Details

Biorefinery Production Technologies for Chemicals and Energy


Biorefinery Production Technologies for Chemicals and Energy


1. Aufl.

von: Arindam Kuila, Mainak Mukhopadhyay

193,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 22.09.2020
ISBN/EAN: 9781119593089
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy.</b></p> <p>The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals.</p> <p>The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach.</p> <p>The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.</p>
<p>Preface xv</p> <p><b>Part 1: Biorefinery Basic Principles 1</b></p> <p><b>1 Principles of Sustainable Biorefinery 3<br /></b><i>Samakshi Verma and Arindam Kuila</i></p> <p>1.1 Introduction 3</p> <p>1.2 Biorefinery 5</p> <p>1.3 Conversion Technologies of Biorefineries 6</p> <p>1.4 Some Outlooks Toward Biorefinery Technologies 7</p> <p>1.5 Principles of Sustainable Biorefineries 9</p> <p>1.6 Advantages of Biorefineries 10</p> <p>1.7 Classification of Biorefineries 10</p> <p>1.8 Conclusion 12</p> <p>References 12</p> <p><b>2 Sustainable Biorefinery Concept for Industrial Bioprocessing 15<br /></b><i>Mohd Asyraf Kassim, Tan Kean Meng, Noor Aziah Serri, Siti Baidurah Yusoff, Nur Artikah Muhammad Shahrin, Khok Yong Seng, Mohamad Hafizi Abu Bakar and Lee Chee Keong</i></p> <p>2.1 Sustainable Industrial Bioprocess 15</p> <p>2.2 Biorefinery 16</p> <p>2.2.1 Starch Biorefinery 18</p> <p>2.2.2 Lignocellulosic Biorefinery 19</p> <p>2.3 Microalgal Biorefinery 22</p> <p>2.3.1 Upstream Processing 23</p> <p>2.3.2 Downstream Processing 24</p> <p>2.3.2.1 Lipid-Extracted Microalgae 24</p> <p>2.4 Value Added Products 27</p> <p>2.4.1 Biofuel 27</p> <p>2.4.1.1 Bioethanol 30</p> <p>2.4.1.2 Biobutanol 31</p> <p>2.4.1.3 Biodiesel 34</p> <p>2.4.1.4 Short Alkane 36</p> <p>2.4.2 Polyhydroxyalkanoates (PHA) 36</p> <p>2.4.3 Bioactive Compounds From Food Waste Residues 39</p> <p>2.5 Novel Immobilize Carrier From Biowaste 42</p> <p>2.5.1 Waste Cassava Tuber Fiber 42</p> <p>2.5.2 Corn Silk 43</p> <p>2.5.3 Sweet Sorghum Bagasse 43</p> <p>2.5.4 Coconut Shell Activated Carbon 44</p> <p>2.5.5 Sugar Beet Pulp 44</p> <p>2.5.6 Eggshells 45</p> <p>2.6 Conclusion 45</p> <p>References 46</p> <p><b>3 Biomass Resources for Biorefinery Application 55<br /></b><i>Varsha Upadhayay, Ritika Joshi and Arindam Kuila</i></p> <p>3.1 Introduction 55</p> <p>3.2 Concept of Biorefinery 56</p> <p>3.3 Biomass Feedstocks 57</p> <p>3.3.1 Types of Biomass Feedstocks 57</p> <p>3.3.1.1 Biomass of Sugar Industry 57</p> <p>3.3.1.2 Biomass Waste 58</p> <p>3.3.1.3 Sugar and Starch Biomass 59</p> <p>3.3.1.4 Algal Biomass 59</p> <p>3.3.1.5 Lignocelluloses Feedstock 59</p> <p>3.3.1.6 Oil Crops for Biodiesel 60</p> <p>3.4 Processes 60</p> <p>3.4.1 Thermo Chemical Processes 62</p> <p>3.4.2 Biochemical Processes 63</p> <p>3.4.3 Biobased Products and the Biorefinery Concept 64</p> <p>3.5 Conclusions 64</p> <p>References 65</p> <p><b>4 Evaluation of the Refinery Efficiency and Indicators for Sustainability and Economic Performance 67<br /></b><i>Rituparna Saha and Mainak Mukhopadhyay</i></p> <p>4.1 Introduction 67</p> <p>4.2 Biofuels and Biorefineries: Sustainability Development and Economic Performance 69</p> <p>4.3 Future Developments Required for Building a Sustainable Biorefinery System 72</p> <p>4.4 Conclusion 72</p> <p>References 73</p> <p><b>5 Biorefinery: A Future Key of Potential Energy 77<br /></b><i>Anirudha Paul, Sampad Ghosh, Saptarshi Konar and Anirban Ray</i></p> <p>5.1 Introduction 77</p> <p>5.2 Biorefinery: Definitions and Descriptions 78</p> <p>5.3 Modus Operandi of Different Biorefineries 79</p> <p>5.3.1 Thermochemical Processing 79</p> <p>5.3.2 Mechanical Processing 79</p> <p>5.3.3 Biochemical Processing 79</p> <p>5.3.4 Chemical Processing 79</p> <p>5.4 Types of Biorefineries 80</p> <p>5.4.1 Lignocellulose Feedstock Biorefinery 80</p> <p>5.4.2 Syngas Platform Biorefinery 81</p> <p>5.4.3 Marine Biorefinery 81</p> <p>5.4.4 Oleochemical Biorefinery 81</p> <p>5.4.5 Green Biorefinery 81</p> <p>5.4.6 Whole Crop Biorefinery 82</p> <p>5.5 Some Biorefinery Industries 82</p> <p>5.5.1 European Biorefinery Companies 82</p> <p>5.5.2 Biorefinery Companies in USA 82</p> <p>5.5.3 Biorefinery Companies in Asia 83</p> <p>5.6 Conclusion and Future of Biorefinery 83</p> <p>References 84</p> <p><b>Part 2: Biorefinery for Production of Chemicals 89</b></p> <p><b>6 Biorefinery for Innovative Production of Bioactive Compounds from Vegetable Biomass 91<br /></b><i>Massimo Lucarini, Alessandra Durazzo, Ginevra Lombardi-Boccia, Annalisa Romani, Gianni Sagratini, Noemi Bevilacqua, Francesca Ieri, Pamela Vignolini, Margherita Campo and Francesca Cecchini</i></p> <p>6.1 Introduction 91</p> <p>6.2 Waste From Grape and During Vinification: Bioactive Compounds and Innovative Production 92</p> <p>6.2.1 Grape 92</p> <p>6.2.2 Polyphenols 92</p> <p>6.2.3 Antioxidant Activity and Health Properties of Grape 94</p> <p>6.2.4 Winemaking Technologies 96</p> <p>6.2.5 Winemaking By-Products 96</p> <p>6.2.6 Extraction Technologies 97</p> <p>6.3 Waste from Olive and During Oil Production: Bioactive Compounds and Innovative Process 99</p> <p>6.3.1 Olive Oil Quality, its Components, and Beneficial Properties 100</p> <p>6.3.2 Olive Oil By-Products 108</p> <p>6.3.3 Olive Oil, Tradition, Biodiversity, Territory, and Sustainability 113</p> <p>6.4 Bioactive Compounds in Legume Residues 115</p> <p>6.4.1 Polyphenols 116</p> <p>6.4.2 Phytosterols and Squalene 116</p> <p>6.4.3 Dietary Fiber and Resistant Starch 117</p> <p>6.4.4 Soyasaponins 117</p> <p>6.4.5 Bioactive Peptides 118</p> <p>References 120</p> <p><b>7 Prospects of Bacterial Tannase Catalyzed Biotransformation of Agro and Industrial Tannin Waste to High Value Gallic Acid 129<br /></b><i>Sunny Dhiman and Gunjan Mukherjee</i></p> <p>7.1 Introduction 129</p> <p>7.2 Bacterial Tannase Producers 131</p> <p>7.3 Bacterial Tannase Production 131</p> <p>7.4 Hydrolyzable Tannins: A Substrate for Gallic Acid Production 133</p> <p>7.5 Tannins as Waste 133</p> <p>7.5.1 Agro-Waste 133</p> <p>7.5.2 Industrial Waste 134</p> <p>7.6 Bacterial Biotransformation of Tannins 134</p> <p>7.7 Applications of Gallic Acid 136</p> <p>7.7.1 Therapeutic Applications 136</p> <p>7.7.2 Industrial Applications 137</p> <p>7.8 Conclusions 138</p> <p>References 138</p> <p><b>8 Biorefinery Approach for Production of Industrially Important C4, C5, and C6 Chemicals 145<br /></b><i>Shritoma Sengupta and Aparna Sen</i></p> <p>8.1 Introduction 145</p> <p>8.2 Role of Biorefinery in Industrially Important Chemical Production 147</p> <p>8.3 Production of C4 Chemicals 149</p> <p>8.4 Production of C5 Chemicals 152</p> <p>8.5 Production of C6 Chemicals 155</p> <p>8.6 Concluding Remarks 157</p> <p>References 158</p> <p><b>9 Value-Added Products from Guava Waste by Biorefinery Approach 163<br /></b><i>Pranav D. Pathak, Sachin A. Mandavgane and Bhaskar D. Kulkarni</i></p> <p>9.1 Introduction 163</p> <p>9.2 Physicochemical Characterization 164</p> <p>9.3 Valorization of GW 165</p> <p>9.3.1 Medicinal Uses 165</p> <p>9.3.1.1 GL, GB, and GF in Medicines 166</p> <p>9.3.1.2 GP in Medicines 169</p> <p>9.3.2 Extraction of Chemicals 171</p> <p>9.3.2.1 Extraction from GL 171</p> <p>9.3.2.2 Extraction from GP 176</p> <p>9.3.2.3 Extraction from GS 176</p> <p>9.3.3 Food Supplements 177</p> <p>9.3.4 Extraction of Pectin 178</p> <p>9.3.5 Animal Feed 178</p> <p>9.3.6 As Insecticide 179</p> <p>9.3.7 Synthesis of Nanomaterials 180</p> <p>9.3.8 In Fermentations 180</p> <p>9.3.9 As a Water Treatment Agent 181</p> <p>9.3.10 Production of Enzymes 181</p> <p>9.4 Sustainability of Value-Added Products From GW 181</p> <p>9.5 Conclusion 189</p> <p>References 189</p> <p><b>10 Case-Studies Towards Sustainable Production of Value-Added Compounds in Agro-Industrial Wastes 197<br /></b><i>Massimo Lucarini, Alessandra Durazzo, Ginevra Lombardi-Boccia, Annalisa Romani, Gianni Sagratini, Noemi Bevilacqua, Francesca Ieri, Pamela Vignolini, Margherita Campo and Francesca Cecchini</i></p> <p>10.1 Introduction 197</p> <p>10.2 Experimental Pilot Plant 199</p> <p>10.2.1 Chestnut 199</p> <p>10.2.2 Soy 204</p> <p>10.2.3 Olive Oil By-Products Case Studies 213</p> <p>10.2.3.1 Olive Oil Wastewater 213</p> <p>10.2.3.2 <i>Olea europaea L. </i>leaves 214</p> <p>References 216</p> <p><b>11 Biorefining of Lignocellulosics for Production of Industrial Excipients of Varied Functionalities 221<br /></b><i>UpadrastaLakshmishri Roy, DebabrataBera, Sreemoyee Chakraborty and Ronit Saha</i></p> <p>11.1 Introduction 221</p> <p>11.2 Structure and Composition 222</p> <p>11.3 Lignocellulosic Residues: A Bioreserve for Fermentable Sugars and Polyphenols 222</p> <p>11.3.1 Biorefining of Lignocellulosic Residues 223</p> <p>11.4 Pre-Treatment of Lignocellulosics 224</p> <p>11.4.1 Physico-Chemical Process 224</p> <p>11.4.1.1 Acid Refining 224</p> <p>11.4.1.2 Alcohol Refining 225</p> <p>11.4.1.3 Alkali Refining 225</p> <p>11.4.2 Thermo-Physical Process 226</p> <p>11.4.2.1 Steam Explosion Process 226</p> <p>11.4.2.2 Supercritical and Subcritical Water Treatment 226</p> <p>11.4.2.3 Hot-Compressed Water Treatment 227</p> <p>11.4.3 Biological Process 227</p> <p>11.4.3.1 Lignin Degrading Enzymes 227</p> <p>11.4.3.2 Cellulose Degrading Enzymes 229</p> <p>11.4.3.3 Hemicellulose Degrading Enzymes 229</p> <p>11.4.4 Phenols as By-Products of Lignocellulosic Pre-Treatment Process 230</p> <p>11.5 Methods of Extraction of Polyphenols From Lignocellulosic Biomass 231</p> <p>11.5.1 Solvent Affiliated Extraction 231</p> <p>11.5.2 Enzyme Affiliated Extraction 231</p> <p>11.5.3 Advanced Technological Methods Adopted for Recovery of Phenolics: (Pulsed-Electric-Field Pre-Treatment) 232</p> <p>11.5.4 Catalytic Microwave Pyrolysis 233</p> <p>11.5.5 Multifaceted Applications of Phenolics 233</p> <p>11.6 Conclusion 235</p> <p>References 235</p> <p><b>12 Bioactive Compounds Production from Vegetable Biomass: A Biorefinery Approach 241<br /></b><i>Shritoma Sengupta, Debalina Bhattacharya and Mainak Mukhopadhyay</i></p> <p>12.1 Introduction 241</p> <p>12.2 Production of Bioactive Compounds 243</p> <p>12.3 Bioactive Compounds From Vegetable Biomass 246</p> <p>12.4 Role of Biorefinery in Production of Bioactive Compounds 248</p> <p>12.5 Concluding Remarks 252</p> <p>References 253</p> <p><b>Part 3: Biorefinery for Production of Alternative Fuel and Energy 259</b></p> <p><b>13 Potential Raw Materials and Production Technologies for Biorefineries 261<br /></b><i>Shilpi Bansal, Lokesh Kumar Narnoliya and Ankit Sonthalia</i></p> <p>13.1 Introduction 261</p> <p>13.2 Bioresources 264</p> <p>13.2.1 First-Generation Feedstock 264</p> <p>13.2.2 Second-Generation Feedstock 264</p> <p>13.2.3 Third-Generation Feedstock 270</p> <p>13.3 Chemicals Produced from Biomass 270</p> <p>13.3.1 Ethylene 270</p> <p>13.3.2 Propylene 273</p> <p>13.3.3 Propylene Glycol 273</p> <p>13.3.4 Butadiene 274</p> <p>13.3.5 2,3-Butanediol and 2-Butanone Methyl Ethyl Ketone (MEK) 274</p> <p>13.3.6 Acrylic Acid 274</p> <p>13.3.7 Aromatic Compounds 275</p> <p>13.4 Production Technologies 275</p> <p>13.4.1 Pre-Treatment 275</p> <p>13.4.2 Hydrolysis 276</p> <p>13.4.3 Fermentation 277</p> <p>13.4.4 Pyrolysis 278</p> <p>13.4.5 Gasification 278</p> <p>13.4.6 Supercritical Water 279</p> <p>13.4.7 Algae Biomass 280</p> <p>13.5 Conclusion 280</p> <p>References 281</p> <p><b>14 Sustainable Production of Biofuels Through Synthetic Biology Approach 289<br /></b><i>Dulam Sandhya, Phanikanth Jogam, Lokesh Kumar Narnoliya, Archana Srivastava and Jyoti Singh Jadaun</i></p> <p>14.1 Introduction 289</p> <p>14.2 Types of Biofuel 291</p> <p>14.2.1 First-Generation Biofuels (Conventional Biofuels) 291</p> <p>14.2.1.1 Biogas 291</p> <p>14.2.1.2 Biodiesel and Bioethanol 291</p> <p>14.2.2 Second-Generation Biofuels 292</p> <p>14.2.2.1 Cellulosic Ethanol 293</p> <p>14.2.2.2 Biomethanol 293</p> <p>14.2.2.3 Dimethylformamide 293</p> <p>14.2.3 Third-Generation Biofuels 293</p> <p>14.2.4 Fourth-Generation Biofuels 293</p> <p>14.2.5 Advantages of Biofuels 294</p> <p>14.2.6 Disadvantages of Biofuels 294</p> <p>14.3 Sources of Biofuel 294</p> <p>14.3.1 Bacterial Source 294</p> <p>14.3.2 Algal Source 296</p> <p>14.3.3 Fungal Source 296</p> <p>14.3.4 Plant Source 297</p> <p>14.3.4.1 Plant Materials Utilized for the Production of Biofuels 298</p> <p>14.3.5 Animal Source 299</p> <p>14.4 Possible Routes of Biofuel Production Through Synthetic Biology 299</p> <p>14.4.1 Metabolic Engineering 299</p> <p>14.4.2 Tissue Culture/Genetic Engineering 300</p> <p>14.4.3 CRISPR-Cas 300</p> <p>14.5 Synthetic Biology and Its Application for Biofuels Production 301</p> <p>14.5.1 Case Study 1: Production of Isobutanol by Engineered <i>Saccharomyces cerevisiae </i>301</p> <p>14.5.2 Case Study 2: Generation of Biofuel From Ionic Liquid Pretreated Plant Biomass Using Engineered <i>E. coli </i>302</p> <p>14.5.3 Case Study 3: CRISPRi-Mediated Metabolic Pathway Modulation for Isopentenol Production in <i>E. coli </i>302</p> <p>14.6 Current Status of Biofuel 302</p> <p>14.7 Future Aspects 303</p> <p>14.8 Conclusion 304</p> <p>References 304</p> <p><b>15 Biorefinery Approach for Bioethanol Production 313<br /></b><i>Rituparna Saha, Debalina Bhattacharya and Mainak Mukhopadhyay</i></p> <p>15.1 Introduction 313</p> <p>15.2 Bioethanol 315</p> <p>15.3 Classification of Biorefineries 315</p> <p>15.3.1 Agricultural Biorefinery 316</p> <p>15.3.2 Lignocellulosic Biorefinery 317</p> <p>15.4 Types of Pre-Treatments 318</p> <p>15.4.1 Physical Pre-Treatments 318</p> <p>15.4.2 Chemical Pre-Treatments 319</p> <p>15.4.3 Physico-Chemical Pre-Treatments 320</p> <p>15.4.4 Biological Pre-Treatments 321</p> <p>15.5 Enzymatic Hydrolysis of Biomass 323</p> <p>15.6 Fermentation 324</p> <p>15.7 Future Prospects for the Production of Bioethanol Through Biorefineries 325</p> <p>15.8 Conclusion 326</p> <p>References 326</p> <p><b>16 Biorefinery Approach for Production of Biofuel From Algal Biomass 335<br /></b><i>Bhasati Uzir and Amrita Saha</i></p> <p>16.1 Introduction 335</p> <p>16.2 Algal Biomass: The Third-Generation Biofuel 336</p> <p>16.2.1 Algae as a Raw Material for Biofuels Production 338</p> <p>16.2.2 Algae as Best Feedstock for Biorefinery 339</p> <p>16.3 Microalgal Biomass Cultivation/Production 340</p> <p>16.3.1 Open Pond Production 341</p> <p>16.3.2 Closed Bioreactors/Enclosed PBRs 341</p> <p>16.3.3 Hybrid Systems 341</p> <p>16.4 Strain Selection and Microalgae Genetic Engineering Method Strain Selection Process for Biorefining of Microalgae 342</p> <p>16.5 Harvesting Methods 343</p> <p>16.6 Cellular Disruption 343</p> <p>16.7 Extraction 344</p> <p>16.8 Conclusion 344</p> <p>References 344</p> <p><b>17 Biogas Production and Uses 347<br /></b><i>Anirudha Paul, Saptarshi Konar, Sampad Ghosh and Anirban Ray</i></p> <p>17.1 Introduction 347</p> <p>17.2 Potential Use of Biogas 348</p> <p>17.2.1 Anarobic Digestion 348</p> <p>17.2.2 Biogas from Energy Crops and Straw 349</p> <p>17.2.3 Biogas from Fish Waste 349</p> <p>17.2.4 Biogas from Food Waste 349</p> <p>17.2.5 Biogas from Sewage Sludge 350</p> <p>17.2.6 Biogas from Algae 350</p> <p>17.2.7 Some Biogas Biorefinery 350</p> <p>17.3 Pre-Treatment 350</p> <p>17.3.1 Physical Pre-Treatment 350</p> <p>17.3.2 Physiochemical Pre-Treatment 351</p> <p>17.3.3 Chemical Pre-Treatment 351</p> <p>17.3.4 Biological Pre-Treatment 351</p> <p>17.4 Process and Technology 351</p> <p>17.5 Biogas Purification and Upgradation 352</p> <p>17.5.1 Removal of CO<sub>2 </sub>352</p> <p>17.5.2 Removal of H<sub>2</sub>S 353</p> <p>17.5.3 Removal of Water 353</p> <p>17.6 Conclusion 353</p> <p>References 353</p> <p><b>18 Use of Different Enzymes in Biorefinery Systems 357<br /></b><i>A.N. Anoopkumar, Sharrel Rebello, Embalil Mathachan Aneesh, Raveendran Sindhu, Parameswaran Binod, Ashok Pandey and Edgard Gnansounou</i></p> <p>18.1 Introduction 357</p> <p>18.2 Perspectives of the Biorefinery Concept 360</p> <p>18.3 Starch Degradation 361</p> <p>18.4 Biodegradation and Modification of Lignocellulose and Hemicellulose 361</p> <p>18.5 Conversion of Pectins 363</p> <p>18.6 Microbial Fermentation and Biofuel and Biodiesel Aimed Biorefinery 363</p> <p>18.7 Conclusion 365</p> <p>Acknowledgement 365</p> <p>References 365</p> <p><b>Part 4: Conclusion 369</b></p> <p><b>19 Wheat Straw Valorization: Material Balance and Biorefinery Approach 371<br /></b><i>Sachin A. Mandavgane and Bhaskar D. Kulkarni</i></p> <p>19.1 Introduction 371</p> <p>19.2 Wax Extraction Process 372</p> <p>19.3 Combustion Process 373</p> <p>19.4 Mass Balance for Combustion 375</p> <p>19.5 Pyrolysis of Wheat Straw 376</p> <p>19.6 Mass Balance of Pyrolysis 377</p> <p>19.7 Separation of Valuable Chemicals From Bio-Oil 377</p> <p>19.8 Production of Biodeisel From Wheat Straw 378</p> <p>19.9 Conclusion 380</p> <p>Acknowledgment 381</p> <p>References 381</p> <p>Index 383</p>
<p><b>Arindam Kuila</b> is an assistant professor at the Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan, India. Previously, he worked as a research associate at Hindustan Petroleum Green R&D Centre, Bangalore, India. He gained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013 in the area of lignocellulosic biofuel production. He has co-authored 18 peer-reviewed research papers, 7 review papers, edited 4 books, 8 book chapters and filled 5 patents. <p><b>Mainak Mukhopadhyay</b> is an assistant professor at the Department of Biotechnology, JIS University, Kolkata. Previously, he worked as a research fellow at ONGC Energy Centre, Delhi, India. He gained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2014. His PhD research was focused on degradation of lignin present in lignocellulosic biomass for the higher production of second-generation bioethanol. His research interests also consist of enzymology, nanobiotechnology, biomass conversion technology. He was awarded a Petrotech Research Fellowship in 2008. In 2016 he was awarded the Early Career Research Award from DST-SERB. He has co-authored 10 peer-reviewed papers, 3 review papers, 10 book chapters and filled 2 patents.
<p><b>This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy.</b> <p>The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. <p>The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. <p>The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery. <p><b>Audience</b> <p>The book has a diverse audience. It will be particularly useful to scientists, researchers and students working in the renewable energy and chemicals sectors and lignocellulosic biorefinery application. The book will be also useful to academic researchers and industry engineers in the areas of fermentation technology, bioprocess engineering, enzymology, agricultural biotechnology, chemical and process engineering, bioplastics and polymer science

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €