Details

Chiral Separations and Stereochemical Elucidation


Chiral Separations and Stereochemical Elucidation

Fundamentals, Methods, and Applications
1. Aufl.

von: Quezia Bezerra Cass, Maria Elizabeth Tiritan, João Marcos Batista Junior, Juliana Cristina Barreiro

192,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 20.03.2023
ISBN/EAN: 9781119802273
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An expert resource for chemists using stereochemical analysis methods</b> <p>In <i>Chiral Separations and Stereochemical Elucidation: Fundamentals, Methods, and Applications</i>, a team of distinguished researchers delivers a robust and authoritative discussion of the theoretical fundamentals of chiral separation, the most commonly used chiral selectors, and stereochemical elucidation methods. The book offers expert discussions of a variety of chiral separation methods by gas chromatography (GC), supercritical fluid chromatography (SFC), capillary electrophoresis (CE), and liquid chromatography (LC). <p>The authors also describe several methods for stereochemical elucidation, including X-ray crystallography, nuclear magnetic resonance spectroscopy, and chiroptical methods. The explored material is ideal for practicing chemists seeking a resource to help them guide method development and optimization or to explain quality control-complements during target compound production. <p>Readers will also find: <ul> <li>A thorough introduction to the most important advances and applications in LC, GC, CE, SFC, and preparative chromatography</li> <li>Comprehensive explorations of the role of 2D-LC for chiral separation methods development and applications</li> <li>Practical discussions of the design, mechanisms, and applications of the most commonly used chiral selectors</li> <li>Fulsome treatments of the theoretical backgrounds, advantages, limitations, and applications of stereochemical elucidation methods</li></ul><p>Perfect for academic and industrial chemists specially in organic, analytical chemistry and pharmaceutical analysis. <i>Chiral Separations and Stereochemical Elucidation: Fundamentals, Methods, and Applications</i> will also benefit biochemists, environmental analysts, forensic and medicinal chemists as well as natural product chemists and those involved with stereochemistry or structural elucidation.
<p>List of Contributors xv</p> <p>Preface xix</p> <p><b>Part I Fundamentals of Chiral Separation 1<br /><br /> 1 Chiral Separation by LC 3<br /> </b><i>Juliana Cristina Barreiro and Quezia Bezerra Cass</i></p> <p>1.1 Introduction 3</p> <p>1.2 Workflow for LC Chiral Method Development 7</p> <p>1.3 New Column Technologies 9</p> <p>1.4 Selected Examples of Fast Separation 12</p> <p>1.5 Chiral 2D- LC 14</p> <p>1.5.1 LC–LC and mLC–LC 14</p> <p>1.5.2 LC × LC and sLC × LC 17</p> <p>1.6 Future and Perspectives 19</p> <p>References 20</p> <p><b>2 Chiral Separation by GC 27<br /> </b><i>Oliver Trapp</i></p> <p>2.1 Introduction 27</p> <p>2.2 Chiral Recognition in Gas Chromatography 29</p> <p>2.2.1 Chiral Recognition by Hydrogen Bonding 31</p> <p>2.2.2 Chiral Recognition Using Chiral Metal Complexes 31</p> <p>2.2.3 Chiral Recognition by Host–Guest Interactions 31</p> <p>2.3 Preparation of Fused- Silica Capillaries for GC with CSPs 33</p> <p>2.4 Application of CSPs in Chiral Gas Chromatography 34</p> <p>2.4.1 CSPs with Diamide Selectors 34</p> <p>2.4.1.1 Chirasil- Val 34</p> <p>2.4.2 CSPs with CD Selectors 35</p> <p>2.4.2.1 Heptakis(2,3,6- tri- O- Methyl)- β- Cyclodextrin (Permethyl- β- Cyclodextrin) 38</p> <p>2.4.2.2 Heptakis(2,3,6- tri- O- Methyl)- β- Cyclodextrin Immobilized to Hydrido Dimethyl Polysiloxane (Chirasil- β- Dex) 39</p> <p>2.4.2.3 Heptakis(2,6- di- O- Methyl- 3- O- Pentyl)- β- Cyclodextrin 43</p> <p>2.4.2.4 Hexakis- (2,3,6-tri- O- Pentyl)- α- Cyclodextrin 47</p> <p>2.4.2.5 Heptakis(2,3,6- tri- O- Pentyl)- β- Cyclodextrin 48</p> <p>2.4.2.6 Hexakis- (3- O- Acetyl- 2,6- di- O- Pentyl)- α- Cyclodextrin 51</p> <p>2.4.2.7 Heptakis(3- O- Acetyl- 2,6- di- O- Pentyl)- β- Cyclodextrin 51</p> <p>2.4.2.8 Octakis(3- O- Butyryl- 2,6- di- O- Pentyl)- γ- Cyclodextrin 53</p> <p>2.4.2.9 Hexakis/Heptakis/Octakis(2,6- di- O- Alkyl- 3- O- Trifluoroacetyl)- α/β/γ- Cyclodextrins 57</p> <p>2.4.2.10 Heptakis(2,3- di- O- Acetyl- 6- O-tert- Butyldimethylsilyl)- β- Cyclodextrin (DIAC- 6- TBDMS- β- CD) 58</p> <p>2.4.2.11 Heptakis(2,3- di- O- Methyl- 6- O-tert- Butyldimethylsilyl)- β- Cyclodextrin (DIME- 6- TBDMS- β- CD) 58</p> <p>2.4.3 Cyclofructans 62</p> <p>2.4.4 CSPs with Metal Complexes 65</p> <p>2.5 Conclusion 69</p> <p>References 69</p> <p><b>3 Chiral Separation by Supercritical Fluid Chromatography 85<br /> </b><i>Emmanuelle Lipka</i></p> <p>3.1 Introduction 85</p> <p>3.2 Characteristics and Properties of Supercritical Fluids 87</p> <p>3.3 Development of a Chiral SFC Method 89</p> <p>3.3.1 Chiral Stationary Phases 89</p> <p>3.3.2 Mobile Phases 91</p> <p>3.3.2.1 Mobile Phase: Type of Co- solvent Used 93</p> <p>3.3.2.2 Mobile Phase: Percentage of Co- solvent Used 94</p> <p>3.3.2.3 Mobile Phase: Use of Additives 94</p> <p>3.4 Operating Parameters 94</p> <p>3.4.1 Effect of the Flow Rate 95</p> <p>3.4.2 Effect of the Outlet Pressure (Back- pressure) 95</p> <p>3.4.2.1 Effect of Pressure When the Mobile Phase is a Gas- Like Fluid 96</p> <p>3.4.2.2 Effect of Pressure When the Mobile Phase is a Liquid- Like Fluid 97</p> <p>3.4.3 Effect of Temperature 97</p> <p>3.4.3.1 Effect of Temperature When the Mobile Phase is a Gas- Like Fluid 98</p> <p>3.4.3.2 Effect of Temperature When the Mobile Phase is a Liquid- Like Fluid 98</p> <p>3.5 Detection 99</p> <p>3.6 Scale- Up to Preparative Separation 99</p> <p>3.7 Conclusion 100</p> <p>References 101</p> <p><b>4 Chiral Separation by Capillary Electrophoresis and Capillary Electrophoresis–Mass Spectrometry: Fundamentals, Recent Developments, and Applications 103<br /> </b><i>Charles Clark, Govert W. Somsen, and Isabelle Kohler</i></p> <p>4.1 Introduction 103</p> <p>4.2 Principles of Chiral CE 105</p> <p>4.2.1 Electrophoretic Mobility 105</p> <p>4.2.2 CE Separation Efficiency 106</p> <p>4.2.3 Chiral Resolution in CE 107</p> <p>4.2.4 Chiral Micellar Electrokinetic Chromatography and Capillary Electrochromatography 109</p> <p>4.3 Short History of Chiral CE Modes 111</p> <p>4.3.1 Chiral CE 111</p> <p>4.3.2 Chiral MEKC and Chiral CEC 111</p> <p>4.4 State of the Art and Recent Developments 112</p> <p>4.4.1 Common Chiral Selectors 112</p> <p>4.4.2 Ionic Liquids as Chiral Selectors 117</p> <p>4.4.3 Nanoparticles as Chiral Selector Carriers 117</p> <p>4.4.4 Microfluidic Chiral CE 118</p> <p>4.5 Applications of Chiral CE 119</p> <p>4.5.1 Pharmaceutical Analysis 119</p> <p>4.5.2 Food Analysis 120</p> <p>4.5.3 Environmental Analysis 121</p> <p>4.5.4 Bioanalysis 123</p> <p>4.5.5 Forensic Analysis 126</p> <p>4.6 Chiral CE- MS: Strategies and Challenges 126</p> <p>4.6.1 Hyphenation Approaches 129</p> <p>4.6.1.1 Sheath–Liquid and Sheathless CE- MS Interfacing 129</p> <p>4.6.1.2 Partial- Filling Techniques 130</p> <p>4.6.1.3 Counter- Migration Techniques 131</p> <p>4.6.2 Chiral MEKC- MS 132</p> <p>4.6.3 Chiral CEC- MS 133</p> <p>4.7 Conclusions and Perspectives 135</p> <p>References 135</p> <p><b>5 Chiral Separations at Semi and Preparative Scale 143<br /> </b><i>Larry Miller</i></p> <p>5.1 Introduction 143</p> <p>5.2 Selection of Operating Conditions 145</p> <p>5.3 Batch HPLC Purification 146</p> <p>5.3.1 Analytical Method Development for Preparative Separations 146</p> <p>5.3.2 Batch HPLC Examples 148</p> <p>5.3.2.1 Batch HPLC Example 1 148</p> <p>5.3.2.2 Batch HPLC Example 2 149</p> <p>5.4 Steady- State Recycle Introduction 151</p> <p>5.4.1 SSR Example 1 153</p> <p>5.5 Simulated Moving Bed Chromatography – Introduction 154</p> <p>5.5.1 SMB Examples for R&D and Separation of Compound 2 156</p> <p>5.5.2 Development of a Manufacturing SMB Process (Compound 1) 158</p> <p>5.5.3 Cost for SMB Processes 160</p> <p>5.6 Introduction to Supercritical Fluid Chromatography 161</p> <p>5.6.1 Analytical Method Development for Scale- up to Preparative SFC 162</p> <p>5.6.2 Preparative SFC Example 1 163</p> <p>5.6.3 Preparative SFC Example 2 163</p> <p>5.7 Options for Increasing Purification Productivity 165</p> <p>5.7.1 Closed- Loop Recycling 165</p> <p>5.7.2 Stacked Injections 166</p> <p>5.7.3 Choosing the Best Synthetic Intermediate for Separation 167</p> <p>5.7.3.1 Choosing Synthetic Step for Separation – HPLC/SMB Example 168</p> <p>5.7.3.2 Choosing Synthetic Step for Separation – SFC Example 169</p> <p>5.7.4 Use of Non- Commercialized CSP 170</p> <p>5.7.5 Immobilized CSP for Preparative Resolution 173</p> <p>5.7.5.1 Processing of Low Solubility Racemate 173</p> <p>5.7.5.2 Preparative Resolution of EMD 53986 174</p> <p>5.8 Choosing a Technique for Preparative Enantioseparation 176</p> <p>5.9 Conclusion 178</p> <p>References 179</p> <p><b>Part II Chiral Selectors 187<br /><br /> 6 Polysaccharides 189<br /> </b><i>Weston Umstead, Takafumi Onishi, and Pilar Franco</i></p> <p>6.1 Introduction 189</p> <p>6.2 The Early Years 190</p> <p>6.3 Polysaccharide Chiral Separation Mechanism 193</p> <p>6.4 Coated Chiral Stationary Phases 197</p> <p>6.5 Immobilized Chiral Stationary Phases 201</p> <p>6.6 Applications of Polysaccharide- Derived CSPs 208</p> <p>6.6.1 Analytical Applications 210</p> <p>6.6.1.1 Pharmaceuticals 211</p> <p>6.6.1.2 Agrochemicals 218</p> <p>6.6.1.3 Food Analysis 219</p> <p>6.6.2 Preparative Applications 220</p> <p>6.7 Summation 224</p> <p>References 224</p> <p><b>7 Macrocyclic Antibiotics and Cyclofructans 247<br /> </b><i>Saba Aslani, Alain Berthod, and Daniel W. Armstrong</i></p> <p>7.1 Introduction 247</p> <p>7.2 Macrocyclic Glycopeptides Physicochemical Properties 248</p> <p>7.3 Using the Chiral Macrocyclic Glycopeptides Stationary Phases 253</p> <p>7.3.1 Mobile Phases and Chromatographic Modes 253</p> <p>7.3.2 Chromatographic Enantioseparations 254</p> <p>7.3.2.1 Amino Acids and Peptides 254</p> <p>7.3.2.2 Chiral Compounds 257</p> <p>7.3.2.3 Particle Structure 257</p> <p>7.4 Using and Protecting Macrocyclic Glycopeptide Chiral Columns 260</p> <p>7.4.1 Operating Conditions 260</p> <p>7.4.2 Storage 261</p> <p>7.5 Cyclofructans 261</p> <p>7.5.1 Cyclofructan Structure and Properties 261</p> <p>7.5.2 Chiral Separations with Cyclofructan- Based Stationary Phases 264</p> <p>7.5.3 Cyclofructan Stationary Phases Used in the HILIC Mode 264</p> <p>7.5.4 Cyclofructan Stationary Phases Used in Supercritical Fluid Chromatography 266</p> <p>7.6 Conclusions 267</p> <p>References 268</p> <p><b>8 Cyclodextrins 273<br /> </b><i>Gerhard K. E. Scriba, Mari- Luiza Konjaria, and Sulaiman Krait</i></p> <p>8.1 Introduction 273</p> <p>8.2 Structure and Properties 274</p> <p>8.3 Cyclodextrin Complexes 279</p> <p>8.4 Application in Separation Science 288</p> <p>8.4.1 Gas Chromatography 288</p> <p>8.4.1.1 Types of Cyclodextrins 289</p> <p>8.4.1.2 Types of Columns 289</p> <p>8.4.1.3 Separation Mechanisms 291</p> <p>8.4.1.4 Applications 293</p> <p>8.4.2 Thin- Layer Chromatography 294</p> <p>8.4.3 High- Performance Liquid Chromatography 294</p> <p>8.4.3.1 Types of Columns 295</p> <p>8.4.3.2 Types of Cyclodextrins 297</p> <p>8.4.3.3 Separation Mechanisms 298</p> <p>8.4.3.4 Applications 300</p> <p>8.4.4 Supercritical Fluid Chromatography 300</p> <p>8.4.5 Capillary Electromigration Techniques 301</p> <p>8.4.5.1 Types of Cyclodextrins 301</p> <p>8.4.5.2 Separation Mechanisms 302</p> <p>8.4.5.3 Migration Modes and Enantiomer Migration Order Using CDs as Selectors 304</p> <p>8.4.5.4 Applications 310</p> <p>8.4.6 Membrane Technologies 312</p> <p>8.5 Miscellaneous Applications 314</p> <p>8.6 Conclusions and Outlook 315</p> <p>References 315</p> <p><b>9 Pirkle Type 325<br /> </b><i>Maria Elizabeth Tiritan, Madalena Pinto, and Carla Fernandes</i></p> <p>9.1 Introduction 325</p> <p>9.2 CSPs Developed by Pirkle’s Group: Chronological Evolution 327</p> <p>9.3 Pirkle- Type CSPs Developed by Other Research Groups 334</p> <p>9.4 Example of Applications in Analytical and Preparative Scales 340</p> <p>9.4.1 Analytical Applications 341</p> <p>9.4.2 Preparative Applications 349</p> <p>9.5 Conclusions and Perspectives 349</p> <p>References 350</p> <p><b>10 Proteins 363<br /> </b><i>Jun Haginaka</i></p> <p>10.1 Introduction 363</p> <p>10.2 Preparation of Protein- and Glycoprotein- Based Chiral Stationary Phases 364</p> <p>10.3 Types of Protein- and Glycoprotein- Based Chiral Stationary Phases 368</p> <p>10.3.1 Proteins 368</p> <p>10.3.1.1 Bovine Serum Albumin 368</p> <p>10.3.1.2 Human Serum Albumin 370</p> <p>10.3.1.3 Trypsin and α- Chymotrypsin 372</p> <p>10.3.1.4 Lysozyme and Pepsin 372</p> <p>10.3.1.5 Fatty Acid- Binding Protein 373</p> <p>10.3.1.6 Penicillin G Acylase 375</p> <p>10.3.1.7 Streptavidin 375</p> <p>10.3.1.8 Lipase 376</p> <p>10.3.2 Glycoproteins 376</p> <p>10.3.2.1 Human α <sub>1</sub> - Acid Glycoprotein 376</p> <p>10.3.2.2 Chicken Ovomucoid 377</p> <p>10.3.2.3 Chicken α <sub>1</sub>- Acid Glycoprotein 378</p> <p>10.3.2.4 Avidin 380</p> <p>10.3.2.5 Riboflavin- Binding Protein and Ovotransferrin 380</p> <p>10.3.2.6 Cellobiohydrolase 381</p> <p>10.3.2.7 Glucoamylase 383</p> <p>10.3.2.8 Antibody (Immunoglobulin G) 385</p> <p>10.3.2.9 Nicotinic Acetylcholine Receptor and Human Liver Organic Cation Transporter 387</p> <p>10.4 Chiral Recognition Mechanisms on Proteinand Glycoprotein- Based Chiral Stationary Phases 387</p> <p>10.4.1 Human Serum Albumin 387</p> <p>10.4.2 Penicillin G Acylase 389</p> <p>10.4.3 Human α <sub>1</sub>- Acid Glycoprotein 390</p> <p>10.4.4 Turkey Ovomucoid 392</p> <p>10.4.5 Chicken α <sub>1</sub>- Acid Glycoprotein 393</p> <p>10.4.6 Cellobiohydrolase 395</p> <p>10.4.7 Antibody 396</p> <p>10.4.8 Nicotinic Acetylcholine Receptor and Human Liver Organic Cation Transporter 400</p> <p>10.5 Conclusions 401</p> <p>References 402</p> <p><b>11 Chiral Stationary Phases Derived from Cinchona Alkaloids 415<br /> </b><i>Michael Lämmerhofer and Wolfgang Lindner</i></p> <p>11.1 Introduction 415</p> <p>11.2 Cinchona Alkaloid- Derived Chiral Stationary Phases 416</p> <p>11.3 Chiral Recognition 420</p> <p>11.4 Chromatographic Retention Mechanisms 424</p> <p>11.4.1 Multimodal Applicability 424</p> <p>11.4.2 Surface Charge of Cinchonan- Based CSPs 424</p> <p>11.4.3 Retention Mechanisms and Models, and Method Development on Chiral WAX CSPs 427</p> <p>11.4.4 Retention Mechanisms and Method Development on ZWIX CSPs 430</p> <p>11.5 Structural Variants of Cinchona Alkaloid CSPs and Immobilization Chemistries 436</p> <p>11.6 Cinchonan- Based UHPLC Column Technologies 442</p> <p>11.7 Applications 446</p> <p>11.7.1 Pharmaceutical and Biotechnological Applications 446</p> <p>11.7.2 Biomedical Applications 453</p> <p>11.8 Conclusions 460</p> <p>References 460</p> <p><b>Part III Methods for Stereochemical Elucidation 473<br /><br /> 12 X- Ray Crystallography for Stereochemical Elucidation 475<br /> </b><i>Ademir F. Morel and Robert A. Burrow</i></p> <p>12.1 Introduction 475</p> <p>12.2 Absolute Structure and Absolute Configuration 476</p> <p>12.3 Best Practices 482</p> <p>12.4 Structure Validation 486</p> <p>12.5 The Absolute Configuration of (+)- Lanatine A 486</p> <p>12.6 The Absolute Configuration of the Diacetylated Form of Acrenol and the Acetylated Form of Humirianthol 488</p> <p>12.7 The Absolute Configuration of Ester Form of Clemateol 491</p> <p>12.8 Relative Configurations of Waltherione A, Waltherione B, and Vanessine 492</p> <p>12.9 The Absolute Configuration of Condaline A 493</p> <p>12.10 CSD Deposit Numbers 496</p> <p>12.11 Conclusions and Future Directions 498</p> <p>References 498</p> <p><b>13 NMR for Stereochemical Elucidation 505<br /> </b><i>Xiaolu Li, Xiaoliang Yang, and Han Sun</i></p> <p>13.1 Conventional NMR Methods for Stereochemical Elucidation 505</p> <p>13.1.1 Determination of the Planar Structure Using 1D <sup>1</sup> H, <sup>13</sup> C NMR (DEPT), 2D HSQC, COSY, TOCSY, HMBC 506</p> <p>13.1.2 Determination of Relative Configuration Using J- Couplings and NOEs/ROEs 507</p> <p>13.1.2.1 Scalar Coupling 507</p> <p>13.1.2.2 NOE/ROE 510</p> <p>13.1.2.3 Examples of Stereochemical Elucidation Using J- Couplings and NOEs/ROEs 510</p> <p>13.2 Determination of the Relative Configuration Using Anisotropic NMR- Based Methods 516</p> <p>13.2.1 Basic Principles of Anisotropic NMR Parameters 517</p> <p>13.2.2 Alignment Media 518</p> <p>13.2.2.1 Preparation of Anisotropic Sample with PMMA Gel 520</p> <p>13.2.2.2 Preparation of Anisotropic Sample with AAKLVFF 521</p> <p>13.2.3 Acquisition of the Anisotropic NMR Data 522</p> <p>13.2.4 Computational Approaches for Analyzing Anisotropic NMR Data 525</p> <p>13.2.5 Successful Examples of Determination of Relative Configuration of Challenging Molecules Using Anisotropic NMR 528</p> <p>13.3 Determination of the Relative Configuration Using DP 4 Probability and CASE- 3D 529</p> <p>13.4 Determination of the Absolute Configuration Using a Combination of NMR Spectroscopy and Chiroptical Spectroscopy 533</p> <p>13.5 Determination of the Absolute Configuration Using NMR Alone 534</p> <p>13.5.1 Mosher Ester Analysis 535</p> <p>13.5.2 Other Chiral Derivatizing Agents 536</p> <p>13.6 Future Perspective 536</p> <p>References 537</p> <p><b>14 Absolute Configuration from Chiroptical Spectroscopy 551<br /> </b><i>Fernando Martins dos Santos Junior and João Marcos Batista Junior</i></p> <p>14.1 Introduction 551</p> <p>14.2 Chiroptical Methods 554</p> <p>14.2.1 Optical Rotation and Optical Rotatory Dispersion 554</p> <p>14.2.1.1 Instrumentation 556</p> <p>14.2.1.2 Measurements 557</p> <p>14.2.2 Electronic Circular Dichroism 558</p> <p>14.2.2.1 Instrumentation 560</p> <p>14.2.2.2 Measurements 561</p> <p>14.2.3 Vibrational Circular Dichroism and Raman Optical Activity 561</p> <p>14.2.3.1 Instrumentation 563</p> <p>14.2.3.2 Measurements 565</p> <p>14.2.4 Simulation of Chiroptical Properties 567</p> <p>14.2.4.1 Common Theoretical Steps 568</p> <p>14.2.4.2 OR and ORD Simulations 570</p> <p>14.2.4.3 ECD Simulations 572</p> <p>14.2.4.4 VCD and ROA Simulations 573</p> <p>14.2.5 Examples of Application 575</p> <p>14.2.5.1 OR 575</p> <p>14.2.5.2 ORD 577</p> <p>14.2.5.3 ECD 578</p> <p>14.2.5.4 VCD 579</p> <p>14.2.5.5 ROA 581</p> <p>14.2.5.6 Association of Different Chiroptical Methods 582</p> <p>14.3 Concluding Remarks 585</p> <p>References 586</p> <p>Index 593</p>
<p><b>Quezia Bezerra Cass, PhD, </b>is a Full Professor of Chemistry at Universidade Federal de São Carlos, São Carlos, SP, Brazil. <p><b>Maria Elizabeth Tiritan, PhD, </b>is an Assistant Professor of Organic Chemistry at Universidade do Porto, Porto, Portugal. <p><b>João Marcos Batista Junior, PhD, </b>is an Assistant Professor of Chemistry at Universidade Federal de São Paulo, São José dos Campos, SP, Brazil. <p><b>Juliana Cristina Barreiro, PhD, </b>is a Researcher in Chemistry at Universidade de São Paulo, São Carlos, SP, Brazil.
<p><b>An expert resource for chemists using stereochemical analysis methods</b> <p>In <i>Chiral Separations and Stereochemical Elucidation: Fundamentals, Methods, and Applications</i>, a team of distinguished researchers delivers a robust and authoritative discussion of the theoretical fundamentals of chiral separation, the most commonly used chiral selectors, and stereochemical elucidation methods. The book offers expert discussions of a variety of chiral separation methods by gas chromatography (GC), supercritical fluid chromatography (SFC), capillary electrophoresis (CE), and liquid chromatography (LC). <p>The authors also describe several methods for stereochemical elucidation, including X-ray crystallography, nuclear magnetic resonance spectroscopy, and chiroptical methods. The explored material is ideal for practicing chemists seeking a resource to help them guide method development and optimization or to explain quality control-complements during target compound production. <p>Readers will also find: <ul><li> A thorough introduction to the most important advances and applications in LC, GC, CE, SFC, and preparative chromatography</li> <li> Comprehensive explorations of the role of 2D-LC for chiral separation methods development and applications</li> <li> Practical discussions of the design, mechanisms, and applications of the most commonly used chiral selectors</li> <li> Fulsome treatments of the theoretical backgrounds, advantages, limitations, and applications of stereochemical elucidation methods</li></ul> <p>Perfect for academic and industrial chemists specially in organic, analytical chemistry and pharmaceutical analysis. <i>Chiral Separations and Stereochemical Elucidation: Fundamentals, Methods, and Applications</i> will also benefit biochemists, environmental analysts, forensic and medicinal chemists as well as natural product chemists and those involved with stereochemistry or structural elucidation.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €