Details

Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning


Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning


IEEE Press Series on Networks and Service Management 1. Aufl.

von: Nur Zincir-Heywood, Marco Mellia, Yixin Diao

114,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.08.2021
ISBN/EAN: 9781119675440
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<B>COMMUNICATION NETWORKS AND SERVICE MANAGEMENT IN THE ERA OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING</b> <p><b>Discover the impact that new technologies are having on communication systems with this up-to-date and one-stop resource</B> <p><i>Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning delivers</i> a comprehensive overview of the impact of artificial intelligence (AI) and machine learning (ML) on service and network management. Beginning with a fulsome description of ML and AI, the book moves on to discuss management models, architectures, and frameworks. The authors also explore how AI and ML can be used in service management functions like the generation of workload profiles, service provisioning, and more. <p>The book includes a handpicked selection of applications and case studies, as well as a treatment of emerging technologies the authors predict could have a significant impact on network and service management in the future. Statistical analysis and data mining are also discussed, particularly with respect to how they allow for an improvement of the management and security of IT systems and networks. Readers will also enjoy topics like: <UL><LI>A thorough introduction to network and service management, machine learning, and artificial intelligence</LI> <LI>An exploration of artificial intelligence and machine learning for management models, including autonomic management, policy-based management, intent based ­management, and network virtualization-based management</LI> <LI>Discussions of AI and ML for architectures and frameworks, including cloud ­systems, software defined networks, 5G and 6G networks, and Edge/Fog networks</LI> <LI>An examination of AI and ML for service management, including the automatic ­generation of workload profiles using unsupervised learning</LI></ul> <P>Perfect for information and communications technology educators, <I>Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning</I> will also earn a place in the libraries of engineers and professionals who seek a structured reference on how the emergence of artificial intelligence and machine learning techniques is affecting service and network management.
<p>List of Contributors xv</p> <p>Preface xxi</p> <p>Acknowledgments xxv</p> <p>Acronyms xxvii</p> <p><b>Part I Introduction </b><b>1</b></p> <p><b>1 Overview of Network and Service Management </b><b>3<br /></b><i>Marco Mellia, Nur Zincir-Heywood, and Yixin Diao</i></p> <p>1.1 Network and Service Management at Large 3</p> <p>1.2 Data Collection and Monitoring Protocols 5</p> <p>1.2.1 SNMP Protocol Family 5</p> <p>1.2.2 Syslog Protocol 5</p> <p>1.2.3 IP Flow Information eXport (IPFIX) 6</p> <p>1.2.4 IP Performance Metrics (IPPM) 7</p> <p>1.2.5 Routing Protocols and Monitoring Platforms 8</p> <p>1.3 Network Configuration Protocol 9</p> <p>1.3.1 Standard Configuration Protocols and Approaches 9</p> <p>1.3.2 Proprietary Configuration Protocols 10</p> <p>1.3.3 Integrated Platforms for Network Monitoring 10</p> <p>1.4 Novel Solutions and Scenarios 12</p> <p>1.4.1 Software-Defined Networking – SDN 12</p> <p>1.4.2 Network Functions Virtualization –NFV 14</p> <p>Bibliography 15</p> <p><b>2 Overview of Artificial Intelligence and Machine Learning </b><b>19<br /></b><i>Nur Zincir-Heywood, Marco Mellia, and Yixin Diao</i></p> <p>2.1 Overview 19</p> <p>2.2 Learning Algorithms 20</p> <p>2.2.1 Supervised Learning 21</p> <p>2.2.2 Unsupervised Learning 22</p> <p>2.2.3 Reinforcement Learning 23</p> <p>2.3 Learning for Network and Service Management 24</p> <p>Bibliography 26</p> <p><b>Part II Management Models and Frameworks </b><b>33</b></p> <p><b>3 Managing Virtualized Networks and Services with Machine Learning </b><b>35<br /></b><i>Raouf Boutaba, Nashid Shahriar, Mohammad A. Salahuddin, and Noura Limam</i></p> <p>3.1 Introduction 35</p> <p>3.2 Technology Overview 37</p> <p>3.2.1 Virtualization of Network Functions 38</p> <p>3.2.1.1 Resource Partitioning 38</p> <p>3.2.1.2 Virtualized Network Functions 40</p> <p>3.2.2 Link Virtualization 41</p> <p>3.2.2.1 Physical Layer Partitioning 41</p> <p>3.2.2.2 Virtualization at Higher Layers 42</p> <p>3.2.3 Network Virtualization 42</p> <p>3.2.4 Network Slicing 43</p> <p>3.2.5 Management and Orchestration 44</p> <p>3.3 State-of-the-Art 46</p> <p>3.3.1 Network Virtualization 46</p> <p>3.3.2 Network Functions Virtualization 49</p> <p>3.3.2.1 Placement 49</p> <p>3.3.2.2 Scaling 52</p> <p>3.3.3 Network Slicing 55</p> <p>3.3.3.1 Admission Control 55</p> <p>3.3.3.2 Resource Allocation 56</p> <p>3.4 Conclusion and Future Direction 59</p> <p>3.4.1 Intelligent Monitoring 60</p> <p>3.4.2 Seamless Operation and Maintenance 60</p> <p>3.4.3 Dynamic Slice Orchestration 61</p> <p>3.4.4 Automated Failure Management 61</p> <p>3.4.5 Adaptation and Consolidation of Resources 61</p> <p>3.4.6 Sensitivity to Heterogeneous Hardware 62</p> <p>3.4.7 Securing Machine Learning 62</p> <p>Bibliography 63</p> <p><b>4 Self-Managed 5G Networks </b><b>69<br /></b><i>Jorge Martín-Pérez, Lina Magoula, Kiril Antevski, Carlos Guimarães, Jorge Baranda, Carla Fabiana Chiasserini, Andrea Sgambelluri, Chrysa Papagianni, Andrés García-Saavedra, Ricardo Martínez, Francesco Paolucci, Sokratis Barmpounakis, Luca Valcarenghi, Claudio EttoreCasetti, Xi Li, Carlos J. Bernardos, Danny De Vleeschauwer, Koen De Schepper, Panagiotis Kontopoulos, Nikolaos Koursioumpas, Corrado Puligheddu, Josep Mangues-Bafalluy, and Engin Zeydan</i></p> <p>4.1 Introduction 69</p> <p>4.2 Technology Overview 73</p> <p>4.2.1 RAN Virtualization and Management 73</p> <p>4.2.2 Network Function Virtualization 75</p> <p>4.2.3 Data Plane Programmability 76</p> <p>4.2.4 Programmable Optical Switches 77</p> <p>4.2.5 Network Data Management 78</p> <p>4.3 5G Management State-of-the-Art 80</p> <p>4.3.1 RAN resource management 80</p> <p>4.3.1.1 Context-Based Clustering and Profiling for User and Network Devices 80</p> <p>4.3.1.2 <i>Q</i>-Learning Based RAN Resource Allocation 81</p> <p>4.3.1.3 vrAIn: AI-Assisted Resource Orchestration for Virtualized Radio Access Networks 81</p> <p>4.3.2 Service Orchestration 83</p> <p>4.3.3 Data Plane Slicing and Programmable Traffic Management 85</p> <p>4.3.4 Wavelength Allocation 86</p> <p>4.3.5 Federation 88</p> <p>4.4 Conclusions and Future Directions 89</p> <p>Bibliography 92</p> <p><b>5 AI in 5G Networks: Challenges and Use Cases </b><b>101<br /></b><i>Stanislav Lange, Susanna Schwarzmann, Marija Gaji´c, Thomas Zinner, and Frank A. Kraemer</i></p> <p>5.1 Introduction 101</p> <p>5.2 Background 103</p> <p>5.2.1 ML in the Networking Context 103</p> <p>5.2.2 ML in Virtualized Networks 104</p> <p>5.2.3 ML for QoE Assessment and Management 104</p> <p>5.3 Case Studies 105</p> <p>5.3.1 QoE Estimation and Management 106</p> <p>5.3.1.1 Main Challenges 107</p> <p>5.3.1.2 Methodology 108</p> <p>5.3.1.3 Results and Guidelines 109</p> <p>5.3.2 Proactive VNF Deployment 110</p> <p>5.3.2.1 Problem Statement and Main Challenges 111</p> <p>5.3.2.2 Methodology 112</p> <p>5.3.2.3 Evaluation Results and Guidelines 113</p> <p>5.3.3 Multi-service, Multi-domain Interconnect 115</p> <p>5.4 Conclusions and Future Directions 117</p> <p>Bibliography 118</p> <p><b>6 Machine Learning for Resource Allocation in Mobile Broadband Networks </b><b>123<br /></b><i>Sadeq B. Melhem, Arjun Kaushik, Hina Tabassum, and Uyen T. Nguyen</i></p> <p>6.1 Introduction 123</p> <p>6.2 ML in Wireless Networks 124</p> <p>6.2.1 Supervised ML 124</p> <p>6.2.1.1 Classification Techniques 125</p> <p>6.2.1.2 Regression Techniques 125</p> <p>6.2.2 Unsupervised ML 126</p> <p>6.2.2.1 Clustering Techniques 126</p> <p>6.2.2.2 Soft Clustering Techniques 127</p> <p>6.2.3 Reinforcement Learning 127</p> <p>6.2.4 Deep Learning 128</p> <p>6.2.5 Summary 129</p> <p>6.3 ML-Enabled Resource Allocation 129</p> <p>6.3.1 Power Control 131</p> <p>6.3.1.1 Overview 131</p> <p>6.3.1.2 State-of-the-Art 131</p> <p>6.3.1.3 Lessons Learnt 132</p> <p>6.3.2 Scheduling 132</p> <p>6.3.2.1 Overview 132</p> <p>6.3.2.2 State-of-the-Art 132</p> <p>6.3.2.3 Lessons Learnt 134</p> <p>6.3.3 User Association 134</p> <p>6.3.3.1 Overview 134</p> <p>6.3.3.2 State-of-the-Art 136</p> <p>6.3.3.3 Lessons Learnt 136</p> <p>6.3.4 Spectrum Allocation 136</p> <p>6.3.4.1 Overview 136</p> <p>6.3.4.2 State-of-the-Art 138</p> <p>6.3.4.3 Lessons Learnt 138</p> <p>6.4 Conclusion and Future Directions 140</p> <p>6.4.1 Transfer Learning 140</p> <p>6.4.2 Imitation Learning 140</p> <p>6.4.3 Federated-Edge Learning 141</p> <p>6.4.4 Quantum Machine Learning 142</p> <p>Bibliography 142</p> <p><b>7 Reinforcement Learning for Service Function Chain Allocation in Fog Computing </b><b>147<br /></b><i>José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck</i></p> <p>7.1 Introduction 147</p> <p>7.2 Technology Overview 148</p> <p>7.2.1 Fog Computing (FC) 149</p> <p>7.2.2 Resource Provisioning 149</p> <p>7.2.3 Service Function Chaining (SFC) 150</p> <p>7.2.4 Micro-service Architecture 150</p> <p>7.2.5 Reinforcement Learning (RL) 151</p> <p>7.3 State-of-the-Art 152</p> <p>7.3.1 Resource Allocation for Fog Computing 152</p> <p>7.3.2 ML Techniques for Resource Allocation 153</p> <p>7.3.3 RL Methods for Resource Allocation 154</p> <p>7.4 A RL Approach for SFC Allocation in Fog Computing 155</p> <p>7.4.1 Problem Formulation 155</p> <p>7.4.2 Observation Space 156</p> <p>7.4.3 Action Space 157</p> <p>7.4.4 Reward Function 158</p> <p>7.4.5 Agent 161</p> <p>7.5 Evaluation Setup 162</p> <p>7.5.1 Fog–Cloud Infrastructure 162</p> <p>7.5.2 Environment Implementation 162</p> <p>7.5.3 Environment Configuration 164</p> <p>7.6 Results 165</p> <p>7.6.1 Static Scenario 165</p> <p>7.6.2 Dynamic Scenario 167</p> <p>7.7 Conclusion and Future Direction 169</p> <p>Bibliography 170</p> <p><b>Part III Management Functions and Applications </b><b>175</b></p> <p><b>8 Designing Algorithms for Data-Driven Network Management and Control: State-of-the-Art and Challenges </b><b>177<br /></b><i>Andreas Blenk, Patrick Kalmbach, Johannes Zerwas, and Stefan Schmid</i></p> <p>8.1 Introduction 177</p> <p>8.1.1 Contributions 179</p> <p>8.1.2 Exemplary Network Use Case Study 179</p> <p>8.2 Technology Overview 181</p> <p>8.2.1 Data-Driven Network Optimization 181</p> <p>8.2.2 Optimization Problems over Graphs 182</p> <p>8.2.3 From Graphs to ML/AI Input 184</p> <p>8.2.4 End-to-End Learning 187</p> <p>8.3 Data-Driven Algorithm Design: State-of-the Art 188</p> <p>8.3.1 Data-Driven Optimization in General 188</p> <p>8.3.2 Data-Driven Network Optimization 190</p> <p>8.3.3 Non-graph Related Problems 192</p> <p>8.4 Future Direction 193</p> <p>8.4.1 Data Production and Collection 193</p> <p>8.4.2 ML and AI Advanced Algorithms for Network Management with Performance Guarantees 194</p> <p>8.5 Summary 194</p> <p>Acknowledgments 195</p> <p>Bibliography 195</p> <p><b>9 AI-Driven Performance Management in Data-Intensive Applications </b><b>199<br /></b><i>Ahmad Alnafessah, Gabriele Russo Russo, Valeria Cardellini, Giuliano Casale, and Francesco Lo Presti</i></p> <p>9.1 Introduction 199</p> <p>9.2 Data-Processing Frameworks 200</p> <p>9.2.1 Apache Storm 200</p> <p>9.2.2 Hadoop MapReduce 201</p> <p>9.2.3 Apache Spark 202</p> <p>9.2.4 Apache Flink 202</p> <p>9.3 State-of-the-Art 203</p> <p>9.3.1 Optimal Configuration 203</p> <p>9.3.1.1 Traditional Approaches 203</p> <p>9.3.1.2 AI Approaches 204</p> <p>9.3.1.3 Example: AI-Based Optimal Configuration 206</p> <p>9.3.2 Performance Anomaly Detection 207</p> <p>9.3.2.1 Traditional Approaches 208</p> <p>9.3.2.2 AI Approaches 208</p> <p>9.3.2.3 Example: ANNs-Based Anomaly Detection 210</p> <p>9.3.3 Load Prediction 211</p> <p>9.3.3.1 Traditional Approaches 212</p> <p>9.3.3.2 AI Approaches 212</p> <p>9.3.4 Scaling Techniques 213</p> <p>9.3.4.1 Traditional Approaches 213</p> <p>9.3.4.2 AI Approaches 214</p> <p>9.3.5 Example: RL-Based Auto-scaling Policies 214</p> <p>9.4 Conclusion and Future Direction 216</p> <p>Bibliography 217</p> <p><b>10 Datacenter Traffic Optimization with Deep Reinforcement Learning </b><b>223<br /></b><i>Li Chen, Justinas Lingys, Kai Chen, and Xudong Liao</i></p> <p>10.1 Introduction 223</p> <p>10.2 Technology Overview 225</p> <p>10.2.1 Deep Reinforcement Learning (DRL) 226</p> <p>10.2.2 Applying ML to Networks 227</p> <p>10.2.3 Traffic Optimization Approaches in Datacenter 229</p> <p>10.2.4 Example: DRL for Flow Scheduling 230</p> <p>10.2.4.1 Flow Scheduling Problem 230</p> <p>10.2.4.2 DRL Formulation 230</p> <p>10.2.4.3 DRL Algorithm 231</p> <p>10.3 State-of-the-Art: AuTO Design 231</p> <p>10.3.1 Problem Identified 231</p> <p>10.3.2 Overview 232</p> <p>10.3.3 Peripheral System 233</p> <p>10.3.3.1 Enforcement Module 233</p> <p>10.3.3.2 Monitoring Module 234</p> <p>10.3.4 Central System 234</p> <p>10.3.5 DRL Formulations and Solutions 235</p> <p>10.3.5.1 Optimizing MLFQ Thresholds 235</p> <p>10.3.5.2 Optimizing Long Flows 239</p> <p>10.4 Implementation 239</p> <p>10.4.1 Peripheral System 239</p> <p>10.4.1.1 Monitoring Module (MM): 240</p> <p>10.4.1.2 Enforcement Module (EM): 240</p> <p>10.4.2 Central System 241</p> <p>10.4.2.1 sRLA 241</p> <p>10.4.2.2 lRLA 242</p> <p>10.5 Experimental Results 242</p> <p>10.5.1 Setting 243</p> <p>10.5.2 Comparison Targets 244</p> <p>10.5.3 Experiments 244</p> <p>10.5.3.1 Homogeneous Traffic 244</p> <p>10.5.3.2 Spatially Heterogeneous Traffic 245</p> <p>10.5.3.3 Temporally and Spatially Heterogeneous Traffic 246</p> <p>10.5.4 Deep Dive 247</p> <p>10.5.4.1 Optimizing MLFQ Thresholds using DRL 247</p> <p>10.5.4.2 Optimizing Long Flows using DRL 248</p> <p>10.5.4.3 System Overhead 249</p> <p>10.6 Conclusion and Future Directions 251</p> <p>Bibliography 253</p> <p><b>11 The New Abnormal: Network Anomalies in the AI Era </b><b>261<br /></b><i>Francesca Soro, Thomas Favale, Danilo Giordano, Luca Vassio, Zied Ben Houidi, and Idilio Drago</i></p> <p>11.1 Introduction 261</p> <p>11.2 Definitions and Classic Approaches 262</p> <p>11.2.1 Definitions 263</p> <p>11.2.2 Anomaly Detection: A Taxonomy 263</p> <p>11.2.3 Problem Characteristics 264</p> <p>11.2.4 Classic Approaches 266</p> <p>11.3 AI and Anomaly Detection 267</p> <p>11.3.1 Methodology 267</p> <p>11.3.2 Deep Neural Networks 268</p> <p>11.3.3 Representation Learning 270</p> <p>11.3.4 Autoencoders 271</p> <p>11.3.5 Generative Adversarial Networks 272</p> <p>11.3.6 Reinforcement Learning 274</p> <p>11.3.7 Summary and Takeaways 275</p> <p>11.4 Technology Overview 277</p> <p>11.4.1 Production-Ready Tools 277</p> <p>11.4.2 Research Alternatives 279</p> <p>11.4.3 Summary and Takeaways 280</p> <p>11.5 Conclusions and Future Directions 282</p> <p>Bibliography 283</p> <p><b>12 Automated Orchestration of Security Chains Driven by Process Learning </b><b>289<br /></b><i>Nicolas Schnepf, Rémi Badonnel, Abdelkader Lahmadi, and Stephan Merz</i></p> <p>12.1 Introduction 289</p> <p>12.2 RelatedWork 290</p> <p>12.2.1 Chains of Security Functions 291</p> <p>12.2.2 Formal Verification of Networking Policies 292</p> <p>12.3 Background 294</p> <p>12.3.1 Flow-Based Detection of Attacks 294</p> <p>12.3.2 Programming SDN Controllers 295</p> <p>12.4 Orchestration of Security Chains 296</p> <p>12.5 Learning Network Interactions 298</p> <p>12.6 Synthesizing Security Chains 301</p> <p>12.7 Verifying Correctness of Chains 306</p> <p>12.7.1 Packet Routing 306</p> <p>12.7.2 Shadowing Freedom and Consistency 306</p> <p>12.8 Optimizing Security Chains 308</p> <p>12.9 Performance Evaluation 311</p> <p>12.9.1 Complexity of Security Chains 312</p> <p>12.9.2 Response Times 313</p> <p>12.9.3 Accuracy of Security Chains 313</p> <p>12.9.4 Overhead Incurred by Deploying Security Chains 314</p> <p>12.10 Conclusions 315</p> <p>Bibliography 316</p> <p><b>13 Architectures for Blockchain-IoT Integration </b><b>321<br /></b><i>Sina Rafati Niya, Eryk Schiller, and Burkhard Stiller</i></p> <p>13.1 Introduction 321</p> <p>13.1.1 Blockchain Basics 323</p> <p>13.1.2 Internet-of-Things (IoT) Basics 324</p> <p>13.2 Blockchain-IoT Integration (BIoT) 325</p> <p>13.2.1 BIoT Potentials 326</p> <p>13.2.2 BIoT Use Cases 328</p> <p>13.2.3 BIoT Challenges 329</p> <p>13.2.3.1 Scalability 332</p> <p>13.2.3.2 Security 333</p> <p>13.2.3.3 Energy Efficiency 334</p> <p>13.2.3.4 Manageability 335</p> <p>13.3 BIoT Architectures 335</p> <p>13.3.1 Cloud, Fog, and Edge-Based Architectures 337</p> <p>13.3.2 Software-Defined Architectures 337</p> <p>13.3.3 A Potential Standard BIoT Architecture 338</p> <p>13.4 Summary and Considerations 341</p> <p>Bibliography 342</p> <p>Index 345</p>
<P><B>Nur Zincir-Heywood, PhD,</B> is Full Professor of Computer Science with Dalhousie University in Nova Scotia, Canada. She is an Associate Editor of the IEEE Transactions on Network and Service Management and Wiley International Journal of Network Management. <p><b>Marco Mellia, PhD,</b> is Full Professor with Politecnico di Torino, Italy. He is an Associate Editor of the IEEE Transactions on Network and Service Management, Elsevier Computer Networks and ACM Computer Communication Reviews. <p><b>Yixin Diao, PhD,</b> is Director of Data Science and Analytics at PebblePost in New York, NY, USA. He is an Associate Editor of the IEEE Transactions on Network and Service Management and the Journal of Network and Systems Management.
<p><b>Discover the impact that new technologies are having on communication systems with this up-to-date and one-stop resource</B></p> <p><i>Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning delivers</i> a comprehensive overview of the impact of artificial intelligence (AI) and machine learning (ML) on service and network management. Beginning with a fulsome description of ML and AI, the book moves on to discuss management models, architectures, and frameworks. The authors also explore how AI and ML can be used in service management functions like the generation of workload profiles, service provisioning, and more. <p>The book includes a handpicked selection of applications and case studies, as well as a treatment of emerging technologies the authors predict could have a significant impact on network and service management in the future. Statistical analysis and data mining are also discussed, particularly with respect to how they allow for an improvement of the management and security of IT systems and networks. Readers will also enjoy topics like: <UL><LI>A thorough introduction to network and service management, machine learning, and artificial intelligence</LI> <LI>An exploration of artificial intelligence and machine learning for management models, including autonomic management, policy-based management, intent based ­management, and network virtualization-based management</LI> <LI>Discussions of AI and ML for architectures and frameworks, including cloud ­systems, software defined networks, 5G and 6G networks, and Edge/Fog networks</LI> <LI>An examination of AI and ML for service management, including the automatic ­generation of workload profiles using unsupervised learning</LI></ul> <P>Perfect for information and communications technology educators, <I>Communication Networks and Service Management in the Era of Artificial Intelligence and Machine Learning</I> will also earn a place in the libraries of engineers and professionals who seek a structured reference on how the emergence of artificial intelligence and machine learning techniques is affecting service and network management.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €