Details

Ceramic Matrix Composites


Ceramic Matrix Composites

Fiber Reinforced Ceramics and their Applications
1. Aufl.

von: Walter Krenkel

205,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 08.09.2008
ISBN/EAN: 9783527622405
Sprache: englisch
Anzahl Seiten: 440

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Covering an important material class for modern applications in the aerospace, automotive, energy production and creation sectors, this handbook and reference contains comprehensive data tables and field reports on successfully developed prototypes. The editor and authors are internationally renowned experts from NASA, EADS, DLR, Porsche, MT Aerospace, as well as universities and institutions in the USA, Europe and Japan, and they provide here a comprehensive overview of current R & D with an application-oriented emphasis.
<p>Foreword v</p> <p>Preface xvii</p> <p>List of Contributors xix</p> <p><b>1 Fibers for Ceramic Matrix Composites </b><b>1<br /></b><i>Bernd Clauß</i></p> <p>1.1 Introduction 1</p> <p>1.2 Fibers as Reinforcement in Ceramics 1</p> <p>1.3 Structure and Properties of Fibers 2</p> <p>1.3.1 Fiber Structure 2</p> <p>1.3.2 Structure Formation 3</p> <p>1.3.3 Structure Parameters and Fiber Properties 4</p> <p>1.4 Inorganic Fibers 7</p> <p>1.4.1 Production Processes 7</p> <p>1.4.1.1 Indirect Fiber Production 7</p> <p>1.4.1.2 Direct Fiber Production 7</p> <p>1.4.2 Properties of Commercial Products 9</p> <p>1.4.2.1 Comparison of Oxide and Non-oxide Ceramic Fibers 9</p> <p>1.4.2.2 Oxide Ceramic Filament Fibers 10</p> <p>1.4.2.3 Non-oxide Ceramic Filament Fibers 11</p> <p>1.5 Carbon Fibers 12</p> <p>1.5.1 Production Processes 15</p> <p>1.5.1.1 Carbon Fibers from PAN Precursors 15</p> <p>1.5.1.2 Carbon Fibers from Pitch Precursors 17</p> <p>1.5.1.3 Carbon Fibers from Regenerated Cellulose 17</p> <p>1.5.2 Commercial Products 18</p> <p>Acknowledgments 19</p> <p><b>2 Textile Reinforcement Structures </b><b>21<br /></b><i>Thomas Gries, Jan Stüve, and Tim Grundmann</i></p> <p>2.1 Introduction 21</p> <p>2.1.1 Definition for the Differentiation of Two-Dimensional and Three-Dimensional Textile Structures 23</p> <p>2.1.2 Yarn Structures 23</p> <p>2.2 Two-Dimensional Textiles 24</p> <p>2.2.1 Nonwovens 24</p> <p>2.2.2 Woven Fabrics 25</p> <p>2.2.3 Braids 27</p> <p>2.2.4 Knitted Fabrics 28</p> <p>2.2.5 Non-crimp Fabrics 29</p> <p>2.3 Three-Dimensional Textiles 30</p> <p>2.3.1 Three-Dimensional Woven Structures 30</p> <p>2.3.2 Braids 32</p> <p>2.3.2.1 Overbraided Structures 32</p> <p>2.3.2.2 Three-Dimensional Braided Structures 34</p> <p>2.3.3 Three-Dimensional Knits 37</p> <p>2.3.3.1 Multilayer Weft-Knits 37</p> <p>2.3.3.2 Spacer Warp-Knits 37</p> <p>2.4 Preforming 38</p> <p>2.4.1 One-Step/Multi-Step Preforming 38</p> <p>2.4.2 Cutting 39</p> <p>2.4.3 Handling and Draping 39</p> <p>2.4.4 Joining Technologies 40</p> <p>2.5 Textile Testing 41</p> <p>2.5.1 Tensile Strength 41</p> <p>2.5.2 Bending Stiffness 41</p> <p>2.5.3 Filament Damage 42</p> <p>2.5.4 Drapability 42</p> <p>2.5.5 Quality Management 42</p> <p>2.6 Conclusions 43</p> <p>2.6.1 Processability of Brittle Fibers 43</p> <p>2.6.2 Infiltration of the Textile Structure 43</p> <p>2.6.3 Mechanical Properties of the Final CMC Structure 44</p> <p>2.6.4 Productivity and Production Process Complexity 44</p> <p>2.7 Summary and Outlook 44</p> <p>Acknowledgments 45</p> <p><b>3 Interfaces and Interphases </b><b>49<br /></b><i>Jacques Lamon</i></p> <p>3.1 Introduction 49</p> <p>3.2 Role of Interfacial Domain in CMCs 50</p> <p>3.3 Mechanism of Deviation of Transverse Cracks 52</p> <p>3.4 Phenomena Associated to Deviation of Matrix Cracks 53</p> <p>3.5 Tailoring Fiber/Matrix Interfaces. Influence on Mechanical Properties and Behavior 55</p> <p>3.6 Various Concepts of Weak Interfaces/Interphases 59</p> <p>3.7 Interfacial Properties 61</p> <p>3.8 Interface Control 64</p> <p>3.9 Conclusions 66</p> <p><b>4 Carbon/Carbons and Their Industrial Applications </b><b>69<br /></b><i>Roland Weiß</i></p> <p>4.1 Introduction 69</p> <p>4.2 Manufacturing of C/Cs 69</p> <p>4.2.1 Carbon Fiber Reinforcements 71</p> <p>4.2.2 Matrix Systems 73</p> <p>4.2.2.1 Thermosetting Resins as Matrix Precursors 73</p> <p>4.2.2.2 Thermoplastics as Matrix Precursors 74</p> <p>4.2.2.3 Gas Phase Derived Carbon Matrices 75</p> <p>4.2.3 Redensification/Recarbonization Cycles 79</p> <p>4.2.4 Final Heat Treatment (HTT) 80</p> <p>4.3 Industrial Applications of C/Cs 82</p> <p>4.3.1 Oxidation Protection of C/Cs 83</p> <p>4.3.1.1 Bulk Protection Systems for C/Cs 83</p> <p>4.3.1.2 Outer Multilayer Coatings 88</p> <p>4.3.1.3 Outer Glass Sealing Layers 90</p> <p>4.3.2 Industrial Applications of C/Cs 92</p> <p>4.3.2.1 C/Cs for High Temperature Furnaces 97</p> <p>4.3.2.2 Application for Thermal Treatments of Metals 102</p> <p>4.3.2.3 Application of C/C in the Solar Energy Market 105</p> <p><b>5 Melt Infiltration Process </b><b>113<br /></b><i>Bernhard Heidenreich</i></p> <p>5.1 Introduction 113</p> <p>5.2 Processing 114</p> <p>5.2.1 Build-up of Fiber Protection and Fiber/Matrix Interface 115</p> <p>5.2.2 Manufacture of Fiber Reinforced Green Bodies 117</p> <p>5.2.3 Build-up of a Porous, Fiber Reinforced Preform 118</p> <p>5.2.4 Si Infiltration and Build-up of SiC Matrix 119</p> <p>5.3 Properties 121</p> <p>5.3.1 Material Composition 127</p> <p>5.3.2 Mechanical Properties 128</p> <p>5.3.3 CTE and Thermal Conductivity 130</p> <p>5.3.4 Frictional Properties 131</p> <p>5.4 Applications 131</p> <p>5.4.1 Space Applications 131</p> <p>5.4.2 Short-term Aeronautics 133</p> <p>5.4.3 Long-term Aeronautics and Power Generation 133</p> <p>5.4.4 Friction Systems 134</p> <p>5.4.5 Low-Expansion Structures 135</p> <p>5.4.6 Further Applications 136</p> <p>5.5 Summary 137</p> <p><b>6 Chemical Vapor Infiltration Processes for Ceramic Matrix Composites: Manufacturing, Properties, Applications </b><b>141<br /></b><i>Martin Leuchs</i></p> <p>6.1 Introduction 141</p> <p>6.2 CVI Manufacturing Process for CMCs 143</p> <p>6.2.1 Isothermal-Isobaric Infiltration 144</p> <p>6.2.2 Gradient Infiltration 145</p> <p>6.2.3 Discussion of the Two CVI-processes 146</p> <p>6.3 Properties of CVI Derived CMCs 146</p> <p>6.3.1 General Remarks 146</p> <p>6.3.2 Mechanical Properties 148</p> <p>6.3.2.1 Fracture Mechanism and Toughness 148</p> <p>6.3.2.2 Stress-Strain Behavior 149</p> <p>6.3.2.3 Dynamic Loads 151</p> <p>6.3.2.4 High Temperature Properties and Corrosion 151</p> <p>6.3.2.5 Thermal and Electrical Properties 153</p> <p>6.4 Applications and Main Developments 153</p> <p>6.4.1 Hot Structures in Space 153</p> <p>6.4.2 Gas Turbines 155</p> <p>6.4.3 Material for Fusion Reactors 156</p> <p>6.4.4 Components for Journal Bearings 156</p> <p>6.5 Outlook 161</p> <p><b>7 The PIP-process: Precursor Properties and Applications </b><b>165<br /></b><i>Günter Motz, Stephan Schmidt, and Steffen Beyer</i></p> <p>7.1 Si-based Precursors 165</p> <p>7.1.1 Introduction 165</p> <p>7.1.2 Precursor Systems and Properties 166</p> <p>7.1.3 Cross-Linking Behavior of Precursors 167</p> <p>7.1.4 Pyrolysis Behavior of Precursors 169</p> <p>7.1.5 Commercial Available Non-oxide Precursors 171</p> <p>7.2 The Polymer Impregnation and Pyrolysis Process (PIP) 171</p> <p>7.2.1 Introduction 171</p> <p>7.2.2 Manufacturing Technology 173</p> <p>7.2.2.1 Preform Manufacturing 173</p> <p>7.2.2.2 Manufacturing of CMC 175</p> <p>7.3 Applications of the PIP-process 180</p> <p>7.3.1 Launcher Propulsion 180</p> <p>7.3.2 Satellite Propulsion 182</p> <p>7.4 Summary 184</p> <p><b>8 Oxide/Oxide Composites with Fiber Coatings </b><b>187<br /></b><i>George Jefferson, Kristin A. Keller, Randall S. Hay, and Ronald J. Kerans</i></p> <p>8.1 Introduction 187</p> <p>8.2 Applications 189</p> <p>8.3 CMC Fiber-Matrix Interfaces 189</p> <p>8.3.1 Interface Control 190</p> <p>8.3.2 Fiber Coating Methods 191</p> <p>8.3.3 CMC Processing 194</p> <p>8.3.4 Fiber-Matrix Interfaces 195</p> <p>8.3.4.1 Weak Oxides 195</p> <p>8.3.4.2 Porous Coatings and Fugitive Coatings 197</p> <p>8.3.4.3 Other Coatings 198</p> <p>8.4 Summary and Future Work 198</p> <p><b>9 All-Oxide Ceramic Matrix Composites with Porous Matrices </b><b>205<br /></b><i>Martin Schmücker and Peter Mechnich</i></p> <p>9.1 Introduction 205</p> <p>9.1.1 Oxide Ceramic Fibers 206</p> <p>9.1.2 “Classical” CMC Concepts 207</p> <p>9.2 Porous Oxide/Oxide CMCs without Fiber/Matrix Interphase 208</p> <p>9.2.1 Materials and CMC Manufacturing 210</p> <p>9.2.2 Mechanical Properties 214</p> <p>9.2.3 Thermal Stability 218</p> <p>9.2.4 Other Properties 220</p> <p>9.3 Oxide/Oxide CMCs with Protective Coatings 223</p> <p>9.4 Applications of Porous Oxide/Oxide CMCs 226</p> <p><b>10 Microstructural Modeling and Thermomechanical Properties </b><b>231<br /></b><i>Dietmar Koch</i></p> <p>10.1 Introduction 231</p> <p>10.2 General Concepts of CMC Design, Resulting Properties, and Modeling 232</p> <p>10.2.1 Weak Interface Composites WIC 232</p> <p>10.2.2 Weak Matrix Composites WMC 237</p> <p>10.2.3 Assessment of Properties of WIC and WMC 238</p> <p>10.2.4 Modeling of the Mechanical Behavior of WMC 238</p> <p>10.2.5 Concluding Remarks 243</p> <p>10.3 Mechanical Properties of CMC 244</p> <p>10.3.1 General Mechanical Behavior 244</p> <p>10.3.2 High Temperature Properties 246</p> <p>10.3.3 Fatigue 251</p> <p>10.3.4 Concluding Remarks 255</p> <p>Acknowledgment 256</p> <p><b>11 Non-destructive Testing Techniques for CMC Materials </b><b>261<br /></b><i>Jan Marcel Hausherr and Walter Krenkel</i></p> <p>11.1 Introduction 261</p> <p>11.2 Optical and Haptic Inspection Analysis 263</p> <p>11.3 Ultrasonic Analysis 262</p> <p>11.3.1 Physical Principle and Technical Implementation 263</p> <p>11.3.2 Transmission Analysis 264</p> <p>11.3.3 Echo-Pulse Analysis 265</p> <p>11.3.4 Methods and Technical Implementation 266</p> <p>11.3.5 Ultrasonic Analysis of CMC 267</p> <p>11.4 Thermography 268</p> <p>11.4.1 Thermal Imaging (Infrared Photography) 269</p> <p>11.4.2 Lockin Thermography 271</p> <p>11.4.3 Ultrasonic Induced Thermography 272</p> <p>11.4.4 Damage Detection Using Thermography 272</p> <p>11.5 Radiography (X-Ray Analysis) 273</p> <p>11.5.1 Detection of X-Rays 273</p> <p>11.5.1.1 X-Ray Film (Photographic Plates) 274</p> <p>11.5.1.2 X-Ray Image Intensifier 274</p> <p>11.5.1.3 Solid State Arrays 275</p> <p>11.5.1.4 Gas Ionization Detectors (Geiger Counter) 275</p> <p>11.5.2 Application of Radiography for C/SiC Composites 275</p> <p>11.5.3 Limitations and Disadvantages of Radiography 277</p> <p>11.6 X-Ray Computed Tomography 277</p> <p>11.6.1 Functional Principle of CT 277</p> <p>11.6.2 Computed Tomography for Defect Detection 279</p> <p>11.6.3 Micro-structural CT-Analysis 280</p> <p>11.6.4 Process Accompanying CT-Analysis 282</p> <p>11.7 Conclusions 283</p> <p><b>12 Machining Aspects for the Drilling of C/C-SiC Materials </b><b>287<br /></b><i>Klaus Weinert and Tim Jansen</i></p> <p>12.1 Introduction 287</p> <p>12.2 Analysis of Machining Task 288</p> <p>12.3 Determination of Optimization Potentials 290</p> <p>12.3.1 Tool 290</p> <p>12.3.2 Parameters 294</p> <p>12.3.3 Basic Conditions 294</p> <p>12.4 Process Strategies 295</p> <p>12.5 Conclusions 300</p> <p><b>13 Advanced Joining and Integration Technologies for Ceramic Matrix Composite Systems </b><b>30</b><i>Mrityunjay Singh and Rajiv Asthana</i></p> <p>13.1 Introduction 303</p> <p>13.2 Need for Joining and Integration Technologies 304</p> <p>13.3 Joint Design, Analysis, and Testing Issue 304</p> <p>13.3.1 Wettability 305</p> <p>13.3.2 Surface Roughness 306</p> <p>13.3.3 Joint Design and Stress State 306</p> <p>13.3.4 Residual Stress, Joint Strength, and Joint Stability 307</p> <p>13.4 Joining and Integration of CMC–Metal Systems 309</p> <p>13.5 Joining and Integration of CMC–CMC Systems 314</p> <p>13.6 Application in Subcomponents 318</p> <p>13.7 Repair of Composite Systems 321</p> <p>13.8 Concluding Remarks and Future Directions 322</p> <p>Acknowledgments 323</p> <p><b>14 CMC Materials for Space and Aeronautical Applications </b><b>327<br /></b><i>François Christin</i></p> <p>14.1 Introduction 327</p> <p>14.2 Carbon/Carbon Composites 328</p> <p>14.2.1 Manufacturing of Carbon/Carbon Composites 328</p> <p>14.2.1.1 n-Dimensional Reinforcement 328</p> <p>14.2.1.2 Three-Dimensional Reinforcement Preforms 329</p> <p>14.2.1.3 Densification 333</p> <p>14.2.2 Carbon/Carbon Composites Applications 335</p> <p>14.2.2.1 Solid Rocket Motors (SRM) Nozzles 335</p> <p>14.2.2.2 Liquid Rocket Engines (LRE) 337</p> <p>14.2.2.3 Friction Applications 338</p> <p>14.3 Ceramic Composites 338</p> <p>14.3.1 SiC-SiC and Carbon-SiC Composites Manufacture 339</p> <p>14.3.1.1 Elaboration 340</p> <p>14.3.2 SiC-SiC and Carbon-SiC Composites Applications 340</p> <p>14.3.2.1 Aeronautical and Space Applications 340</p> <p>14.3.2.2 Liquid Rocket Engines Applications 341</p> <p>14.3.3 A Breakthrough with a New Concept: The Self-Healing Matrix 343</p> <p>14.3.3.1 Manufacturing of Ceramic Composites 343</p> <p>14.3.3.2 The Self-Healing Matrix 344</p> <p>14.3.3.3 Characterization 344</p> <p>14.3.4 Representative Applications of These New Materials 347</p> <p>14.3.4.1 Military Aeronautical Applications 347</p> <p>14.3.4.2 Commercial Aeronautical Applications 349</p> <p><b>15 CMC for Nuclear Applications </b><b>35<br /></b><i>Akira Kohyama</i></p> <p>15.1 Introduction 353</p> <p>15.2 Gas Reactor Technology and Ceramic Materials 354</p> <p>15.3 Ceramic Fiber Reinforced Ceramic Matrix Composites (CFRC, CMC) 356</p> <p>15.4 Innovative SiC/SiC by NITE Process 358</p> <p>15.5 Characteristic Features of SiC/SiC Composites by NITE Process 359</p> <p>15.6 Effects of Radiation Damage 362</p> <p>15.6.1 Ion-Irradiation Technology for SiC Materials 363</p> <p>15.6.2 Micro-Structural Evolution and Swelling 364</p> <p>15.6.3 Thermal Conductivity 366</p> <p>15.6.4 Mechanical Property Changes 369</p> <p>15.7 Mechanical Property Evaluation Methods 371</p> <p>15.7.1 Impulse Excitation Method for Young’s Modulus Determination 372</p> <p>15.7.2 Bulk Strength Testing Methods for Ceramics 373</p> <p>15.7.3 Test Methods for Composites 374</p> <p>15.7.4 Development of Materials Database 378</p> <p>15.8 New GFR Concepts Utilizing SiC/SiC Composite Materials 379</p> <p>15.9 Concluding Remarks 381</p> <p><b>16 CMCs for Friction Applications </b><b>385<br /></b><i>Walter Krenkel and Ralph Renz</i></p> <p>16.1 Introduction 385</p> <p>16.2 C/SiC Pads for Advanced Friction Systems 385</p> <p>16.2.1 Brake Pads for Emergency Brake Systems 388</p> <p>16.2.2 C/SiC Brake Pads for High-Performance Elevators 388</p> <p>16.3 Ceramic Brake Disks 391</p> <p>16.3.1 Material Properties 392</p> <p>16.3.2 Manufacturing 394</p> <p>16.3.3 Braking Mechanism 396</p> <p>16.3.4 Design Aspects 398</p> <p>16.3.5 Testing 401</p> <p>16.4 Ceramic Clutches 403</p> <p>Index 409</p>
Walter Krenkel holds the Chair of Ceramic Materials at the University of Bayreuth, Germany, where he also heads the Ceramic Composites Group at the Fraunhofer-Gesellschaft. He gained his PhD in aeronautics and aerospace from the University of Stuttgart, and was formerly Head of Ceramic Composite Structures and of the Center of Excellence Lightweight CMC Structures at the German Aerospace Center. He is a Fellow of the American Ceramic Society, and serves on the scientific and advisory boards of many international conferences, workshops and technology exchange forums worldwide.<br> Professor Krenkel`s research focuses on the development<br> and qualification of CMCs and other novel ceramics.
Ceramic matrix composites represent a new class of non-brittle refractory materials for harsh and extreme environments, characterized by high thermal stability, corrosion resistance and strength-to-weight ratio.<br> This makes them predestined for use in aerospace, ground transportation, mechanical engineering and power generation.<br> The editor and authors of this handbook are renowned experts from EADS, MT Aerospace, NASA, Porsche, Schunk and Snecma, as well as research institutes in Europe, the USA and Japan, who provide here a comprehensive overview of the current status of CMCs, focusing on applications.<br> A valuable information source for scientists, engineers and technicians, as well as students, and a general reference for professionals in materials science and engineering.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €