Details

Condensed Matter Physics


Condensed Matter Physics


2. Aufl.

von: Michael P. Marder

111,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 17.11.2010
ISBN/EAN: 9780470949948
Sprache: englisch
Anzahl Seiten: 992

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Now updated—the leading single-volume introduction to solid state and soft condensed matter physics</b> <p>This <i>Second Edition</i> of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data.</p> <p>This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics.</p> <ul> <li> <p>Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved</p> </li> <li> <p>Incorporates many new images from experiments</p> </li> <li> <p>Provides end-of-chapter problems including computational exercises</p> </li> <li> <p>Includes more than fifty data tables and a detailed forty-page index</p> </li> <li> <p>Offers a solutions manual for instructors</p> </li> </ul> <p>Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.</p>
<p>Preface xix</p> <p>References xxii</p> <p><b>I ATOMIC STRUCTURE 1</b></p> <p><b>1 The Idea of Crystals 3</b></p> <p>1.1 Introduction 3</p> <p>1.1.1 Why are Solids Crystalline? 4</p> <p>1.2 Two-Dimensional Lattices 6</p> <p>1.2.1 Bravais Lattices 6</p> <p>1.2.2 Enumeration of Two-Dimensional Bravais Lattices 7</p> <p>1.2.3 Lattices with Bases 9</p> <p>1.2.4 Primitive Cells 9</p> <p>1.2.5 Wigner-Seitz Cells 10</p> <p>1.3 Symmetries 11</p> <p>1.3.1 The Space Group 11</p> <p>1.3.2 Translation and Point Groups 12</p> <p>1.3.3 Role of Symmetry 14</p> <p>Problems 14</p> <p>References 16</p> <p><b>2 Three-Dimensional Lattices 17</b></p> <p>2.1 Introduction 17</p> <p>2.2 Monatomic Lattices 20</p> <p>2.2.1 The Simple Cubic Lattice 20</p> <p>2.2.2 The Face-Centered Cubic Lattice 20</p> <p>2.2.3 The Body-Centered Cubic Lattice 22</p> <p>2.2.4 The Hexagonal Lattice 23</p> <p>2.2.5 The Hexagonal Close-Packed Lattice 23</p> <p>2.2.6 The Diamond Lattice 24</p> <p>2.3 Compounds 24</p> <p>2.3.1 Rocksalt—Sodium Chloride 25</p> <p>2.3.2 Cesium Chloride 26</p> <p>2.3.3 Fluorite—Calcium Fluoride 26</p> <p>2.3.4 Zincblende—Zinc Sulfide 27</p> <p>2.3.5 Wurtzite—Zinc Oxide 28</p> <p>2.3.6 Perovskite—Calcium Titanate 28</p> <p>2.4 Classification of Lattices by Symmetry 30</p> <p>2.4.1 Fourteen Bravais Lattices and Seven Crystal Systems 30</p> <p>2.5 Symmetries of Lattices with Bases 33</p> <p>2.5.1 Thirty-Two Crystallographic Point Groups 33</p> <p>2.5.2 Two Hundred Thirty Distinct Lattices 36</p> <p>2.6 Some Macroscopic Implications of Microscopic Symmetries 37</p> <p>2.6.1 Pyroelectricity 37</p> <p>2.6.2 Piezoelectricity 37</p> <p>2.6.3 Optical Activity 38</p> <p>Problems 38</p> <p>References 41</p> <p><b>3 Scattering and Structures 43</b></p> <p>3.1 Introduction 43</p> <p>3.2 Theory of Scattering from Crystals 44</p> <p>3.2.1 Special Conditions for Scattering 44</p> <p>3.2.2 Elastic Scattering from Single Atom 46</p> <p>3.2.3 Wave Scattering from Many Atoms 47</p> <p>3.2.4 Lattice Sums 48</p> <p>3.2.5 Reciprocal Lattice 49</p> <p>3.2.6 Miller Indices 51</p> <p>3.2.7 Scattering from a Lattice with a Basis 53</p> <p>3.3 Experimental Methods 54</p> <p>3.3.1 Laue Method 56</p> <p>3.3.2 Rotating Crystal Method 57</p> <p>3.3.3 Powder Method 59</p> <p>3.4 Further Features of Scattering Experiments 60</p> <p>3.4.1 Interaction of X-Rays with Matter 60</p> <p>3.4.2 Production of X-Rays 61</p> <p>3.4.3 Neutrons 63</p> <p>3.4.4 Electrons 63</p> <p>3.4.5 Deciphering Complex Structures 64</p> <p>3.4.6 Accuracy of Structure Determinations 65</p> <p>3.5 Correlation Functions 66</p> <p>3.5.1 Why Bragg Peaks Survive Atomic Motions 66</p> <p>3.5.2 Extended X-Ray Absorption Fine Structure (EXAFS) 67</p> <p>3.5.3 Dynamic Light Scattering 68</p> <p>3.5.4 Application to Dilute Solutions 70</p> <p>Problems 71</p> <p>References 73</p> <p><b>4 Surfaces and Interfaces 77</b></p> <p>4.1 Introduction 77</p> <p>4.2 Geometry of Interfaces 77</p> <p>4.2.1 Coherent and Commensurate Interfaces 78</p> <p>4.2.2 Stacking Period and Interplanar Spacing 79</p> <p>4.2.3 Other Topics in Surface Structure 81</p> <p>4.3 Experimental Observation and Creation of Surfaces 82</p> <p>4.3.1 Low-Energy Electron Diffraction (LEED) 82</p> <p>4.3.2 Reflection High-Energy Electron Diffraction (RHEED) 84</p> <p>4.3.3 Molecular Beam Epitaxy (MBE) 84</p> <p>4.3.4 Field Ion Microscopy (FIM) 85</p> <p>4.3.5 Scanning Tunneling Microscopy (STM) 86</p> <p>4.3.6 Atomic Force Microscopy (AFM) 91</p> <p>4.3.7 High Resolution Electron Microscopy (HREM) 91</p> <p>Problems 91</p> <p>References 94</p> <p><b>5 Beyond Crystals 97</b></p> <p>5.1 Introduction 97</p> <p>5.2 Diffusion and Random Variables 97</p> <p>5.2.1 Brownian Motion and the Diffusion Equation 97</p> <p>5.2.2 Diffusion 98</p> <p>5.2.3 Derivation from Master Equation 99</p> <p>5.2.4 Connection Between Diffusion and Random Walks 100</p> <p>5.3 Alloys 101</p> <p>5.3.1 Equilibrium Structures 101</p> <p>5.3.2 Phase Diagrams 102</p> <p>5.3.3 Superlattices 103</p> <p>5.3.4 Phase Separation 104</p> <p>5.3.5 Nonequilibrium Structures in Alloys 106</p> <p>5.3.6 Dynamics of Phase Separation 108</p> <p>5.4 Simulations 110</p> <p>5.4.1 Monte Carlo 110</p> <p>5.4.2 Molecular Dynamics 112</p> <p>5.5 Liquids 113</p> <p>5.5.1 Order Parameters and Long-and Short-Range Order 113</p> <p>5.5.2 Packing Spheres 114</p> <p>5.6 Glasses 116</p> <p>5.7 Liquid Crystals 120</p> <p>5.7.1 Nematics, Cholesterics, and Smectics 120</p> <p>5.7.2 Liquid Crystal Order Parameter 122</p> <p>5.8 Polymers 123</p> <p>5.8.1 Ideal Radius of Gyration 123</p> <p>5.9 Colloids and Diffusing-Wave Scattering 128</p> <p>5.9.1 Colloids 128</p> <p>5.9.2 Diffusing-Wave Spectroscopy 128</p> <p>5.10 Quasicrystals 133</p> <p>5.10.1 One-Dimensional Quasicrystal 134</p> <p>5.10.2 Two-Dimensional Quasicrystals—Penrose Tiles 139</p> <p>5.10.3 Experimental Observations 141</p> <p>5.11 Fullerenes and nanotubes 143</p> <p>Problems 143</p> <p>References 149</p> <p><b>II ELECTRONIC STRUCTURE 153</b></p> <p><b>6 The Free Fermi Gas and Single Electron Model 155</b></p> <p>6.1 Introduction 155</p> <p>6.2 Starting Hamiltonian 157</p> <p>6.3 Densities of States 159</p> <p>6.3.1 Definition of Density of States D 160</p> <p>6.3.2 Results for Free Electrons 161</p> <p>6.4 Statistical Mechanics of Noninteracting Electrons 163</p> <p>6.5 Sommerfeld Expansion 166</p> <p>6.5.1 Specific Heat of Noninteracting Electrons at Low Temper-atures 169</p> <p>Problems 171</p> <p>References 173</p> <p><b>7 Non-Interacting Electrons in a Periodic Potential 175</b></p> <p>7.1 Introduction 175</p> <p>7.2 Translational Symmetry—Bloch’s Theorem 175</p> <p>7.2.1 One Dimension 176</p> <p>7.2.2 Bloch’s Theorem in Three Dimensions 180</p> <p>7.2.3 Formal Demonstration of Bloch’s Theorem 182</p> <p>7.2.4 Additional Implications of Bloch’s Theorem 183</p> <p>7.2.5 Van Hove Singularities 186</p> <p>7.2.6 Kronig-Penney Model 189</p> <p>7.3 Rotational Symmetry—Group Representations 192</p> <p>7.3.1 Classes and Characters 198</p> <p>7.3.2 Consequences of point group symmetries for Schrödinger’s equation 201</p> <p>Problems 203</p> <p>References 206</p> <p><b>8 Nearly Free and Tightly Bound Electrons 207</b></p> <p>8.1 Introduction 207</p> <p>8.2 Nearly Free Electrons 208</p> <p>8.2.1 Degenerate Perturbation Theory 210</p> <p>8.3 Brillouin Zones 211</p> <p>8.3.1 Nearly Free Electron Fermi Surfaces 214</p> <p>8.4 Tightly Bound Electrons 219</p> <p>8.4.1 Linear Combinations of Atomic Orbitals 219</p> <p>8.4.2 Wannier Functions 222</p> <p>8.4.3 Geometric Phases 223</p> <p>8.4.4 Tight Binding Model 226</p> <p>Problems 227</p> <p>References 232</p> <p><b>9 Electron-Electron Interactions 233</b></p> <p>9.1 Introduction 233</p> <p>9.2 Hartree and Hartree-Fock Equations 234</p> <p>9.2.1 Variational Principle 235</p> <p>9.2.2 Hartree-Fock Equations 235</p> <p>9.2.3 Numerical Implementation 239</p> <p>9.2.4 Hartree-Fock Equations for Jellium 242</p> <p>9.3 Density Functional Theory 244</p> <p>9.3.1 Thomas-Fermi Theory 247</p> <p>9.3.2 Stability of Matter 249</p> <p>9.4 Quantum Monte Carlo 252</p> <p>9.4.1 Integrals by Monte Carlo 252</p> <p>9.4.2 Quantum Monte Carlo Methods 253</p> <p>9.4.3 Physical Results 254</p> <p>9.5 Kohn-Sham Equations 255</p> <p>Problems 258</p> <p>References 262</p> <p><b>10 Realistic Calculations in Solids 265</b></p> <p>10.1 Introduction 265</p> <p>10.2 Numerical Methods 266</p> <p>10.2.1 Pseudopotentials and Orthogonalized Planes Waves (OPW) 266</p> <p>10.2.2 Linear Combination of Atomic Orbitals (LCAO) 271</p> <p>10.2.3 Plane Waves 271</p> <p>10.2.4 Linear Augmented Plane Waves (LAPW) 274</p> <p>10.3 Definition of Metals, Insulators, and Semiconductors 277</p> <p>10.4 Brief Survey of the Periodic Table 279</p> <p>10.4.1 Nearly Free Electron Metals 280</p> <p>10.4.2 Noble Gases 282</p> <p>10.4.3 Semiconductors 283</p> <p>10.4.4 Transition Metals 284</p> <p>10.4.5 Rare Earths 286</p> <p>Problems 286</p> <p>References 291</p> <p><b>III MECHANICAL PROPERTIES 293</b></p> <p><b>11 Cohesion of Solids 295</b></p> <p>11.1 Introduction 295</p> <p>11.1.1 Radii of Atoms 297</p> <p>11.2 Noble Gases 299</p> <p>11.3 Tonic Crystals 301</p> <p>11.3.1 EwaldSums 302</p> <p>11.4 Metals 305</p> <p>11.4.1 Use of Pseudopotentials 307</p> <p>11.5 Band Structure Energy 308</p> <p>11.5.1 Peierls Distortion 309</p> <p>11.5.2 Structural Phase Transitions 311</p> <p>11.6 Hydrogen-Bonded Solids 312</p> <p>11.7 Cohesive Energy from Band Calculations 312</p> <p>11.8 Classical Potentials 313</p> <p>Problems 315</p> <p>References 318</p> <p><b>12 Elasticity 321</b></p> <p>12.1 Introduction 321</p> <p>12.2 Nonlinear Elasticity 321</p> <p>12.2.1 Rubber Elasticity 322</p> <p>12.2.2 Larger Extensions of Rubber 324</p> <p>12.3 Linear Elasticity 325</p> <p>12.3.1 Solids of Cubic Symmetry 326</p> <p>12.3.2 Isotropic Solids 328</p> <p>12.4 Other Constitutive Laws 332</p> <p>12.4.1 Liquid Crystals 332</p> <p>12.4.2 Granular Materials 335</p> <p>Problems 336</p> <p>References 339</p> <p><b>13 Phonons 341</b></p> <p>13.1 Introduction 341</p> <p>13.2 Vibrations of a Classical Lattice 342</p> <p>13.2.1 Classical Vibrations in One Dimension 342</p> <p>13.2.2 Classical Vibrations in Three Dimensions 346</p> <p>13.2.3 Normal Modes 347</p> <p>13.2.4 Lattice with a Basis 348</p> <p>13.3 Vibrations of a Quantum-Mechanical Lattice 351</p> <p>13.3.1 Phonon Specific Heat 354</p> <p>13.3.2 Einstein and Debye Models 358</p> <p>13.3.3 Thermal Expansion 361</p> <p>13.4 Inelastic Scattering from Phonons 363</p> <p>13.4.1 Neutron Scattering 364</p> <p>13.4.2 Formal Theory of Neutron Scattering 366</p> <p>13.4.3 Averaging Exponentials 370</p> <p>13.4.4 Evaluation of Structure Factor 372</p> <p>13.4.5 Kohn Anomalies 373</p> <p>13.5 The Mössbauer Effect 374</p> <p>Problems 376</p> <p>References 377</p> <p><b>14 Dislocations and Cracks 379</b></p> <p>14.1 Introduction 379</p> <p>14.2 Dislocations 381</p> <p>14.2.1 Experimental Observations of Dislocations 383</p> <p>14.2.2 Force to Move a Dislocation 386</p> <p>14.2.3 One-Dimensional Dislocations: Frehkel-Kontorova Model 386</p> <p>14.3 Two-Dimensional Dislocations and Hexatic Phases 389</p> <p>14.3.1 Impossibility of Crystalline Order in Two Dimensions 389</p> <p>14.3.2 Orientational Order 391</p> <p>14.3.3 Kosterlitz-Thouless-Berezinskii Transition 392</p> <p>14.4 Cracks 399</p> <p>14.4.1 Fracture of a Strip 399</p> <p>14.4.2 Stresses Around an Elliptical Hole 402</p> <p>14.4.3 Stress Intensity Factor 404</p> <p>14.4.4 Atomic Aspects of Fracture 405</p> <p>Problems 406</p> <p>References 409</p> <p><b>15 Fluid Mechanics 413</b></p> <p>15.1 Introduction 413</p> <p>15.2 Newtonian Fluids 413</p> <p>15.2.1 Euler’s Equation 413</p> <p>15.2.2 Navier-Stokes Equation 415</p> <p>15.3 Polymeric Solutions 416</p> <p>15.4 Plasticity 423</p> <p>15.5 Superfluid <sup>4</sup>He 427</p> <p>15.5.1 Two-Fluid Hydrodynamics 430</p> <p>15.5.2 Second Sound 431</p> <p>15.5.3 Direct Observation of Two Fluids 433</p> <p>15.5.4 Origin of Superfluidity 434</p> <p>15.5.5 Lagrangian Theory of Wave Function 439</p> <p>15.5.6 Superfluid <sup>3</sup>He 442</p> <p>Problems 443</p> <p>References 447</p> <p><b>IV ELECTRON TRANSPORT 451</b></p> <p><b>16 Dynamics of Bloch Electrons 453</b></p> <p>16.1 Introduction 453</p> <p>16.1.1 Drude Model 453</p> <p>16.2 Semiclassical Electron Dynamics 455</p> <p>16.2.1 Bloch Oscillations 456</p> <p>16.2.2 k-p̂ Method 457</p> <p>16.2.3 Effective Mass 459</p> <p>16.3 Noninteracting Electrons in an Electric Field 459</p> <p>16.3.1 Zener Tunneling 462</p> <p>16.4 Semiclassical Equations from Wave Packets 465</p> <p>16.4.1 Formal Dynamics of Wave Packets 465</p> <p>16.4.2 Dynamics from Lagrangian 467</p> <p>16.5 Quantizing Semiclassical Dynamics 470</p> <p>16.5.1 Wannier-Stark Ladders 472</p> <p>16.5.2 de Haas-van Alphen Effect 473</p> <p>16.5.3 Experimental Measurements of Fermi Surfaces 474</p> <p>Problems 477</p> <p>References 480</p> <p><b>17 Transport Phenomena and Fermi Liquid Theory 4S3</b></p> <p>17.1 Introduction 483</p> <p>17.2 Boltzmann Equation 483</p> <p>17.2.1 Boltzmann Equation 485</p> <p>17.2.2 Including Anomalous Velocity 486</p> <p>17.2.3 Relaxation Time Approximation 487</p> <p>17.2.4 Relation to Rate of Production of Entropy 489</p> <p>17.3 Transport Symmetries 490</p> <p>17.3.1 Onsager Relations 491</p> <p>17.4 Thermoelectric Phenomena 492</p> <p>17.4.1 Electrical Current 492</p> <p>17.4.2 Effective Mass and Holes 494</p> <p>17.4.3 Mixed Thermal and Electrical Gradients 495</p> <p>17.4.4 Wiedemann-Franz Law 496</p> <p>17.4.5 Thermopower—Seebeck Effect 497</p> <p>17.4.6 Peltier Effect 498</p> <p>17.4.7 Thomson Effect 498</p> <p>17.4.8 Hall Effect 500</p> <p>17.4.9 Magnetoresistance 502</p> <p>17.4.10 Anomalous Hall Effect 503</p> <p>17.5 Fermi Liquid Theory 504</p> <p>17.5.1 Basic Ideas 504</p> <p>17.5.2 Statistical Mechanics of Quasi-Particles 506</p> <p>17.5.3 Effective Mass 508</p> <p>17.5.4 Specific Heat 510</p> <p>17.5.5 Fermi Liquid Parameters 511</p> <p>17.5.6 Traveling Waves 512</p> <p>17.5.7 Comparison with Experiment in <sup>3</sup>He 515</p> <p>Problems 516</p> <p>References 520</p> <p><b>18 Microscopic Theories of Conduction 523</b></p> <p>18.1 Introduction 523</p> <p>18.2 Weak Scattering Theory of Conductivity 523</p> <p>18.2.1 Genera] Formula for Relaxation Time 523</p> <p>18.2.2 Matthiessen’s Rule 528</p> <p>18.2.3 Fluctuations 529</p> <p>18.3 Metal-Insulator Transitions in Disordered Solids 530</p> <p>18.3.1 Impurities and Disorder 530</p> <p>18.3.2 Non-Compensated Impurities and the Mott Transition . . 531</p> <p>18.4 Compensated Impurity Scattering and Green’s Functions 534</p> <p>18.4.1 Tight-Binding Models of Disordered Solids 534</p> <p>18.4.2 Green’s Functions 536</p> <p>18.4.3 Single Impurity 539</p> <p>18.4.4 Coherent Potential Approximation 541</p> <p>18.5 Localization 542</p> <p>18.5.1 Exact Results in One Dimension 544</p> <p>18.5.2 Scaling Theory of Localization 547</p> <p>18.5.3 Comparison with Experiment 551</p> <p>18.6 Luttinger Liquids 553</p> <p>18.6.1 Density of States 557</p> <p>Problems 560</p> <p>References 564</p> <p><b>19 Electronics 567</b></p> <p>19.1 Introduction 567</p> <p>19.2 Metal Interfaces 568</p> <p>19.2.1 Work Functions 569</p> <p>19.2.2 Schottky Barrier 570</p> <p>19.2.3 Contact Potentials 572</p> <p>19.3 Semiconductors 574</p> <p>19.3.1 Pure Semiconductors 575</p> <p>19.3.2 Semiconductor in Equilibrium 578</p> <p>19.3.3 Intrinsic Semiconductor 580</p> <p>19.3.4 Extrinsic Semiconductor 581</p> <p>19.4 Diodes and Transistors 583</p> <p>19.4.1 Surface States 586</p> <p>19.4.2 Semiconductor Junctions 587</p> <p>19.4.3 Boltzmann Equation for Semiconductors 590</p> <p>19.4.4 Detailed Theory of Rectification 592</p> <p>19.4.5 Transistor 595</p> <p>19.5 Inversion Layers 598</p> <p>19.5.1 Heterostructures 598</p> <p>f 9,5.2 Quantum Point Contact 600</p> <p>19.5.3 Quantum Dot 603</p> <p>Problems 606</p> <p>References 607</p> <p><b>V OPTICAL PROPERTIES 609</b></p> <p><b>20 Phenomenological Theory 611</b></p> <p>20.1 Introduction 611</p> <p>20.2 Maxwell’s Equations 613</p> <p>20.2.1 Traveling Waves 615</p> <p>20.2.2 Mechanical Oscillators as Dielectric Function 616</p> <p>20.3 Kramers-Kronig Relations 618</p> <p>20.3.1 Application to Optical Experiments 620</p> <p>20.4 The Kubo-Greenwood Formula 623</p> <p>20.4.1 Bom Approximation 623</p> <p>20.4.2 Susceptibility 627</p> <p>20.4.3 Many-Body Green Functions 628</p> <p>Problems 628</p> <p>References 631</p> <p><b>21 Optical Properties of Semiconductors 633</b></p> <p>21.1 Introduction 633</p> <p>21.2 Cyclotron Resonance 633</p> <p>21.2.1 Electron Energy Surfaces 636</p> <p>21.3 Semiconductor Band Gaps 638</p> <p>21.3.1 Direct Transitions 638</p> <p>21.3.2 Indirect Transitions 639</p> <p>21.4 Excitons 641</p> <p>21.4.1 Mott-Wannier Excitons 641</p> <p>21.4.2 Frenkel Excitons 644</p> <p>21.4.3 Electron-Hole Liquid 645</p> <p>21.5 Optoelectronics 645</p> <p>21.5.1 SolarCells 645</p> <p>21.5.2 Lasers 646</p> <p>Problems 652</p> <p>References 656</p> <p><b>22 Optical Properties of Insulators 659</b></p> <p>22.1 Introduction 659</p> <p>22.2 Polarization 659</p> <p>22.2.1 Ferroelectrics 659</p> <p>22.2.2 Berry phase theory of polarization 661</p> <p>22.2.3 Clausius-Mossotti Relation 661</p> <p>22.3 Optical Modes in Ionic Crystals 664</p> <p>22.3.1 Polaritons 666</p> <p>22.3.2 Polarons 669</p> <p>22.3.3 Experimental Observations of Polarons 674</p> <p>22.4 Point Defects and Color Centers 674</p> <p>22.4.1 Vacancies 675</p> <p>22.4.2 F Centers 676</p> <p>22.4.3 Electron Spin Resonance and Electron Nuclear Double Res-onance 677</p> <p>22.4.4 Other Centers 679</p> <p>22.4.5 Franck-Condon Effect 679</p> <p>22.4.6 Urbach Tails 683</p> <p>Problems 684</p> <p>References 686</p> <p><b>23 Optical Properties of Metals and Inelastic Scattering 689</b></p> <p>23.1 Introduction 689</p> <p>23.1.1 Plasma Frequency 689</p> <p>23.2 Metals at Low Frequencies 692</p> <p>23.2.1 Anomalous Skin Effect 694</p> <p>23.3 Plasmons 695</p> <p>23.3.1 Experimental Observation of Plasmons 696</p> <p>23.4 Interband Transitions 698</p> <p>23.5 Brillouin and Raman Scattering 701</p> <p>23.5.1 Brillouin Scattering 702</p> <p>23.5.2 Raman Scattering 703</p> <p>23.5.3 Inelastic X-Ray Scattering 703</p> <p>23.6 Photoemission 703</p> <p>23.6.1 Measurement of Work Functions 703</p> <p>23.6.2 Angle-Resolved Photoemission 706</p> <p>23.6.3 Core-Level Photoemission and Charge-Transfer Insulators 710</p> <p>Problems 716</p> <p>References 719</p> <p><b>VI MAGNETISM 721</b></p> <p><b>24 Classical Theories of Magnetism and Ordering 723</b></p> <p>24.1 Introduction 723</p> <p>24.2 Three Views of Magnetism 723</p> <p>24.2.1 From Magnetic Moments 723</p> <p>24.2.2 From Conductivity 724</p> <p>24.2.3 From a Free Energy 725</p> <p>24.3 Magnetic Dipole Moments 727</p> <p>24.3.1 Spontaneous Magnetization of Ferromagnets 730</p> <p>24.3.2 Ferrimagnets 731</p> <p>24.3.3 Antiferromagnets 733</p> <p>24.4 Mean Field Theory and the Ising Model 734</p> <p>24.4.1 Domains 736</p> <p>24.4.2 Hysteresis 739</p> <p>24.5 Other Order-Disorder Transitions 740</p> <p>24.5.1 Alloy Superlattices 740</p> <p>24.5.2 Spin Glasses 743</p> <p>24.6 Critical Phenomena 743</p> <p>24.6.1 Landau Free Energy 744</p> <p>24.6.2 Scaling Theory 750</p> <p>Problems 754</p> <p>References 757</p> <p><b>25 Magnetism of Ions and Electrons 759</b></p> <p>25.1 Introduction 759</p> <p>25.2 Atomic Magnetism 761</p> <p>25.2.1 Hund’s Rules 762</p> <p>25.2.2 Curie’s Law 766</p> <p>25.3 Magnetism of the Free-El ectron Gas 769</p> <p>25.3.1 Pauli Paramagnetism 770</p> <p>25.3.2 Landau Diamagnetism 771</p> <p>25.3.3 Aharonov-Bohm Effect 774</p> <p>25.4 Tightly Bound Electrons in Magnetic Fields Ill</p> <p>25.5 Quantum Hall Effect 780</p> <p>25.5.1 Integer Quantum Hall Effect 780</p> <p>25.5.2 Fractional Quantum Hall Effect 785</p> <p>Problems 791</p> <p>References 794</p> <p><b>26 Quantum Mechanics of Interacting Magnetic Moments 797</b></p> <p>26.1 Introduction 797</p> <p>26.2 Origin of Ferromagnetism 797</p> <p>26.2.1 Heitler-London Calculation 797</p> <p>26.2.2 Spin Hamiltonian 802</p> <p>26.3 Heisenberg Model 802</p> <p>26.3.1 Indirect Exchange and Superexchange 804</p> <p>26.3.2 Ground State 805</p> <p>26.3.3 Spin Waves 805</p> <p>26.3.4 Spin Waves in Antiferromagnets 808</p> <p>26.3.5 Comparison with Experiment 811</p> <p>26.4 Ferromagnetism in Transition Metals 811</p> <p>26.4.1 Stoner Model 811</p> <p>26.4.2 Calculations Within Band Theory 813</p> <p>26.5 Spintronics 815</p> <p>26.5.1 Giant Magnetoresistance 815</p> <p>26.5.2 Spin Torque 816</p> <p>26.6 Kondo Effect 819</p> <p>26.6.1 Scaling Theory 824</p> <p>26.7 Hubbard Model 828</p> <p>26.7.1 Mean-Field Solution 829</p> <p>Problems 832</p> <p>References 835</p> <p><b>27 Superconductivity 839</b></p> <p>27.1 Introduction 839</p> <p>27.2 Phenomenology of Superconductivity 840</p> <p>27.2.1 Phenomenological Free Energy 841</p> <p>27.2.2 Thermodynamics of Superconductors 843</p> <p>27.2.3 Landau-Ginzburg Free Energy 844</p> <p>27.2.4 Type I and Type II Superconductors 845</p> <p>27.2.5 Flux Quantization 850</p> <p>27.2.6 The Josephson Effect 852</p> <p>27.2.7 Circuits with Josephson Junction Elements 854</p> <p>27.2.8 SQUIDS 855</p> <p>27.2.9 Origin of Josephson’s Equations 856</p> <p>27.3 Microscopic Theory of Superconductivity 858</p> <p>27.3.1 Electron-Ion Interaction 859</p> <p>27.3.2 Instability of the Normal State: Cooper Problem 863</p> <p>27.3.3 Self-Consistent Ground State 865</p> <p>27.3.4 Thermodynamics of Superconductors 869</p> <p>27.3.5 Superconductor in External Magnetic Field 873</p> <p>27.3.6 Derivation of Meissner Effect 876</p> <p>27.3.7 Comparison with Experiment 879</p> <p>27.3.8 High-Temperature Superconductors 881</p> <p>Problems 888</p> <p>References 890</p> <p><b>APPENDICES 895</b></p> <p><b>A Lattice Sums and Fourier Transforms 897</b></p> <p>A. l One-Dimensional Sum 897</p> <p>A. 2 Area Under Peaks 897</p> <p>A. 3 Three-Dimensional Sum 898</p> <p>A. 4 Discrete Case 899</p> <p>A.5 Convolution 900</p> <p>A. 6 Using the Fast Fourier Transform 900</p> <p>References 902</p> <p><b>B Variational Techniques 903</b></p> <p>B. l Functionals and Functional Derivatives 903</p> <p>B. 2 Time-Independent Schrodinger Equation 904</p> <p>B. 3 Time-Dependent Schrodinger Equation 905</p> <p>B. 4 Method of Steepest Descent 906</p> <p>References 906</p> <p><b>C Second Quantization 907</b></p> <p>C. l Rules 907</p> <p>C. 1.1 States 907</p> <p>C. l.2 Operators 907</p> <p>C. l.3 Hamiltonians 908</p> <p>C.2 Derivations 909</p> <p>C.2.1 Bosons 909</p> <p>C.2.2 Fermions 910</p> <p>Index</p> <p> </p>
"The text also gives more leisurely attention to the topics of primary interest to most students: electron and phonon bond structures." (Booknews, 1 February 2011) <p>"In this text intended for a one-year graduate course, Marder (physics, U. of Texas, Austin) comments in the preface that this second edition incorporates the many thousands of updates and corrections suggested by readers of the first edition published in 1999, and he even gives credit to several individuals who found the most errors. He also points out that "the entire discipline of condensed matter is roughly ten percent older than when the first edition was written, so adding some new topics seemed appropriate." These new topics - chosen because of increasing recognition of their importance - include graphene and nanotubes, Berry phases, Luttinger liquids, diffusion, dynamic light scattering, and spin torques. The text also gives more leisurely attention to the topics of primary interest to most students: electron and phonon bond structures." (<i>Reference and Research Book News</i>, February 2011) </p>
<b>Michael P. Marder</b>, PhD, is the Associate Dean for Science and Mathematics Education and Professor in the Department of Physics at the University of Texas at Austin, where he has been involved in a wide variety of theoretical, numerical, and experimental investigations. He specializes in the mechanics of solids, particularly the fracture of brittle materials. Dr. Marder has carried out experimental studies of crack instabilities in plastics and rubber, and constructed analytical theories for how cracks move in crystals. Recently he has studied the way that membranes ripple due to changes in their geometry, and properties of frictional sliding at small length scales.
<b>Now updated—the leading single-volume introduction to solid state and soft condensed matter physics</b> <p>This <i>Second Edition</i> of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data.</p> <p>This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics.</p> <ul> <li> <p>Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved</p> </li> <li> <p>Incorporates many new images from experiments</p> </li> <li> <p>Provides end-of-chapter problems including computational exercises</p> </li> <li> <p>Includes more than fifty data tables and a detailed forty-page index</p> </li> <li> <p>Offers a solutions manual for instructors</p> </li> </ul> <p>Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.</p>

Diese Produkte könnten Sie auch interessieren:

Systemtheoretische Grundlagen optoelektronischer Sensoren
Systemtheoretische Grundlagen optoelektronischer Sensoren
von: Herbert Jahn, Ralf Reulke
PDF ebook
79,99 €
Superconductivity
Superconductivity
von: Kristian Fossheim, Asle Sudboe
PDF ebook
136,99 €
Solid-State Physics for Electronics
Solid-State Physics for Electronics
von: Andre Moliton
PDF ebook
215,99 €