Details

Construction Reliability


Construction Reliability

Safety, Variability and Sustainability
1. Aufl.

von: Julien Baroth, Denys Breysse, Franck Schoefs

139,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 07.02.2013
ISBN/EAN: 9781118600948
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This book provides answers to the following problems: how to identify the most probable critical failures; how to describe and use data-concerning materials that are either heterogeneous, time-variant, or space-variant; how to quantify the reliability and lifetime of a system; how to use feedback information to actualize reliability results; and how to optimize an inspection politic or a maintenance strategy. Numerous authors from public research centers and firms propose a synthesis of methods, both new and well-known, and offer numerous examples concerning dams, geotechnical study, and structures from nuclear and civil engineering.
<p><b>Preface xiii</b><br /> <i>Julien BAROTH, Franck SCHOEFS and Denys BREYSSE</i></p> <p><b>Introduction xvii</b><br /> <i>Julien BAROTH, Alaa CHATEAUNEUF and Franck SCHOEFS</i></p> <p><b>PART 1. QUALITATIVE METHODS FOR EVALUATING THE RELIABILITY OF CIVIL ENGINEERING STRUCTURES 1</b></p> <p><b>Introduction to Part 1 3</b></p> <p><b>Chapter 1. Methods for System Analysis and Failure Analysis 5</b><br /> <i>Daniel BOISSIER, Laurent PEYRAS and Aurélie TALON</i></p> <p>1.1. Introduction 5</p> <p>1.2. Structural analysis 7</p> <p>1.3. Functional analysis 10</p> <p>1.4. Failure Modes and Effects Analysis (FMEA) 14</p> <p>1.5. Bibliography 19</p> <p><b>Chapter 2. Methods for Modeling Failure Scenarios 21</b><br /> <i>Daniel BOISSIER, Laurent PEYRAS and Aurélie TALON</i></p> <p>2.1. Introduction 21</p> <p>2.2. Event tree method 22</p> <p>2.3. Fault tree method 24</p> <p>2.4. Bow-tie method 26</p> <p>2.5. Criticality evaluation methods 29</p> <p>2.6. Bibliography 34</p> <p><b>Chapter 3. Application to a Hydraulic Civil Engineering Project 37</b><br /> <i>Daniel BOISSIER, Laurent PEYRAS and Aurélie TALON</i></p> <p>3.1. Context and approach for an operational reliability study 37</p> <p>3.2. Functional analysis and failure mode analysis 39</p> <p>3.3. Construction of failure scenarios 42</p> <p>3.4. Scenario criticality analysis 44</p> <p>3.5. Application summary 50</p> <p>3.6. Bibliography 51</p> <p><b>PART 2. HETEROGENEITY AND VARIABILITY OF MATERIALS: CONSEQUENCES FOR SAFETY AND RELIABILITY 53</b></p> <p><b>Introduction to Part 2 55</b></p> <p><b>Chapter 4. Uncertainties in Geotechnical Data 57</b><br /> <i>Denys BREYSSE, Julien BAROTH, Gilles CELEUX, Aurélie TALON and Daniel BOISSIER</i></p> <p>4.1. Various sources of uncertainty in geotechnical engineering 57</p> <p>4.2. Erroneous, censored and sparse data 62</p> <p>4.3. Statistical representation of data 64</p> <p>4.4. Data modeling 66</p> <p>4.5. Conclusion 74</p> <p>4.6. Bibliography 74</p> <p><b>Chapter 5. Some Estimates on the Variability of Material Properties 77</b><br /> <i>Denys BREYSSE and Antoine MARACHE</i></p> <p>5.1. Introduction 77</p> <p>5.2. Mean value estimation 77</p> <p>5.3. Estimation of characteristic values 82</p> <p>5.4. Principles of a geostatistical study 86</p> <p>5.5. Bibliography 96</p> <p><b>Chapter 6. Reliability of a Shallow Foundation Footing 97</b><br /> <i>Denys BREYSSE</i></p> <p>6.1. Introduction 97</p> <p>6.2. Bearing capacity models for strip foundations – modeling errors 98</p> <p>6.3. Effects of soil variability on variability in bearing capacity and safety of the foundation 101</p> <p>6.4. Taking account of the structure of the spatial correlation and its influence on the safety of the foundation 109</p> <p>6.5. Conclusions 115</p> <p>6.6. Bibliography 117</p> <p><b>PART 3. METAMODELS FOR STRUCTURAL RELIABILITY 119</b></p> <p><b>Introduction to Part 3 121</b></p> <p><b>Chapter 7. Physical and Polynomial Response Surfaces 123</b><br /> <i>Frédéric DUPRAT, Franck SCHOEFS and Bruno SUDRET</i></p> <p>7.1. Introduction 123</p> <p>7.2. Background to the response surface method 124</p> <p>7.3. Concept of a response surface 125</p> <p>7.4. Usual reliability methods 131</p> <p>7.5. Polynomial response surfaces 133</p> <p>7.6. Conclusion 143</p> <p>7.7. Bibliography 143</p> <p><b>Chapter 8. Response Surfaces based on Polynomial Chaos Expansions 147</b><br /> <i>Bruno SUDRET, Géraud BLATMAN and Marc BERVEILLER</i></p> <p>8.1. Introduction 147</p> <p>8.2. Building of a polynomial chaos basis 149</p> <p>8.3. Computation of the expansion coefficients 151</p> <p>8.4. Applications in structural reliability 158</p> <p>8.5. Conclusion 164</p> <p>8.6. Bibliography 165</p> <p><b>PART 4. METHODS FOR STRUCTURAL RELIABILITY OVER TIME 169</b></p> <p><b>Introduction to Part 4 171</b></p> <p><b>Chapter 9. Data Aggregation and Unification 173</b><br /> <i>Daniel BOISSIER and Aurélie TALON</i></p> <p>9.1. Introduction 173</p> <p>9.2. Methods of data aggregation and unification 173</p> <p>9.3. Evaluation of evacuation time for an apartment in case of fire 181</p> <p>9.4. Conclusion 185</p> <p>9.5. Bibliography 185</p> <p><b>Chapter 10. Time-Variant Reliability Problems 187</b><br /> <i>Bruno SUDRET</i></p> <p>10.1. Introduction 187</p> <p>10.2. Random processes 188</p> <p>10.3. Time-variant reliability problems 192</p> <p>10.4. PHI2 method 197</p> <p>10.5. Industrial application: truss structure under time-varying loads 202</p> <p>10.6. Conclusion 204</p> <p>10.7. Bibliography 205</p> <p><b>Chapter 11. Bayesian Inference and Markov Chain Monte Carlo Methods 207</b><br /> <i>Gilles CELEUX</i></p> <p>11.1. Introduction 207</p> <p>11.2. Bayesian Inference 208</p> <p>11.3. MCMC methods for weakly informative data 210</p> <p>11.4. Estimating a competing risk model from censored and incomplete data 219</p> <p>11.5. Conclusion 225</p> <p>11.6. Bibliography 225</p> <p><b>Chapter 12. Bayesian Updating Techniques in Structural Reliability 227</b><br /> <i>Bruno SUDRET</i></p> <p>12.1. Introduction 227</p> <p>12.2. Problem statement: link between measurements and model prediction 228</p> <p>12.3. Computing and updating the failure probability 229</p> <p>12.4. Updating a confidence interval on response quantities 233</p> <p>12.5. Bayesian updating of the model basic variables 235</p> <p>12.6. Updating the prediction of creep strains in containment vessels of nuclear power plants 238</p> <p>12.7. Conclusion 245</p> <p>12.8. Acknowledgments 246</p> <p>12.9. Bibliography 246</p> <p><b>PART 5. RELIABILITY-BASED MAINTENANCE OPTIMIZATION 249</b></p> <p><b>Introduction to Part 5 251</b></p> <p><b>Chapter 13. Maintenance Policies 253</b><br /> <i>Alaa CHATEAUNEUF, Franck SCHOEFS and Bruno CAPRA</i></p> <p>13.1. Maintenance 253</p> <p>13.2. Types of maintenance 257</p> <p>13.3. Maintenance models 262</p> <p>13.4. Conclusion 269</p> <p>13.5. Bibliography 269</p> <p><b>Chapter 14. Maintenance Cost Models 271</b><br /> <i>Alaa CHATEAUNEUF and Franck SCHOEFS</i></p> <p>14.1. Preventive maintenance 271</p> <p>14.2. Maintenance based on time 273</p> <p>14.3. Maintenance based on age 275</p> <p>14.4. Inspection models 276</p> <p>14.5. Structures with large lifetimes 283</p> <p>14.6. Criteria for choosing a maintenance policy 284</p> <p>14.7. Example of a corroded steel pipeline 285</p> <p>14.8. Conclusion 290</p> <p>14.9. Bibliography 290</p> <p><b>Chapter 15. Practical Aspects: Industrial Implementation and Limitations in a Multi-criteria Context 293</b><br /> <i>Franck SCHOEFS and Bruno CAPRA</i></p> <p>15.1. Introduction 293</p> <p>15.2. Motorway concession with high performance requirements 296</p> <p>15.3. Ageing of civil engineering structures: using field data to update predictions 303</p> <p>15.4. Conclusion 307</p> <p>15.5. Bibliography 308</p> <p><b>Conclusion 311</b><br /> <i>Julien BAROTH, Franck SCHOEFS and Denys BREYSSE</i></p> <p>List of Symbols 315</p> <p>List of Authors 323</p> <p>Index 325</p>
<p><strong>Julien Baroth</strong> is a professor at the?IUT Laboratoire of Grenoble University in?France. <p><strong>Denys Breysse</strong> is a professor?in the Department of Civil and Environmental Engineering (GCE) at Bordeaux 1 University's Institute of Mechanics and Engineering (I2M) in France. <p><strong>D. Franck Schoefs</strong> is a professor at the Institute for Research in Civil and Mechanical Engineering (GeM)?of Nantes University in France.

Diese Produkte könnten Sie auch interessieren:

Finite-Elemente-Methoden im Stahlbau
Finite-Elemente-Methoden im Stahlbau
von: Rolf Kindmann, Matthias Kraus
PDF ebook
52,99 €
Stahlbau
Stahlbau
von: Rolf Kindmann
PDF ebook
52,99 €
Bauphysik - Klima Wärme Feuchte Schall
Bauphysik - Klima Wärme Feuchte Schall
von: Peter Häupl
PDF ebook
34,99 €