Details

Carbon Dioxide Sequestration and Related Technologies


Carbon Dioxide Sequestration and Related Technologies


Advances in Natural Gas Engineering 1. Aufl.

von: Ying Wu, John J. Carroll, Zhimin Du

190,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 26.09.2011
ISBN/EAN: 9781118175545
Sprache: englisch
Anzahl Seiten: 508

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Carbon dioxide sequestration is a technology that is being explored to curb the anthropogenic emission of CO<sub>2</sub> into the atmosphere. Carbon dioxide has been implicated in the global climate change and reducing them is a potential solution. <p> The injection of carbon dioxide for enhanced oil recovery (EOR) has the duel benefit of sequestering the CO<sub>2</sub> and extending the life of some older fields. Sequestering CO<sub>2</sub> and EOR have many shared elements that make them comparable.</p> <p> This volume presents some of the latest information on these processes covering physical properties, operations, design, reservoir engineering, and geochemistry for AGI and the related technologies.</p>
<b>Introduction</b> <p><b>The Three Sisters - CCS, AGI, and EOR xix<br /> </b><i>Ying Wu, John J. Carroll and Zhimin Du</i></p> <p><b>Section 1: Data and Correlation</b></p> <p><b>1. Prediction of Acid Gas Dew Points in the Presence of Water and Volatile Organic Compounds 3</b><br /> <i>Ray. A. Tomcej</i></p> <p>1.1 Introduction 3</p> <p>1.2 Previous Studies 4</p> <p>1.3 Thermodynamic Model 5</p> <p>1.4 Calculation Results 6</p> <p>1.5 Discussion 10</p> <p><b>2. Phase Behavior of China Reservoir Oil at Different C02 Injected Concentrations 13</b><br /> <i>Fengguang Li, Xin Yang, Changyu Sun, and Guangjin Chen</i></p> <p>2.1 Introduction 14</p> <p>2.2 Preparation of Reservoir Fluid 14</p> <p>2.3 PVT Phase Behavior for the C02 Injected Crude Oil 15</p> <p>2.4 Viscosity of the C02 Injected Crude Oil 17</p> <p>2.5 Interfacial Tension for C02 Injected Crude Oil/Strata Water 19</p> <p>2.6 Conclusions 20</p> <p><b>3. Viscosity and Density Measurements for Sour Gas Fluids at High Temperatures and Pressures 23<br /> </b><i>B.R. Giri, P. Biais and R.A. Marriott</i></p> <p>3.1 Introduction 24</p> <p>3.2 Experimental 25</p> <p>3.3 Results 31</p> <p>3.4 Conclusions 37</p> <p><b>4. Acid Gas Viscosity Modeling with the Expanded Fluid Viscosity Correlation 41<br /> </b><i>H. Motahhari, M.A. Satyro, H.W. Yarranton</i></p> <p>4.1 Introduction 41</p> <p>4.2 Expanded Fluid Viscosity Correlation 42</p> <p>4.3 Results and Discussion 47</p> <p>4.4 Conclusions 52</p> <p>4.5 Acknowledgements 52</p> <p><b>5. Evaluation and Improvement of Sour Property Packages in Unisim Design 55<br /> </b><i>Jianyong Yang, Ensheng Zhao, Laurie Wang, and Sanjoy Saha</i></p> <p>5.1 Introduction 55</p> <p>5.2 Model Description 56</p> <p>5.3 Phase Equilibrium Calculation 58</p> <p>5.4 Conclusions 62</p> <p>5.5 Future Work 62</p> <p><b>6. Compressibility Factor of High C02-Content Natural Gases: Measurement and Correlation 65<br /> </b><i>Xiaoqiang Bian, Zhimin Du, Yong Tang, and Jianfen Du</i></p> <p>6.1 Introduction 65</p> <p>6.2 Experiment 67</p> <p>6.3 Methods 68</p> <p>6.5 Comparison of the Proposed Method and Other Methods 78</p> <p>6.6 Conclusions 83</p> <p>6.7 Acknowledgements 84</p> <p>6.8 Nomenclature 84</p> <p><b>Section 2: Process Engineering</b></p> <p><b>7. Analysis of Acid Gas Injection Variables 89<br /> </b><i>Edward Wiehert and James van der Lee</i></p> <p>7.1 Introduction 89</p> <p>7.2 Discussion 90</p> <p>7.3 Program Design 93</p> <p>7.4 Results 94</p> <p>7.5 Discussion of Results 96</p> <p>7.6 Conclusion 105</p> <p><b>8. Glycol Dehydration as a Mass Transfer Rate Process 107<br /> </b><i>Nathan A. Hatcher, Jaime L. Nava and Ralph H. Weiland</i></p> <p>8.1 Phase Equilibrium 108</p> <p>8.2 Process Simulation 110</p> <p>8.3 Dehydration Column Performance 111</p> <p>8.4 Stahl Columns and Stripping Gas 114</p> <p>8.5 Interesting Observations from a Mass Transfer Rate Model 115</p> <p>8.6 Factors That Affect Dehydration of Sweet Gases 118</p> <p>8.7 Dehydration of Acid Gases 119</p> <p>8.8 Conclusions 119</p> <p><b>9. Carbon Capture Using Amine-Based Technology 121<br /> </b><i>Ben Spooner and David Engel</i></p> <p>9.1 Amine Applications 121</p> <p>9.2 Amine Technology 122</p> <p>9.3 Reaction Chemistry 124</p> <p>9.4 Types of Amine 126</p> <p>9.5 Challenges of Carbon Capture 128</p> <p>9.6 Conclusion 131</p> <p><b>10. Dehydration-through-Compression (DTC): Is It Adequate? A Tale of Three Gases 133<br /> </b><i>Wes H. Wright</i></p> <p>10.1 Background 133</p> <p>10.2 Water Saturation 138</p> <p>10.3 Is It Adequate? 138</p> <p>10.4 The Gases 141</p> <p>10.5 Results 147</p> <p>10.6 Discussion 151</p> <p><b>11. Diaphragm Pumps Improve Efficiency of Compressing Acid Gas and C02 155<br /> </b><i>Josef Jarosch, Anke-Dorothee Braun</i></p> <p>11.1 Diaphragm Pumps 162</p> <p>11.2 Acid Gas Compression 164</p> <p>11.3 C02 Compression for Sequestration 167</p> <p>11.4 Conclusion 171</p> <p><b>Section 3: Reservoir Engineering</b></p> <p><b>12. Acid Gas Injection in the Permian and San Juan Basins: Recent Case Studies from New Mexico 175<br /> </b><i>David T. Lescinsky; Alberto A. Gutierrez, RG; James C. Hunter, RG; Julie W. Gutierrez; and Russell E. Bentley</i></p> <p>12.1 Background 175</p> <p>12.2 AGI Project Planning and Implementation 178</p> <p>12.3 AGI Projects in New Mexico 190</p> <p>12.4 AGI and the Potential for Carbon Credits 204</p> <p>12.5 Conclusions 207</p> <p><b>13. C02 and Acid Gas Storage in Geological Formations as Gas Hydrate 209<br /> </b><i>Farhad Qanbari, Olga Ye Zatsepina, S. Hamed Tabatabaie, Mehran Pooladi-Darvish</i></p> <p>13.1 Introduction 210</p> <p>13.2 Geological Settings 211</p> <p>13.3 Model Parameters 216</p> <p>13.4 Results 218</p> <p>13.5 Discussion 221</p> <p>13.6 Conclusions 223</p> <p>13.7 Acknowledgment 224</p> <p><b>14. Complex Flow Mathematical Model of Gas Pool with Sulfur Deposition 227<br /> </b><i>W. Zhu, Y. Long, Q. Liu, Y. Ju, and X. Huang</i></p> <p>14.1 Introduction 227</p> <p>14.2 The Mathematical Model of Multiphase Complex Flow 228</p> <p>14.3 Mathematical Models of Flow Mechanisms 232</p> <p>14.4 Solution of the Mathematical Model Equations 238</p> <p>14.5 Example 240</p> <p>14.6 Conclusions 242</p> <p>14.7 Acknowledgement 242</p> <p><b>Section 4: Enhanced Oil Recovery (EOR)</b></p> <p><b>15. Enhanced Oil Recovery Project: Dunvegan C Pool 247<br /> </b><i>Darryl Burns</i></p> <p>15.1 Introduction 248</p> <p>15.2 Pool Data Collection 249</p> <p>15.3 Pool Event Log 252</p> <p>15.4 Reservoir Fluid Characterization 255</p> <p>15.5 Material Balance 263</p> <p>15.6 Geological Model 264</p> <p>15.7 Geological Uncertainty 269</p> <p>15.8 History Match 272</p> <p>15.9 Black Oil to Compositional Model Conversion 282</p> <p>15.10 Recovery Alternatives 290</p> <p>15.11 Economics 307</p> <p>15.12 Economic Uncertainty 312</p> <p>15.13 Discussion and Learning 312</p> <p>15.14 End Note 317</p> <p><b>16. C02 Flooding as an EOR Method for Low Permeability Reservoirs 319<br /> </b><i>Yongle Hu, Yunpeng Hu, Qin Li, Lei Huang, Mingqiang Hao, and Siyu Yang</i></p> <p>16.1 Introduction 319</p> <p>16.2 Field Experiment of C02 Flooding in China 320</p> <p>16.3 Mechanism of C02 Flooding Displacement 321</p> <p>16.4 Perspective 324</p> <p>16.5 Conclusion 326</p> <p><b>17. Pilot Test Research on C02 Drive in Very Low Permeability Oil Field of in Daqing Changyuan 329<br /> </b><i>Weiyao Zhu, Jiecheng Cheng, Xiaohe Huang, Yunqian Long, and Y. Lou</i></p> <p>17.1 Introduction 329</p> <p>17.2 Laboratory Test Study on C02 Flooding in Oil Reservoirs with Very Low Permeability 330</p> <p>17.3 Field Testing Research 333</p> <p>17.4 Conclusion 346</p> <p>17.5 Acknowledgement 349</p> <p><b>18. Operation Control of C02-Driving in Field Site. Site Test in Wellblock Shu 101, Yushulin Oil Field, Daqing 351<br /> </b><i>Xinde Wan, Tao Sun, Yingzhi Zhang, Tiejun Yang, and Changhe Mu</i></p> <p>18.1 Test Area Description 352</p> <p>18.2 Test Effect and Cognition 353</p> <p>18.3 Conclusions 359</p> <p><b>19. Application of Heteropolysaccharide in Acid Gas Injection 361<br /> </b><i>Jie Zhang, Gang Guo and Shugang Li</i></p> <p>19.1 Introduction 361</p> <p>19.2 Application of Heteropolysaccharide in C02 Reinjection Miscible Phase Recovery 363</p> <p>19.3 Application of Heteropolysaccharide in H2S Reinjection formation 370</p> <p>19.4 Conclusions 373</p> <p><b>Section 5: Geology and Geochemistry</b></p> <p><b>20. Impact of S02 and NO on Carbonated Rocks Submitted to a Geological Storage of C02: An Experimental Study 377<br /> </b><i>Stéphane Renard, Jérôme Sterpenich, Jacques Pironon, Aurélien Randi, Pierre Chiquet and Marc Lescanne</i></p> <p>20.1 Introduction 377</p> <p>20.2 Apparatus and Methods 378</p> <p>20.3 Results and Discussion 381</p> <p>20.4 Conclusion 391</p> <p><b>21. Geochemical Modeling of Huff 'N' Puff Oil Recovery With C02 at the Northwest Mcgregor Oil Field 393<br /> </b><i>Yevhen I. Holubnyak, Blaise A.F. Mibeck, Jordan M. Bremer, Steven A. Smith, James A. Sorensen, Charles D. Gorecki, Edward N. Steadman, and John A. Harju</i></p> <p>21.1 Introduction 393</p> <p>21.2 Northwest McGregor Location and Geological Setting 395</p> <p>21.3 The Northwest McGregor Field, E. Goetz #1 Well Operational History 395</p> <p>21.4 Reservoir Mineralogy 397</p> <p>21.5 Preinjection and Postinjection Reservoir Fluid Analysis 398</p> <p>21.6 Major Observations and the Analysis of the Reservoir Fluid Sampling 400</p> <p>21.7 Laboratory Experimentations 401</p> <p>21.8 2-D Reservoir Geochemical Modeling with GEM 402</p> <p>21.9 Summary and Conclusions 403</p> <p>21.10 Acknowledgments 404</p> <p>21.11 Disclaimer 404</p> <p><b>22. Comparison of C02 and Acid Gas Interactions with reservoir fluid and Rocks at Williston Basin Conditions 407<br /> </b><i>Yevhen I. Holubnyak, Steven B. Hawthorne, Blaise A. Mibeck, David J. Miller, Jordan M. Bremer, Steven A. Smith, James A. Sorensen, Edward N. Steadman, and John A. Harju</i></p> <p>22.1 Introduction 407</p> <p>22.2 Rock Unit Selection 409</p> <p>22.3 C02 Chamber Experiments 411</p> <p>22.4 Mineralogical Analysis 412</p> <p>22.5 Numerical Modeling 413</p> <p>22.6 Results 413</p> <p>22.7 Carbonate Minerals Dissolution 414</p> <p>22.8 Mobilization of Fe 416</p> <p>22.9 Summary and Suggestions for Future Developments 418</p> <p>22.10 Acknowledgments 418</p> <p>22.11 Disclaimer 418</p> <p><b>Section 6: Well Technology</b></p> <p><b>23 Well Cement Aging in Various H2S-C02 Flui( is at High Pressure and High Temperature: Experiments and Modelling 423<br /> </b><i>Nicolas Jacquemet, Jacques Pironon, Vincent Lagneau, Jérémie Saint-Marc</i></p> <p>23.1 Introduction 424</p> <p>23.2 Experimental equipment 425</p> <p>23.3 Materials, Experimental Conditions and Analysis 426</p> <p>23.4 Results and Discussion 428</p> <p>23.5 Reactive Transport Modelling 430</p> <p>23.6 Conclusion 432</p> <p><b>24. Casing Selection and Correlation Technology for Ultra-Deep, Ultra- High Pressure, High H2S Gas Wells 437<br /> </b><i>Yongxing Sun, Yuanhua Lin, Taihe Shi, Zhongsheng Wang, Dajiang Zhu, Liping Chen, Sujun Liu, and Dezhi Zeng</i></p> <p>24.1 Introduction 438</p> <p>24.2 Material Selection Recommended Practice 438</p> <p>24.3 Casing Selection and Correlation Technology 441</p> <p>24.4 Field Applications 443</p> <p>24.4 Conclusions 445</p> <p>24.5 Acknowledgments 447</p> <p><b>25. Coupled Mathematical Model of Gas Migration in Cemented Annulus with Mud Column in Acid Gas Well 449<br /> </b><i>Hongjun Zhu, Yuanhua Lin, Yongxing Sun, Dezhi Zeng, Zhi Zhang, and Taihe Shi</i></p> <p>25.1 Introduction 449</p> <p>25.2 Coupled Mathematical Model 450</p> <p>25.3 Illustration 458</p> <p>25.4 Conclusions 459</p> <p>25.5 Nomenclature 460</p> <p>25.6 Acknowledgment 461</p> <p><b>Section 7: Corrosion</b></p> <p><b>26. Study on Corrosion Resistance of L245/825 Lined Steel Pipe Welding Gap in H2S+C02 Environment 465<br /> </b><i>Dezhi Zeng, Yuanhua Lin, Liming Huang, Daijiang Zhu, Tan Gu, Taihe Shi, and Yongxing Sun</i></p> <p>26.1 Introduction 466</p> <p>26.2 Welding Process of Lined Steel Pipe 466</p> <p>26.3 Corrosion Test Method of Straight and Ring Welding Gaps of L245/825 Lined Steel Pipe 467</p> <p>26.4 Corrosion Test Results of Straight and Ring Welding Gaps of 1245/825 Lined Steel Pipe 472</p> <p>26.5 Conclusions 477</p> <p>26.6 Acknowledgments 477</p> <p>References 477</p> <p><b>Index 479</b></p>
<p>"Each separately readable chapter is structured in introduction, experimentals, results and discussion. This allows a structured understanding.  Although this book does not solve all the questions raised when talking about safety and reliability of CCS-technology, it provides a base of knowledge. Increased research on this questions contributes to a tremendous extension of current knowledge, basing on this publication."  (<i>Materials & Corrosion</i>, 1 November 2012)</p> <p> </p> <p> </p>
<p><strong>Ying (Alice) Wu</strong> is currently the President of Sphere Technology Connection Ltd. (STC) in Calgary, Canada. From 1983 to 1999 she was an Assistant Professor and Researcher at Southwest Petroleum Institute (now Southwest Petroleum University, SWPU) in Sichuan, China. She received her MSc in Petroleum Engineering from the SWPU and her BSc in Petroleum Engineering from Daqing Petroleum University in Heilongjiang, China. <p>John J. Carroll, PhD, PEng is the Director, Geostorage Process Engineering for Gas Liquids Engineering, Ltd. in Calgary, Canada. Dr. Carroll holds bachelor and doctoral degrees in chemical engineering from the University of Alberta, Edmonton, Canada, and is a registered professional engineer in the provinces of Alberta and New Brunswick in Canada. His fist book, <em>Natural Gas Hydrates: A Guide for Engineers</em>, is now in its second edition, and he is the author or co-author of 50 technical publications and about 40 technical presentations.

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €