Details

Condensed-Phase Molecular Spectroscopy and Photophysics


Condensed-Phase Molecular Spectroscopy and Photophysics


2. Aufl.

von: Anne Myers Kelley

150,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 27.09.2022
ISBN/EAN: 9781119829287
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Condensed-Phase Molecular Spectroscopy and Photophysics</b> <p><b>An introduction to one of the fundamental tools in chemical research—spectroscopy and photophysics in condensed-phase and extended systems</b> <p><i>Condensed-Phase Molecular Spectroscopy and Photophysics</i> comprehensively covers radiation-matter interactions for molecules in condensed phases along with metallic and semiconductor nanostructures, examining optical processes in extended systems such as metals, semiconductors, and conducting polymers and addressing the unique optical properties of nanoscale systems. <p>The text differs from others through its emphasis on the molecule-environment interactions that strongly influence spectra in condensed phases, including spectroscopy and photophysics of molecular aggregates, molecular solids, and metals and semiconductors, as well as more modern topics such as two-dimensional and single-molecule spectroscopy. <p>To aid in reader comprehension, the text includes case studies and illustrated examples. An online manual with solutions to the problems in the book is available to all readers on a companion website. <p><i>Condensed-Phase Molecular Spectroscopy and Photophysics</i> begins with an introduction to quantum mechanics that sets a solid foundation for understanding the text’s subsequent topics, including: <ul><li> Electromagnetic radiation and radiation-matter interactions, molecular vibrations and infrared spectroscopy, and electronic spectroscopy</li> <li> Photophysical processes and light scattering, nonlinear and pump-probe spectroscopies, and electron transfer processes</li> <li> Basic rotational spectroscopy and statistical mechanics, Raman scattering, 2D and single-molecule spectroscopies, and time-domain pictures of steady-state spectroscopies</li><li> Time-independent quantum mechanics, statistical mechanics, group theory, radiation-matter interactions, and system-bath interactions</li> <li> Atomic spectroscopy, photophysical processes, light scattering, nonlinear and pump-probe spectroscopies, two-dimensional spectroscopies, and metals and plasmons</li></ul> <p>Written for researchers and upper-level undergraduate and graduate courses in physical and materials chemistry, <i>Condensed-Phase Molecular Spectroscopy and Photophysics</i> is a valuable learning resource that is uniquely designed to equip readers to solve a broad array of current problems and challenges in the vast field of chemistry.
<p>Preface to Second Edition</p> <p>Preface to First Edition</p> <p>About the Companion Website</p> <p><b>I. BACKGROUND</b></p> <p><b>1. Time-Independent Quantum Mechanics</b></p> <p>1.1. states, operators, and representations</p> <p>1.2. eigenvalue problems and the Schrödinger equation</p> <p>1.3. expectation values, uncertainty relations</p> <p>1.4. particle in a box</p> <p>1.5. harmonic oscillator</p> <p>1.6. the rigid rotator and angular momentum</p> <p>1.7. the hydrogen atom</p> <p>1.8. approximation methods</p> <p>1.9. electron spin</p> <p>1.10. Born-Oppenheimer approximation</p> <p>1.11. molecular orbitals</p> <p>1.12. energies and time scales, separation of motions</p> <p><b>2. Classical Description of Electromagnetic Radiation</b></p> <p>2.1. Maxwell’s equations, plane waves, electric and magnetic fields, polarization</p> <p>2.2. Fourier transform relationships between time and frequency</p> <p>2.3. blackbody radiation</p> <p>2.4. light sources for spectroscopy</p> <p><b>3. Statistical mechanics</b></p> <p>3.1. the partition function</p> <p>3.2. the Boltzmann distribution</p> <p><b>4. Group theory </b></p> <p>4.1. qualitative aspects of molecular symmetry</p> <p>4.2. introductory group theory</p> <p>4.3. finding the symmetries of vibrational modes of a certain type</p> <p>4.4. finding the symmetries of all vibrational modes</p> <p><b>II. FUNDAMENTALS OF SPECTROSCOPY</b></p> <p><b>5. Radiation-Matter Interactions</b></p> <p>5.1. the time-dependent Schrödinger equation</p> <p>5.2. time-dependent perturbation theory</p> <p>5.3. interaction of matter with the classical radiation field</p> <p>5.4. quantum mechanical description of radiation</p> <p>5.5. interaction of matter with the quantized radiation field</p> <p><b>6. Absorption and Emission of Light by Matter</b></p> <p>6.1. Einstein coefficients for absorption and emission</p> <p>6.2. other measures of absorption strength (absorption cross-section, Beer-Lambert Law)</p> <p>6.3. radiative lifetimes</p> <p>6.4. oscillator strengths</p> <p>6.5. local fields</p> <p><b>7. System-Bath Interactions</b></p> <p>7.1. phenomenological treatment of relaxation and lineshapes</p> <p>7.2. the density matrix</p> <p>7.3. density matrix methods in spectroscopy</p> <p>7.4. exact density matrix solution for a 2-level system</p> <p><b>8. Atomic Spectroscopy</b></p> <p>8.1. electron configurations</p> <p>8.2. addition of angular momenta</p> <p>8.3. term symbols</p> <p>8.4. angular momentum coupling schemes</p> <p>8.5. spin-orbit coupling</p> <p>8.6. energies and selection rules</p> <p>8.7. Zeeman effect</p> <p>8.8. hyperfine splitting</p> <p><b>9. Rotational Spectroscopy</b></p> <p>9.1. rotational transitions of diatomic molecules</p> <p>9.2. rotational spectroscopy of polyatomic molecules—symmetric, near-symmetric, and asymmetric tops</p> <p><b>10. Molecular Vibrations and Infrared Spectroscopy</b></p> <p>10.1. vibrational and rovibrational transitions</p> <p>10.2. diatomic vibrations</p> <p>10.3. anharmonicity</p> <p>10.4. polyatomic molecular vibrations; normal modes</p> <p>10.5. vibration-rotation interactions</p> <p>10.6. symmetry considerations</p> <p>10.7. isotopic shifts</p> <p>10.8. solvent effects on vibrational spectra</p> <p><b>11. Electronic Spectroscopy</b></p> <p>11.1. electronic transitions</p> <p>11.2. spin and orbital selection rules</p> <p>11.3. vibronic structure</p> <p>11.4. vibronic coupling</p> <p>11.5. the Jahn-Teller effect</p> <p>11.6. considerations in large molecules</p> <p>11.7. solvent effects on electronic spectra</p> <p><b>12. Photophysical Processes</b></p> <p>12.1. Jablonski diagrams</p> <p>12.2. quantum yields and lifetimes</p> <p>12.3. Fermi’s Golden Rule for radiationless transitions</p> <p>12.4. internal conversion and intersystem crossing</p> <p>12.5. bright state-dark state coupling and intramolecular vibrational relaxation</p> <p>12.6. energy transfer</p> <p>12.7. polarization and molecular reorientation in solution</p> <p><b>13. Light Scattering</b></p> <p>13.1. Rayleigh scattering from particles</p> <p>13.2. classical treatment of molecular Raman and Rayleigh scattering</p> <p>13.3. quantum mechanical treatment of molecular Raman and Rayleigh scattering</p> <p>13.4. nonresonant Raman scattering</p> <p>13.5. symmetry considerations and depolarization ratios in Raman scattering</p> <p>13.6. resonance Raman spectroscopy</p> <p><b>III. ADVANCED AND SPECIALIZED TOPICS IN SPECTROSCOPY</b></p> <p><b>14. Nonlinear and Pump-Probe Spectroscopies</b></p> <p>14.1. linear and nonlinear susceptibilities</p> <p>14.2. multiphoton absorption</p> <p>14.3. pump-probe spectroscopy: transient absorption and stimulated emission</p> <p>14.4. vibrational oscillations and impulsive stimulated scattering</p> <p>14.5. second harmonic and sum frequency generation</p> <p>14.6. four-wave mixing</p> <p>14.7. photon echoes</p> <p>14.8. hyper-Raman scattering</p> <p>14.9. broadband stimulated Raman scattering</p> <p><b>15. Two-dimensional spectroscopies</b></p> <p>15.1. the basics of two-dimensional spectroscopy</p> <p>15.2. Fourier transform spectroscopy</p> <p>15.3. implementation of Fourier transform 2D spectroscopy</p> <p><b>16. Electron Transfer Processes</b></p> <p>16.1. charge-transfer transitions</p> <p>16.2. Marcus theory</p> <p>16.3. spectroscopy of anions and cations</p> <p><b>17. Collections of Molecules</b></p> <p>17.1. van der Waals molecules</p> <p>17.2. dimers and aggregates</p> <p>17.3. localized and delocalized excited states</p> <p>17.4. conjugated polymers</p> <p><b>18. Metals and Plasmons</b></p> <p>18.1. dielectric function of a metal</p> <p>18.2. plasmons</p> <p>18.3. spectroscopy of metal nanoparticles</p> <p>18.4. surface-enhanced Raman and fluorescence</p> <p><b>19. Crystals </b></p> <p>19.1. crystal lattices</p> <p>19.2. phonons in crystals</p> <p>19.3. infrared and Raman spectra</p> <p>19.4. phonons in nanocrystals</p> <p><b>20. Electronic Spectroscopy of Semiconductors</b></p> <p>20.1. band structure</p> <p>20.2. direct and indirect transitions</p> <p>20.3. excitons</p> <p>20.4. defects</p> <p>20.5. semiconductor nanocrystals</p> <p><b>21. Single-molecule spectroscopy</b></p> <p>21.1. detection of single-molecule signals</p> <p>21.2. verification of single-molecule signals</p> <p>21.3. frequency selection</p> <p>21.4. spatial selection using far-field optics</p> <p>21.5. spatial selection using near-field optics</p> <p>21.6. what is learned from studying one molecule at a time?</p> <p><b>22. Time-domain treatment of steady-state spectroscopies</b></p> <p>22.1. time correlation function approach to IR and Raman lineshapes</p> <p>22.2. time-dependent wavepacket picture of electronic spectroscopy</p> <p>22.3. time-dependent wavepacket picture of resonance Raman intensities</p> <p><b>APPENDICES</b></p> <p>A. Physical constants, unit systems and conversion factors</p> <p>B. Miscellaneous mathematics review</p> <p>C. Matrices and determinants</p> <p>D. Character tables for point groups</p> <p>E. Fourier transforms</p> <p>Index</p>
<p><b>Anne Myers Kelley, PhD</b> is a founding faculty of the Department of Chemistry and Biochemistry at the University of California, Merced. Her primary research area is resonance Raman spectroscopy, linear and nonlinear, but she has also worked in several other areas of spectroscopy including single-molecule and line-narrowed fluorescence, four-wave mixing, and time-resolved methods.
<p><b>An introduction to one of the fundamental tools in chemical research—spectroscopy and photophysics in condensed-phase and extended systems</b> <p><i>Condensed-Phase Molecular Spectroscopy and Photophysics</i> comprehensively covers radiation-matter interactions for molecules in condensed phases along with metallic and semiconductor nanostructures, examining optical processes in extended systems such as metals, semiconductors, and conducting polymers and addressing the unique optical properties of nanoscale systems. <p>The text differs from others through its emphasis on the molecule-environment interactions that strongly influence spectra in condensed phases, including spectroscopy and photophysics of molecular aggregates, molecular solids, and metals and semiconductors, as well as more modern topics such as two-dimensional and single-molecule spectroscopy. <p>To aid in reader comprehension, the text includes case studies and illustrated examples. An online manual with solutions to the problems in the book is available to all readers on a companion website. <p><i>Condensed-Phase Molecular Spectroscopy and Photophysics</i> begins with an introduction to quantum mechanics that sets a solid foundation for understanding the text’s subsequent topics, including: <ul><li> Electromagnetic radiation and radiation-matter interactions, molecular vibrations and infrared spectroscopy, and electronic spectroscopy</li> <li> Photophysical processes and light scattering, nonlinear and pump-probe spectroscopies, and electron transfer processes</li> <li> Basic rotational spectroscopy and statistical mechanics, Raman scattering, 2D and single-molecule spectroscopies, and time-domain pictures of steady-state spectroscopies</li><li> Time-independent quantum mechanics, statistical mechanics, group theory, radiation-matter interactions, and system-bath interactions</li> <li> Atomic spectroscopy, photophysical processes, light scattering, nonlinear and pump-probe spectroscopies, two-dimensional spectroscopies, and metals and plasmons</li></ul> <p>Written for researchers and upper-level undergraduate and graduate courses in physical and materials chemistry, <i>Condensed-Phase Molecular Spectroscopy and Photophysics</i> is a valuable learning resource that is uniquely designed to equip readers to solve a broad array of current problems and challenges in the vast field of chemistry.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €