Details

Catalyst Immobilization


Catalyst Immobilization

Methods and Applications
1. Aufl.

von: Maurizio Benaglia, Alessandra Puglisi

151,99 €

Verlag: Wiley-VCH (D)
Format: PDF
Veröffentl.: 22.11.2019
ISBN/EAN: 9783527817283
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive resource on techniques and applications for immobilizing catalysts <br> <br> Catalyst Immobilization: Methods and Applications covers catalyst immobilization topics including technologies, materials, characterization, chemical activity, and recyclability. The book also presents innovative applications for supported catalysts, such as flow chemistry and machine-assisted organic synthesis. <br> <br> Written by an international panel of expert contributors, this book outlines the general principles of catalyst immobilization and explores different types of supports employed in catalyst heterogenization. The book?s chapters examine the immobilization of chiral organocatalysts, reactions in flow reactors, 3D printed devices for catalytic systems, and more. Catalyst Immobilization offers a modern vision and a broad and critical view of this exciting field. This important book: <br> <br> -Offers a guide to supported and therefore recyclable catalysts, which is one of the most important tools for developing a highly sustainable chemistry <br> -Presents various immobilization techniques and applications <br> -Explores new trends, such as 3D printed devices for catalytic systems <br> -Contains information from a leading international team of authors <br> <br> Written for catalytic chemists, organic chemists, process engineers, biochemists, surface chemists, materials scientists, analytical chemists, Catalyst Immobilization: Methods and Applications presents the latest developments and includes a review of the innovative trends such as flow chemistry, reactions in microreactors, and beyond. <br>
<p>Preface xiii</p> <p><b>1 Strategies to Immobilized Catalysts: A Key Tool for Modern Chemistry </b><b>1<br /></b><i>Oriana Piermatti, Raed Abu-Reziq, and Luigi Vaccaro</i></p> <p>1.1 Introduction 1</p> <p>1.2 Catalysis 3</p> <p>1.3 Heterogenization of Homogeneous Catalysts 3</p> <p>1.3.1 Immobilization on Silica 4</p> <p>1.3.1.1 Covalent Binding 6</p> <p>1.3.1.2 Physical Entrapment 7</p> <p>1.3.1.3 Electrostatic Interactions 7</p> <p>1.3.1.4 Silica Microencapsulation 7</p> <p>1.3.2 Polymeric Supports 9</p> <p>1.3.2.1 Insoluble Polymers 10</p> <p>1.3.2.2 Soluble Polymers 10</p> <p>1.3.2.3 Polymeric Microcapsules 12</p> <p>1.3.3 Other Supports 13</p> <p>1.3.3.1 Metal–Organic Frameworks (MOFs) 13</p> <p>1.3.3.2 Periodic Mesoporous Organosilicas (PMOs) 14</p> <p>1.3.3.3 Magnetic Nanoparticles 14</p> <p>1.3.3.4 Membranes 14</p> <p>1.4 Characterization of Heterogeneous Catalysts 15</p> <p>1.5 Conclusions 16</p> <p>List of Abbreviations 16</p> <p>References 17</p> <p><b>2 Catalysts Immobilized onto Polymers </b><b>23<br /></b><i>Shinichi Itsuno and Naoki Haraguchi</i></p> <p>2.1 Introduction 23</p> <p>2.2 Organocatalyst Immobilized onto Polymers 24</p> <p>2.2.1 Polymer-Immobilized Cinchona Alkaloids 24</p> <p>2.2.2 Polymer-Immobilized Proline Derivatives 30</p> <p>2.2.3 Polymer-Immobilized Amino Acids 33</p> <p>2.2.4 Polymer-Immobilized Pyrrolidine Derivatives 35</p> <p>2.2.5 Polymer-Immobilized Chiral Amines 39</p> <p>2.2.6 Polymer-Immobilized MacMillan Catalysts 42</p> <p>2.2.7 Polymer-Immobilized Thioureas and Ureas 50</p> <p>2.2.8 Polymer-Immobilized Chiral Phosphoric Acids 53</p> <p>2.2.9 Polymer-Immobilized Chiral <i>N</i>-Heterocyclic Carbenes 55</p> <p>2.3 Metal Catalysts Immobilized onto Polymers 56</p> <p>2.3.1 Al: Polymer-Immobilized Catechol–Al Catalyst 56</p> <p>2.3.2 Au: Polymer-Immobilized Triazole–Gold Catalyst 56</p> <p>2.3.3 Co: Polymer-Immobilized Co(III)–Salen Complex 57</p> <p>2.3.4 Ir: Polymer-Immobilized Iridium Catalyst 58</p> <p>2.3.5 Mo: Polymer-Immobilized Molybdenum Catalyst 60</p> <p>2.3.6 Ni: Polymer-Immobilized Ni Catalyst 61</p> <p>2.3.7 Pd: Polymer-Immobilized Pd Catalyst 62</p> <p>2.3.8 Pt: Polymer-Immobilized Pt Nanoparticle 64</p> <p>2.3.9 Rh: Polymer-Immobilized Rh Catalyst 65</p> <p>2.3.10 Ru: Polymer-Immobilized Ru Catalyst 68</p> <p>2.3.11 Ti: Polymer-Immobilized Ti Catalyst 69</p> <p>2.3.12 Zn: Polymer-Immobilized Zn Catalyst 70</p> <p>2.4 Outlook and Perspectives 71</p> <p>2.5 List of Abbreviations 71</p> <p>References 72</p> <p><b>3 Modified Nanocarbons as Catalysts in Organic Processes </b><b>77<br /></b><i>Vincenzo Campisciano, Michelangelo Gruttadauria, and Francesco Giacalone</i></p> <p>3.1 Introduction 77</p> <p>3.2 Fullerene-Based Catalysts 78</p> <p>3.2.1 Organocatalysis 78</p> <p>3.2.2 Organometallic Catalysis 82</p> <p>3.3 Carbon Nanotubes-Based Catalysts 87</p> <p>3.3.1 Supramolecular Functionalization 88</p> <p>3.3.2 Covalent Functionalization 92</p> <p>3.3.2.1 Organocatalysis 92</p> <p>3.3.2.2 Organometallic Catalysis 93</p> <p>3.4 Graphene-Based Catalysts 99</p> <p>3.4.1 Supramolecular Functionalization 100</p> <p>3.4.2 Covalent Functionalization 102</p> <p>3.4.2.1 Organocatalysis 102</p> <p>3.4.2.2 Organometallic Catalysis 105</p> <p>3.5 Outlook and Perspectives: Conclusions 109</p> <p>List of Abbreviations 110</p> <p>References 111</p> <p><b>4 Stereoselective Synthesis by Catalysts Supported on Magnetic Nanoferrite </b><b>115<br /></b><i>Alessandro Ponti, Anna M. Ferretti, and GiorgioMolteni</i></p> <p>4.1 Introduction 115</p> <p>4.2 Structure and Properties of the Nanocatalysts 117</p> <p>4.2.1 Structure Types 118</p> <p>4.2.1.1 MNP and Catalyst 118</p> <p>4.2.1.2 Structure Type I 119</p> <p>4.2.1.3 Structure Type II 121</p> <p>4.2.1.4 Other Structure Types 122</p> <p>4.2.2 A Few Points About Synthesis 123</p> <p>4.2.3 Magnetic Recovery 126</p> <p>4.2.4 Recycling 128</p> <p>4.3 Characterization of the Nanocatalysts 129</p> <p>4.3.1 Morphology and Crystal Structure 130</p> <p>4.3.2 Magnetic Properties 131</p> <p>4.3.3 Identification of the Supported Species 132</p> <p>4.3.4 Catalyst Loading and Leaching 135</p> <p>4.3.5 DLS and <i>Z</i>-potential 136</p> <p>4.4 Stereoselective Reactions 137</p> <p>4.4.1 Substitutions 138</p> <p>4.4.2 Condensations 139</p> <p>4.4.3 Additions 141</p> <p>4.4.4 Hydrogenations and Reductions 146</p> <p>4.4.5 Epoxidations and Oxidations 148</p> <p>4.4.6 Carbon–Carbon Couplings 150</p> <p>4.4.7 Kinetic Resolution of Racemic Mixtures 151</p> <p>4.5 Conclusions 154</p> <p>References 154</p> <p><b>5 Metal–Organic Frameworks as Catalysts </b><b>159<br /></b><i>Pillaiyar Puthiaraj and Wha-Seung Ahn</i></p> <p>5.1 Introduction 159</p> <p>5.2 Open Metal Sites as Reaction Sites 159</p> <p>5.3 Organic Linkers in the Frameworks as Reaction Sites 162</p> <p>5.3.1 Single-Linker MOFs 163</p> <p>5.3.2 Mixed Linker MOFs 164</p> <p>5.4 Multifunctional MOFs for Catalysis 166</p> <p>5.5 Post-synthetic Grafting of Active Guest Species within MOFs 167</p> <p>5.5.1 Grafting of Active Organic Species on Open Metal Sites 167</p> <p>5.5.2 Grafting of Active Functional Groups on Organic Linkers 168</p> <p>5.5.3 Grafting of Active Metal Complexes on Functionalized Organic Linkers 170</p> <p>5.6 Encapsulation of Catalytically Active Guest Species Inside MOFs 173</p> <p>5.6.1 Metal/Metal Oxide Nanoparticles on MOFs 173</p> <p>5.6.2 Polyoxometalates (POMs) 175</p> <p>5.6.3 Metalloporphyrins 176</p> <p>5.7 MOF Membranes for Catalysis 177</p> <p>5.8 Conclusions and Perspectives 182</p> <p>Acknowledgments 182</p> <p>References 183</p> <p><b>6 Alternative Solvent Systems in Catalysis </b><b>187<br /></b><i>Xavier Marset, Diego J. Ramón, and Gabriela Guillena</i></p> <p>6.1 Introduction 187</p> <p>6.2 Ionic Liquids as Solvents for Catalytic Organic Reactions 189</p> <p>6.2.1 Transition-Metal Promoted Reaction in Ionic Liquids 189</p> <p>6.2.2 Organocatalyzed Transformations Using Ionic Liquids 195</p> <p>6.3 Deep Eutectic Solvents (DES) as Reaction Media in Catalysis 199</p> <p>6.3.1 Non-innocent DES as Reaction Media 201</p> <p>6.3.2 DES as Innocent Solvents for Recyclable Catalytic Transformations 205</p> <p>6.3.2.1 Transition-Metal Catalyzed Processes 205</p> <p>6.3.2.2 Organocatalyzed Reactions 207</p> <p>6.4 Conclusion 211</p> <p>List of Abbreviations 211</p> <p>References 212</p> <p><b>7 Immobilized Chiral Organocatalysts </b><b>217<br /></b><i>Carles Rodríguez-Escrich</i></p> <p>7.1 Introduction 217</p> <p>7.2 Immobilized Chiral Aminocatalysts 219</p> <p>7.2.1 Proline Derivatives 219</p> <p>7.2.2 Diarylprolinol Derivatives 223</p> <p>7.2.3 Imidazolidinones 227</p> <p>7.2.4 Primary Amine Organocatalysts 230</p> <p>7.2.5 Peptide Catalysts 233</p> <p>7.3 Immobilized Chiral H-Bond Donors 235</p> <p>7.3.1 Ureas and Thioureas 235</p> <p>7.3.2 Squaramides 238</p> <p>7.3.3 Amides and Sulfonamides 240</p> <p>7.4 Immobilized Chiral Phosphoric Acids 241</p> <p>7.5 Immobilized Lewis and Brønsted Base Organocatalysts 244</p> <p>7.5.1 NHC Catalysts 245</p> <p>7.5.2 Isothioureas 245</p> <p>7.5.3 Amides as Lewis Bases 247</p> <p>7.5.4 Brønsted Bases 247</p> <p>7.6 Immobilized Phase Transfer Catalysts 249</p> <p>7.7 Final Remarks and Future Perspectives 250</p> <p>References 251</p> <p><b>8 Catalyst Recycling in Continuous Flow Reactors </b><b>257<br /></b><i>Alessandro Mandoli</i></p> <p>8.1 Introduction 257</p> <p>8.2 Types of Catalytic Flow Reactors and Parameters for Assessing Their Performance 259</p> <p>8.3 Soluble Catalytic Systems 260</p> <p>8.3.1 Metal Catalysts 263</p> <p>8.3.1.1 Organic Solvent Nanofiltration 263</p> <p>8.3.1.2 Liquid–Liquid Biphasic Media and Supercritical Fluids 269</p> <p>8.3.1.3 SLP Systems 273</p> <p>8.3.1.4 Other Approaches 276</p> <p>8.3.2 Metal-Free Catalysts 276</p> <p>8.4 Insoluble Catalytic Systems 277</p> <p>8.4.1 Packed-bed CFRs 281</p> <p>8.4.2 Monolithic CFRs 282</p> <p>8.4.3 Wall-coated CFRs 284</p> <p>8.4.4 Metal Catalysts 285</p> <p>8.4.4.1 Reduction Reactions 285</p> <p>8.4.4.2 Cross-Coupling Reactions 289</p> <p>8.4.5 Metal-Free Catalysts 290</p> <p>8.5 Conclusions 293</p> <p>List of Abbreviations 294</p> <p>References 295</p> <p><b>9 Membrane Reactors </b><b>307<br /></b><i>Parisa Biniaz, Mohammad Amin Makarem, and Mohammad Reza Rahimpour</i></p> <p>9.1 Introduction 307</p> <p>9.2 Inert Membrane Reactor with Mobile Catalysts on the Reaction Side 308</p> <p>9.2.1 Organic Solvent Nanofiltration 309</p> <p>9.3 Catalytically Active Membrane Reactors 311</p> <p>9.3.1 Hydrogenation Reactions 311</p> <p>9.3.2 Carbon–Carbon (C–C) Cross-couplings 312</p> <p>9.4 The Immobilized Catalyst in a Porous Membrane 313</p> <p>9.5 Photocatalytic Organic Synthesis and Their Utilization in the Reduction of Organic Pollutant in Membrane Reactors 313</p> <p>9.5.1 Photocatalytic Membrane Reactors 314</p> <p>9.5.2 Membrane Reactors with Suspending Catalyst in the Reaction Mixture 314</p> <p>9.6 The Applications of Membrane Reactors in the Biodiesel Transesterification 316</p> <p>9.7 Conclusion and Future Trends 320</p> <p>List of Abbreviations 320</p> <p>References 321</p> <p><b>10 Development of Polymer-Supported Transition-Metal Catalysts and Their Green Synthetic Applications </b><b>325<br /></b><i>Takao Osako, Atsushi Ohtaka, and Yasuhiro Uozumi</i></p> <p>10.1 Introduction 325</p> <p>10.2 Polystyrene-Supported Transition-Metal Nanoparticle Catalysts 326</p> <p>10.2.1 Background 326</p> <p>10.2.2 Carbon–Carbon Coupling Reactions in Water Catalyzed by Linear-Polystyrene-Stabilized Palladium(II) Oxide or Palladium Nanoparticles 327</p> <p>10.2.2.1 Suzuki Coupling Reaction 327</p> <p>10.2.2.2 Hiyama Coupling Reaction 330</p> <p>10.2.2.3 Ullmann Coupling Reaction 333</p> <p>10.2.2.4 Heck Reaction 334</p> <p>10.2.2.5 Copper-Free Sonogashira Coupling Reaction 335</p> <p>10.2.2.6 One-Pot Synthesis of Dibenzyls and 3-Arylpropanoic Acids 337</p> <p>10.2.3 Linear-Polystyrene-Stabilized Platinum Nanoparticles: Preparation and Evaluation of Their Catalytic Activity in Water 338</p> <p>10.2.3.1 Aerobic Oxidation of Alcohols 338</p> <p>10.2.3.2 Hydrogen-Transfer Reduction in the Presence of Polystyrene-Stabilized Platinum Nanoparticles 340</p> <p>10.3 Polystyrene-Poly(ethylene glycol)-Supported Transition-Metal Catalysts 341</p> <p>10.3.1 Background 341</p> <p>10.3.2 Aqueous Aerobic Flow Oxidation of Alcohols by Amphiphilic Resin-Dispersed Particles of Platinum (ARP-Pt) 342</p> <p>10.3.3 Flow Hydrogenation of Olefins, Nitrobenzenes, and Aldehydes by Amphiphilic Resin-Dispersed Particles of Platinum (ARP-Pt) 349</p> <p>10.3.4 Flow Hydrogenation by Amphiphilic Resin-Dispersed Particles of Iron (ARP-Fe) [110] 352</p> <p>10.3.5 Aqueous Huisgen 1,3-Cycloaddition with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine Dendrimer–Copper Catalyst 356</p> <p>10.3.6 Aqueous Asymmetric 1,4-Addition with an Amphiphilic Resin-Supported Chiral Diene–Rhodium Complex 359</p> <p>10.4 Conclusion 363</p> <p>List of Abbreviations 363</p> <p>References 364</p> <p><b>11 3D Printed Devices for Catalytic Systems </b><b>369<br /></b><i>Vittorio Saggiomo</i></p> <p>11.1 Introduction 369</p> <p>11.2 3D Printing 371</p> <p>11.2.1 Fuse Deposition Modeling (FDM) 373</p> <p>11.2.2 Millifluidic and Flow Reactors 374</p> <p>11.2.3 Catalysts Embedded Thermoplastics 376</p> <p>11.2.4 Resin Printers 382</p> <p>11.2.5 Robocasting (Direct Ink Writing) 388</p> <p>11.2.6 Powder Bed Fusion Printers 396</p> <p>11.3 Conclusion 399</p> <p>11.4 Outlook 402</p> <p>List of Abbreviations 402</p> <p>References 403</p> <p><b>12 General Overview on Immobilization Techniques of Enzymes for Biocatalysis </b><b>409<br /></b><i>María Romero-Fernández and Francesca Paradisi</i></p> <p>12.1 Introduction 409</p> <p>12.2 Physical Immobilization Methodologies 410</p> <p>12.2.1 Entrapment 411</p> <p>12.2.2 Encapsulation 411</p> <p>12.3 Chemical Immobilization Methodologies 413</p> <p>12.3.1 Non-covalent Bonding 413</p> <p>12.3.1.1 Hydrophobic Adsorption 414</p> <p>12.3.1.2 Ionic Exchange Adsorption 415</p> <p>12.3.2 Covalent Bonding 418</p> <p>12.4 Conclusion 426</p> <p>List of Abbreviations 426</p> <p>References 427</p> <p><b>13 Immobilized Enzymes: Applications in Organic Synthesis </b><b>437<br /></b><i>Hans-Jürgen Federsel, Jaan Pesti, and Matthew P. Thompson</i></p> <p>13.1 Introduction: The Quest for Chemicals and the Role of Organic Synthesis 437</p> <p>13.2 Enzymes as Enablers of Synthesis 441</p> <p>13.3 Enzymes in Action: Immobilized Processes on Scale 444</p> <p>13.4 Key Features of Systems Operating with Immobilized Enzymes 452</p> <p>13.5 Future Perspectives: The Road Ahead 457</p> <p>List of Abbreviations 459</p> <p>References 460</p> <p>Index 465</p>
<p><b><i>Maurizio Benaglia</i></b><i> is Full Professor of Organic Chemistry at the University of Milan. He is editor of the Wiley book Recoverable and Recyclable Catalysts.</i> <p><b><i>Alessandra Puglisi</i></b><i> is Associate Professor at the University of Milan, where she is currently working at the design and preparation of immobilized organocatalysts.</i>
<p><b>A comprehensive resource on techniques and applications for immobilizing catalysts</b> <p><i>Catalyst Immobilization: Methods and Applications</i> covers catalyst immobilization topics including technologies, materials, characterization, chemical activity, and recyclability. The book also presents innovative applications for supported catalysts, such as flow chemistry and machine-assisted organic synthesis. <p>Written by an international panel of expert contributors, this book outlines the general principles of catalyst immobilization and explores different types of supports employed in catalyst heterogenization. The book's chapters examine the immobilization of chiral organocatalysts, reactions in flow reactors, 3D printed devices for catalytic systems, and more. <i>Catalyst Immobilization</i> offers a modern vision and a broad and critical view of this exciting field. This important book: <ul> <li>Offers a guide to supported and therefore recyclable catalysts, which is one of the most important tools for developing a highly sustainable chemistry</li> <li>Presents various immobilization techniques and applications</li> <li>Explores new trends, such as 3D printed devices for catalytic systems</li> <li>Contains information from a leading international team of authors</li> </ul> <p>Written for catalytic chemists, organic chemists, process engineers, biochemists, surface chemists, materials scientists, analytical chemists, <i>Catalyst Immobilization:</i> <i>Methods and Applications</i> presents the latest developments and includes a review of the innovative trends such as flow chemistry, reactions in microreactors, and beyond.

Diese Produkte könnten Sie auch interessieren:

Industrial Enzyme Applications
Industrial Enzyme Applications
von: Andreas Vogel, Oliver May
PDF ebook
142,99 €
Oxide Thermoelectric Materials
Oxide Thermoelectric Materials
von: Yuan-Hua Lin, Jinle Lan, Cewen Nan
PDF ebook
124,99 €
Wet Cake Filtration
Wet Cake Filtration
von: Harald Anlauf
EPUB ebook
120,99 €