Details

Blue Biotechnology


Blue Biotechnology

Production and Use of Marine Molecules
1. Aufl.

von: Stephane La Barre, Stephen S. Bates

313,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 06.09.2018
ISBN/EAN: 9783527801725
Sprache: englisch
Anzahl Seiten: 984

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

With its integral treatment of ecosystem and resource management, this is the only overview of the field to address current thinking and future trends. All contributions have been written with the novice in mind, explaining the basics and highlighting recent developments and achievements.<br> Unmatched in scope, this two-volume reference covers both traditional and well-established areas of marine biotechnology, such as biomass production, alongside such novel ones as biofuels, biological protection of structures and bioinspired materials. In so doing, it ties together information usually only found in widely dispersed sources to assemble a grand unified view of the current state of and prospects for this multi-faceted discipline. <br> The combination of the breadth of topics and the focus on modern ideas make this introductory book especially suitable for teaching purposes and for guiding newcomers to the many possibilities offered by this booming field.
<p><b>Contents to Volume 1</b></p> <p>Preface xvii</p> <p><b>Part I Bulk Marine Biomass – Industrial Applications and Potential as Primary Sources 1</b></p> <p><b>1 Microalgae: A Renewable Resource for Food and Fuels and More 3<br /></b><i>Susan I. Blackburn and Kim Jye Lee-Chang</i></p> <p>1.1 Introduction 4</p> <p>1.2 Sourcing Microalgae: Algal Culture Collections 4</p> <p>1.3 Microalgal Production Systems 7</p> <p>1.4 Uses of Microalgal Bioproducts 11</p> <p>1.5 Chemotaxonomy: Setting the Stage for Selecting Biofuel Microalgae by Taxonomic Group 13</p> <p>1.6 Manipulating Microalgal Lipid Composition with Culture Growth Phase and Conditions 14</p> <p>1.7 High-Value Lipids: Long-Chain Polyunsaturated Fatty Acids 16</p> <p>1.8 High-Value Lipids: Carotenoid Pigments 18</p> <p>1.9 High-Value Bioproducts: Polysaccharides 20</p> <p>1.10 Wastewater Bioremediation and Bioproducts 20</p> <p>1.11 Other Bioapplications and the Potential for Bioengineering 21</p> <p>1.12 Conclusions 22</p> <p>Acknowledgments 22</p> <p>References 23</p> <p>About the Authors 32</p> <p><b>2 Commercial-Scale Production of Microalgae for Bioproducts 33<br /></b><i>Michael Borowitzka</i></p> <p>2.1 Introduction 33</p> <p>2.2 Commercial-Scale Production Systems 34</p> <p>2.3 Current Commercial Microalgae and Processes 39</p> <p>2.4 Potential New Products from Microalgae 50</p> <p>2.5 Regulations and Standards 54</p> <p>2.6 Conclusion 55</p> <p>References 56</p> <p>About the Author 65</p> <p><b>3 Ubiquitous Phlorotannins Prospects and Perspectives 67<br /></b><i>Emeline Creis, Erwan Ar Gall, and Philippe Potin</i></p> <p>3.1 Historical Background 67</p> <p>3.2 Biosynthetic Routes and Chemistry 68</p> <p>3.3 Subcellular Localization 72</p> <p>3.4 Extraction and Purification of Phlorotannins 73</p> <p>3.5 Identification Techniques 84</p> <p>3.6 Quantification 89</p> <p>3.7 Function of Phlorotannins in Brown Algae 90</p> <p>3.8 Phlorotannins: Molecules of Interest in Pharmaceutical, Cosmeceutical, Agriculture Biotechnology, and Industrial Polymer Applications 93</p> <p>3.9 Pharmacological Applications 93</p> <p>3.10 Conclusions and Prospects 96</p> <p>References 97</p> <p>About the Authors 115</p> <p><b>4 The Potential of Microalgae for Biotechnology: A Focus on Carotenoids 117<br /></b><i>Nicolas von Alvensleben and Kirsten Heimann</i></p> <p>4.1 Introduction 117</p> <p>4.2 Carotenoid Synthesis 118</p> <p>4.3 Functions of Microalgal Carotenoids 120</p> <p>4.4 Functional Benefits of Carotenoids as Nutraceuticals 126</p> <p>4.5 Conclusion 131</p> <p>References 131</p> <p>About the Authors 142</p> <p><b>5 Applications of Algal Biomass in Global Food and Feed Markets: From Traditional Usage to the Potential for Functional Products 143<br /></b><i>Yannick Lerat, M. L. Cornish, and Alan T. Critchley</i></p> <p>5.1 Introduction 143</p> <p>5.2 Algal Products 144</p> <p>5.3 Applications 161</p> <p>5.4 Conclusions 177</p> <p>References 178</p> <p>About the Authors 188</p> <p><b>6 Phytoplankton Glycerolipids: Challenging but Promising Prospects from Biomedicine to Green Chemistry and Biofuels 191<br /></b><i>Josselin Lupette and Eric Maréchal</i></p> <p>6.1 Introduction 191</p> <p>6.2 Fatty Acids, Membrane Glycerolipids, and Triacylglycerol in Phytoplankton 192</p> <p>6.3 General Principles of Glycerolipid Biosynthesis in Photosynthetic Cells 202</p> <p>6.4 Algae-Based Fatty Acids: Technological Challenges and Promising Applications 205</p> <p>6.5 Conclusions 207</p> <p>Acknowledgments 209</p> <p>List of Abbreviations 209</p> <p>References 210</p> <p>About the Authors 215</p> <p><b>7 The Bioremediation Potential of Seaweeds: Recycling Nitrogen, Phosphorus, and Other Waste Products 217<br /></b><i>Nicolas Neveux, John J. Bolton, Annette Bruhn, David A. Roberts, and Monique Ras</i></p> <p>7.1 Introduction 218</p> <p>7.2 Ulvales in the Bioremediation of Excess Nutrients 220</p> <p>7.3 Kelps in the Bioremediation of Excess Nutrients 224</p> <p>7.4 Bioremediation of Dissolved Metals with Seaweeds 227</p> <p>Acknowledgments 230</p> <p>References 230</p> <p>About the Authors 237</p> <p><b>8 Cultivation and Conversion of Tropical Red Seaweed into Food and Feed Ingredients, Agricultural Biostimulants, Renewable Chemicals, and Biofuel 241<br /></b><i>Shrikumar Suryanarayan, Iain C. Neish, Sailaja Nori, and Nelson Vadassery</i></p> <p>8.1 Cultivation 241</p> <p>8.2 MUZE Processing 246</p> <p>8.3 MUZE Products from Red Seaweed 247</p> <p>References 259</p> <p>About the Authors 263</p> <p><b>Part II Marine Molecules for Disease Treatment/Prevention and for Biological Research 265</b></p> <p><b>9 Use of Marine Compounds to Treat Ischemic Diseases 267<br /></b><i>Catherine Boisson-Vidal</i></p> <p>9.1 History of Natural Marine Products 268</p> <p>9.2 Peripheral Arterial Disease and Cardiovascular Risks: Treatments and Unmet Needs 274</p> <p>9.3 Chemistry 278</p> <p>9.4 Biological Properties 279</p> <p>9.5 Conclusion 288</p> <p>References 288</p> <p>About the Author 296</p> <p><b>10 Bioinspiration from Marine Scaffolds 297<br /></b><i>Stephan Böttcher, Angela Di Capua, JohnW. Blunt, and Ronald J. Quinn</i></p> <p>10.1 History of Marine Natural Products 297</p> <p>10.2 Chemical Space 301</p> <p>10.3 Self-Organizing Maps: Chemical Diversity of Marine NPs versus Plant NPs 311</p> <p>10.4 Conclusion 317</p> <p>References 317</p> <p>About the Authors 320</p> <p><b>11 Guanidinium Toxins: Natural Biogenic Origin, Chemistry, Biosynthesis, and Biotechnological Applications 323<br /></b><i>Lorena M. Durán-Riveroll, Allan D. Cembella, and José Correa-Basurto</i></p> <p>11.1 General Introduction to Guanidinium Toxins 324</p> <p>11.2 Biogenic Source and Vector Organisms 328</p> <p>11.3 Chemistry of Guanidinium Toxins 332</p> <p>11.4 Synthesis 340</p> <p>11.5 Mode of Action and Symptomology 348</p> <p>11.6 Existing and Potential Medical and Biotechnological Research Applications 354</p> <p>11.7 Conclusions 356</p> <p>11.8 Future Perspectives 357</p> <p>Acknowledgments 358</p> <p>References 358</p> <p>About the Authors 369</p> <p><b>12 Carrageenans: New Tools for New Applications 371<br /></b><i>Sabine Genicot, Aurélie Préchoux, Gaëlle Correc, Nelly Kervarec, Gaëlle Simon, and James S. Craigie</i></p> <p>12.1 Historical Background 372</p> <p>12.2 Chemistry 375</p> <p>12.3 Modern Uses of Carrageenans 387</p> <p>12.4 Blue Biotechnology for New Products and Applications 389</p> <p>12.5 Future Developments 399</p> <p>Acknowledgments 400</p> <p>References 400</p> <p>About the Authors 414</p> <p><b>13 Peptide Antibiotics from Marine Microorganisms 417<br /></b>Noer Kasanah</p> <p>13.1 Introduction 417</p> <p>13.2 Searching for New Peptide Antibiotics from Marine Microorganisms 419</p> <p>13.3 Genomic Approach for New Antibiotics 431</p> <p>13.4 Conclusions 436</p> <p>Acknowledgments 436</p> <p>References 436</p> <p>About the Author 443</p> <p><b>14 Recent Developments and Chemical Diversity of Cone Snails with Special Reference to Indian Cone Snails 445<br /></b><i>Satheesh Kumar Palanisamy, Senthil Kumar Dhanabalan, and Umamaheswari Sundaresan</i></p> <p>14.1 Introduction 445</p> <p>14.2 Cone Snails’ Global Distribution and Ecology 446</p> <p>14.3 Research on Indian Cone Snails 450</p> <p>14.4 Biology of Conus 457</p> <p>14.5 Conus Envenomation: Nonfatal and Fatal Reports 459</p> <p>14.6 Chemical Diversity of Cone Snails 461</p> <p>14.7 Diversity of Conopeptides in Indian Cone Snails 468</p> <p>14.8 Therapeutic Application of Conus Conopeptides 471</p> <p>14.9 Recent Developments and Future Directions 472</p> <p>14.10 Concluding Remarks 473</p> <p>Acknowledgments 473</p> <p>References 474</p> <p>About the Authors 483</p> <p><b>15 Marine Polysaccharides and Their Importance for Human Health 485<br /></b><i>Paola Laurienzo</i></p> <p><b>16 Marennine-Like Pigments: Blue Diatom or Green Oyster Cult? 529<br /></b><i>Romain Gastineau, Fiddy S. Prasetiya, Charlotte Falaise, Bruno Cognie, Priscilla Decottignies,MichèleMorançais, VonaMéléder, Nikolai Davidovich, François Turcotte, Réjean Tremblay, Pamela Pasetto, Jens Dittmer, Jean-François Bardeau, Jean-Bernard Pouvreau, and Jean-LucMouget</i></p> <p><b>17 Bioprospecting and Insights into the Biosynthesis of Natural Products from Marine Microalgae 553<br /></b><i>Angela H. Soeriyadi, Sarah E. Ongley, Caitlin S. Romanis, and Brett A. Neilan</i></p> <p><b>18 Ovothiol: A Potent Natural Antioxidant from Marine Organisms 583<br /></b><i>Anna Palumbo, Immacolata Castellano, and Alessandra Napolitano</i></p> <p><b>19 Bioactive Marine Molecules and Derivatives with Biopharmaceutical Potential 611<br /></b><i>George Schroeder, Stephen S. Bates, and Stéphane La Barre</i></p> <p><b>20 Marine Pigment Diversity: Applications and Potential 643<br /></b><i>Benoît Serive and Stéphane Bach</i></p> <p><b>21 Potential Applications of Natural Bioactive Cyanobacterial UV-Protective Compounds 683<br /></b><i>Richa, Jainendra Pathak, Arun S. Sonker, Vidya Singh, and Rajeshwar P. Sinha</i></p> <p><b>22 Bio-Inspired Molecules Extracted from Marine Macroalgae: A New Generation of Active Ingredients for Cosmetics and Human Health 709<br /></b><i>Valérie Stiger-Pouvreau and Fabienne Guerard</i></p> <p><b>23 Emerging Therapeutic Potential of Marine Dinoflagellate Natural Products 747<br /></b><i>Wendy K. Strangman,Matthew M. Anttila, and Jeffrey L. C.Wright</i></p> <p><b>24 How Fluorescent and Bioluminescent Proteins Have Changed Modern Science 771<br /></b><i>Marc Zimmer</i></p> <p><b>Part III Biostructures, Biomaterials, and Biomolecules for other Applications 789</b></p> <p><b>25 Antimicrobial and Antibiofilm Molecules Produced by Marine Bacteria 791<br /></b><i>Florie Desriac, Sophie Rodrigues, Ibtissem Doghri, Sophie Sablé, Isabelle Lanneluc, Yannick Fleury, Alexis Bazire, and Alain Dufour</i></p> <p><b>26 Chitin of Poriferan Origin as a Unique Biological Material 821<br /></b><i>Hermann Ehrlich</i></p> <p><b>27 Marine Biominerals with a Biotechnological Future 855<br /></b><i>Stéphane La Barre and Stephen S. Bates</i></p> <p>Postface 913</p> <p>Index 915</p> <p><b>Contents to Volume 1</b></p> <p>Preface xvii</p> <p><b>Part I Bulk Marine Biomass – Industrial Applications and Potential as Primary Sources 1</b></p> <p>1 Microalgae: A Renewable Resource for Food and Fuels and More 3<br /><i>Susan I. Blackburn and Kim Jye Lee-Chang</i></p> <p>2 Commercial-Scale Production of Microalgae for Bioproducts 33<br /><i>Michael Borowitzka</i></p> <p>3 Ubiquitous Phlorotannins Prospects and Perspectives 67<br /><i>Emeline Creis, Erwan Ar Gall, and Philippe Potin</i></p> <p>4 The Potential of Microalgae for Biotechnology: A Focus on Carotenoids 117<br /><i>Nicolas von Alvensleben and Kirsten Heimann</i></p> <p>5 Applications of Algal Biomass in Global Food and Feed Markets: From Traditional Usage to the Potential for Functional Products 143<br /><i>Yannick Lerat, M. L. Cornish, and Alan T. Critchley</i></p> <p>6 Phytoplankton Glycerolipids: Challenging but Promising Prospects from Biomedicine to Green Chemistry and Biofuels 191<br /><i>Josselin Lupette and Eric Maréchal</i></p> <p>7 The Bioremediation Potential of Seaweeds: Recycling Nitrogen, Phosphorus, and Other Waste Products 217<br /><i>Nicolas Neveux, John J. Bolton, Annette Bruhn, David A. Roberts, and Monique Ras</i></p> <p>8 Cultivation and Conversion of Tropical Red Seaweed into Food and Feed Ingredients, Agricultural Biostimulants, Renewable Chemicals, and Biofuel 241<br /><i>Shrikumar Suryanarayan, Iain C. Neish, Sailaja Nori, and Nelson Vadassery</i></p> <p><b>Part II Marine Molecules for Disease Treatment/Prevention and for Biological Research 265</b></p> <p>9 Use of Marine Compounds to Treat Ischemic Diseases 267<br /><i>Catherine Boisson-Vidal</i></p> <p>10 Bioinspiration from Marine Scaffolds 297<br /><i>Stephan Böttcher, Angela Di Capua, JohnW. Blunt, and Ronald J. Quinn</i></p> <p>11 Guanidinium Toxins: Natural Biogenic Origin, Chemistry, Biosynthesis, and Biotechnological Applications 323<br /><i>Lorena M. Durán-Riveroll, Allan D. Cembella, and José Correa-Basurto</i></p> <p>12 Carrageenans: New Tools for New Applications 371<br /><i>Sabine Genicot, Aurélie Préchoux, Gaëlle Correc, Nelly Kervarec, Gaëlle Simon, and James S. Craigie</i></p> <p>13 Peptide Antibiotics from Marine Microorganisms 417<br /><i>Noer Kasanah</i></p> <p>14 Recent Developments and Chemical Diversity of Cone Snails with Special Reference to Indian Cone Snails 445<br /><i>Satheesh Kumar Palanisamy, Senthil Kumar Dhanabalan, and Umamaheswari Sundaresan</i></p> <p><b>Contents to Volume 2</b></p> <p>Preface xv</p> <p><b>15 Marine Polysaccharides and Their Importance for Human Health 485<br /></b><i>Paola Laurienzo</i></p> <p>15.1 General Properties of Polysaccharides 485</p> <p>15.2 Marine Polysaccharides from Macroalgae 495</p> <p>15.2.1 Sulfated Polysaccharides 495</p> <p>15.3 Marine Polysaccharides from Marine Animals 503</p> <p>15.4 Marine Polysaccharides (EPS) from Microalgae 513</p> <p>15.5 Conclusions 515</p> <p>Dedication 515</p> <p>References 515</p> <p>About the Author 527</p> <p><b>16 Marennine-Like Pigments: Blue Diatom or Green Oyster Cult? 529<br /></b><i>Romain Gastineau, Fiddy S. Prasetiya, Charlotte Falaise, Bruno Cognie, Priscilla Decottignies,MichèleMorançais, VonaMéléder, Nikolai Davidovich, François Turcotte, Réjean Tremblay, Pamela Pasetto, Jens Dittmer, Jean-François Bardeau, Jean-Bernard Pouvreau, and Jean-LucMouget</i></p> <p>16.1 Introduction 530</p> <p>16.2 Background on the Biodiversity of Blue Haslea Species and Marennine-Like Pigments 531</p> <p>16.3 Green Oysters: The Bivalve Point of View 532</p> <p>16.4 Can Histology Elucidate the Greening Mechanism? 536</p> <p>16.5 Raman Spectroscopy for Sensing Haslea ostrearia, Marennine, and Green-Gill Oysters 536</p> <p>16.6 Advances in Elucidating the Structure of Marennine-Like Pigments 538</p> <p>16.7 Colorimetric Analyses 539</p> <p>16.8 Can Blue Haslea Species Be Considered as Probiotics for Use in Aquaculture? 541</p> <p>16.9 Potential Applications for Blue Biotechnologies and Current Issues 542</p> <p>16.10 Conclusion 544</p> <p>Acknowledgments 544</p> <p>References 544</p> <p>About the Authors 549</p> <p><b>17 Bioprospecting and Insights into the Biosynthesis of Natural Products from Marine Microalgae 553<br /></b><i>Angela H. Soeriyadi, Sarah E. Ongley, Caitlin S. Romanis, and Brett A. Neilan</i></p> <p>17.1 Introduction 553</p> <p>17.2 Biosynthesis of Natural Products from Cyanobacteria 556</p> <p>17.3 Tools for the Discovery and Characterization of Marine Bioactive Natural Products 568</p> <p>17.4 Conclusions 569</p> <p>Acknowledgment 570</p> <p>References 570</p> <p>About the Authors 581</p> <p><b>18 Ovothiol: A Potent Natural Antioxidant from Marine Organisms 583<br /></b><i>Anna Palumbo, Immacolata Castellano, and Alessandra Napolitano</i></p> <p>18.1 Historical Background 583</p> <p>18.2 Occurrence of Ovothiols 586</p> <p>18.3 Chemistry 587</p> <p>18.4 Biosynthesis 595</p> <p>18.5 Biological Roles of Ovothiols 598</p> <p>18.6 Ovothiol Derivatives 601</p> <p>18.7 Biological Activities of Ovothiols 603</p> <p>18.8 Conclusions 604</p> <p>References 604</p> <p>About the Authors 609</p> <p><b>19 Bioactive Marine Molecules and Derivatives with Biopharmaceutical Potential 611<br /></b><i>George Schroeder, Stephen S. Bates, and Stéphane La Barre</i></p> <p>19.1 Introduction 612</p> <p>19.2 Challenges Facing the Discovery and Development of Marine Biopharmaceuticals 613</p> <p>19.3 Bioactive Metabolites and Molecules 614</p> <p>19.4 Methods Used in Biopharmaceutical Research: “From Molecule to Market” 623</p> <p>19.5 Conclusions 632</p> <p>References 633</p> <p>About the Authors 640</p> <p><b>20 Marine Pigment Diversity: Applications and Potential 643<br /></b><i>Benoît Serive and Stéphane Bach</i></p> <p>20.1 Introduction 644</p> <p>20.2 Pigments in Aquaculture 650</p> <p>20.3 Pigments for Cosmetics and Cosmeceutical Applications 651</p> <p>20.4 Pigments in Functional Food and Nutraceuticals 653</p> <p>20.5 Pigments for Pharmaceuticals and Therapies 656</p> <p>20.6 Pigments in Other Applications 665</p> <p>20.7 Sourcing and Beyond 667</p> <p>20.8 Conclusion 671</p> <p>Acknowledgment 672</p> <p>Funding 673</p> <p>References 673</p> <p>About the Authors 680</p> <p><b>21 Potential Applications of Natural Bioactive Cyanobacterial UV-Protective Compounds 683<br /></b><i>Richa, Jainendra Pathak, Arun S. Sonker, Vidya Singh, and Rajeshwar P. Sinha</i></p> <p>21.1 Introduction 683</p> <p>21.2 UV Screening Compounds 685</p> <p>21.3 Biosynthesis of Cyanobacterial Photoprotective Compounds 687</p> <p>21.4 Functions and Applications of UV Protective Compounds 693</p> <p>21.5 Conclusion 697</p> <p>Acknowledgments 698</p> <p>References 698</p> <p>About the Authors 706</p> <p><b>22 Bio-Inspired Molecules Extracted from Marine Macroalgae: A New Generation of Active Ingredients for Cosmetics and Human Health 709<br /></b><i>Valérie Stiger-Pouvreau and Fabienne Guerard</i></p> <p>22.1 What are Marine Macroalgae/Seaweeds? 709</p> <p>22.2 Life in the Marine Environment and Its Constraints 710</p> <p>22.3 Selected Chemical Strategies Developed by Macroalgae 712</p> <p>22.4 Extraction of Ingredients (Osmolytes, Polyphenols, and Alginates) 720</p> <p>22.5 Cosmetological Applications of Ingredients 722</p> <p>22.6 Medical Applications of Ingredients: Wound Dressing and Skin Regeneration 728</p> <p>22.7 Conclusion 734</p> <p>References 735</p> <p>About the Authors 746</p> <p><b>23 Emerging Therapeutic Potential of Marine Dinoflagellate Natural Products 747<br /></b><i>Wendy K. Strangman, Matthew M. Anttila, and Jeffrey L. C.Wright</i></p> <p>23.1 Introduction 747</p> <p>23.2 Neosaxitoxin and Gonyautoxin: A New Class of Analgesics 748</p> <p>23.3 Brevenal: A Potential New Therapeutic for Cystic Fibrosis 754</p> <p>23.4 Cyclic Imine Toxins: Potential Neurodegenerative Disease Drug Leads 756</p> <p>23.5 Neuropharmacology and Biotechnology Applications of Cyclic Imine Toxins 760</p> <p>23.6 Conclusions 762</p> <p>References 762</p> <p>About the Authors 769</p> <p><b>24 How Fluorescent and Bioluminescent Proteins Have Changed Modern Science 771<br /></b><i>Marc Zimmer</i></p> <p>24.1 Introduction 771</p> <p>24.2 Bioluminescence 771</p> <p>24.3 Organisms that Fluorescence 777</p> <p>24.4 Conclusion 782</p> <p>References 784</p> <p>About the Author 788</p> <p><b>Part III Biostructures, Biomaterials, and Biomolecules for other Applications 789</b></p> <p><b>25 Antimicrobial and Antibiofilm Molecules Produced by Marine Bacteria 791<br /></b><i>Florie Desriac, Sophie Rodrigues, Ibtissem Doghri, Sophie Sablé, Isabelle Lanneluc, Yannick Fleury, Alexis Bazire, and Alain Dufour</i></p> <p>25.1 Introduction 791</p> <p>25.2 Antimicrobial Compounds from Marine Bacteria 793</p> <p>25.3 Antibiofilm Molecules 796</p> <p>25.4 AlpP and LodA: More Than Just Antimicrobial Proteins 803</p> <p>25.5 Conclusion 808</p> <p>Acknowledgments 809</p> <p>References 809</p> <p>About the Authors 819</p> <p><b>26 Chitin of Poriferan Origin as a Unique Biological Material 821<br /></b><i>Hermann Ehrlich</i></p> <p>26.1 Historical Background 821</p> <p>26.2 Sponges (Porifera) as a Source of Chitin 823</p> <p>26.3 Principles of Sponge Chitin Isolation and Identification 830</p> <p>26.4 Structural and Physicochemical Properties of Sponge Chitin 835</p> <p>26.5 Poriferan Chitin, Tissue Engineering, and Stem Cell Research 837</p> <p>26.6 Poriferan Chitin and Extreme Biomimetics 842</p> <p>26.7 Conclusions 845</p> <p>Acknowledgments 847</p> <p>References 847</p> <p>About the Author 853</p> <p><b>27 Marine Biominerals with a Biotechnological Future 855<br /></b><i>Stéphane La Barre and Stephen S. Bates</i></p> <p>27.1 Introduction 856</p> <p>27.2 Calcium Carbonate-Based Biominerals 859</p> <p>27.3 Silica-Based Marine Biominerals 870</p> <p>27.4 Heavy-Metal Bioaccumulations 878</p> <p>27.5 Marine Biominerals and Composites in Novel Technologies 882</p> <p>27.6 Biointegrative Solutions from Nano to Macro to Giga 897</p> <p>Acknowledgments 898</p> <p>References 898</p> <p>About the Authors 912</p> <p>Postface 913</p> <p>Index 915</p>
Stephane La Barre is a Senior Research Scientist retired from the French Centre National de la Recherche Scientifique. He obtained his MSc. degree from Auckland University, New Zealand, and his PhD from James Cook University (Townsville, Australia), before entering CNRS in 1984. His multi-disciplinary career includes marine chemical ecology, natural products chemistry of terrestrial and marine organisms and polymer chemistry. Stephane was coordinator of the research cluster BioChiMar (Marine Biodiversity and Chemodiversity), and is currently developing research on new analytical tools to evaluate and predict environmental changes on coral reef diversity, both biological and chemical.<br> <br> Stephen S. Bates is a Scientist Emeritus with Fisheries and Oceans Canada (DFO). He obtained his MSc. Degree in Marine Biology from the City College of New York, and his PhD in Biological Oceanography from Dalhousie University (Halifax, Canada). He has held post-doctoral positions at the University of Quebec (INRS-Eau), the Bedford Institute of Oceanography (Dartmouth, NS), and the National Research Council (Halifax, NS). His research has centered on the physiological ecology of marine phytoplankton, with special interests in methods for assessing their growth and physiology. At DFO, his specialty has been the physiological ecology of harmful algal blooms, especially those diatom blooms that produce the neurotoxin, domoic acid, which causes amnesic shellfish poisoning.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €