 503</p> <p>Scenario 7.5 504</p> <p>Scenario 7.6 506</p> <p>Scenario 7.7 507</p> <p>Scenario 7.8 510</p> <p>Scenario 7.9 514</p> <p>Solutions for Chapter 8 521</p> <p>Scenario 8.1 521</p> <p>Scenario 8.2 526</p> <p>Scenario 8.3 530</p> <p>Scenario 8.4 533</p> <p>Scenario 8.5 537</p> <p>Scenario 8.6 545</p> <p>Scenario 8.7 547</p> <p>Scenario 8.8 549</p> <p>Scenario 8.9 554</p> <p><b>Part IV Appendices 559</b></p> <p>Appendix I Serial Decay Relationships 561</p> <p>References 563</p> <p>Appendix II Basic Source Geometries and Attenuation Relationships 565</p> <p>References 571</p> <p>Appendix III Neutron-Induced Gamma Radiation Sources 573</p> <p>References 576</p> <p>Appendix IV Selected Topics in Internal Dosimetry 577</p> <p>References 624</p> <p>Appendix V Radiation Risk and Risk Models 627</p> <p>References 638</p> <p>Appendix VI Key Health Physics Relationships 639</p> <p>References 652</p> <p>Appendix VII Production Equations in Health Physics 653</p> <p>References 659</p> <p>Appendix VIII Mathematical Review 661</p> <p>References 671</p> <p>Appendix IX Selected Data on Radionuclides of Health Physics Interest 673</p> <p>References 678</p> <p>Subject Index 679</p>
<b>Joseph John Bevelacqua</b>, PhD, CHP, is the President of Bevelacqua Resources. A theoretical nuclear physicist by training, Dr. Bevelacqua is a Certified Health Physicist and Certified Senior Reactor Operator and has over 30 years of professional experience. This includes the medical, fuel cycle, accelerator, power reactor, environmental, and non-ionizing areas. He was a key player in the Three Mile Island and Hanford cleanup activities, and is an active researcher with over 80 publications. His research areas include heavy ion cancer therapy, theoretical physics, and health physics applications. He recently received the California University Pennsylvania's Professional Excellence Award for his accomplishments.
This is the first text specifically designed to train potential health physicists to think and respond like professionals, offering a balanced presentation of all the theoretical and practical aspects essential for a full working knowledge of radiation exposure assessments. <p>As the only book to cover the entire radiation protection field, it includes detailed coverage of the medical, university, power reactor, fuel cycle, environmental and accelerator, and nonionizing radiation areas, while exploring key topics in radiation basics, external and internal dosimetry, the biological effects of ionizing radiation, and much more besides.</p> <p>Backed by more than 500 worked examples spanning the full spectrum of real-world challenges, it quickly instills in readers the professional acumen and practical skills needed to perform accurate radiation assessments in virtually any routine or emergency situation.</p>

Diese Produkte könnten Sie auch interessieren:

Applied Biophysics
Applied Biophysics
von: Thomas Andrew Waigh
PDF ebook
43,99 €
Polymer Physics
Polymer Physics
von: Leszek A. Utracki, Alexander M. Jamieson
PDF ebook
181,99 €
Biophysical Bone Behaviour
Biophysical Bone Behaviour
von: Jitendra Behari
PDF ebook
179,99 €