Details

Bioprospecting of Plant Biodiversity for Industrial Molecules


Bioprospecting of Plant Biodiversity for Industrial Molecules


1. Aufl.

von: Santosh Kumar Upadhyay, Sudhir P. Singh

160,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 22.06.2021
ISBN/EAN: 9781119717225
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>BIOPROSPECTING OF PLANT BIODIVERSITY FOR INDUSTRIAL MOLECULES</b></p> <p><b>A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability</b></p> <p><i>Bioprospecting of Plant Biodiversity for Industrial Molecules</i> provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more.</p> <p>Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes.</p> <p>This comprehensive resource:</p> <ul> <li>Includes a through introduction to plant biodiversity and bioprospecting</li> <li>Will further the knowledge of application of different plants and improve research investigation techniques.</li> <li>Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology</li> </ul> <p><i>Bioprospecting of Plant Biodiversity for Industrial Molecules</i> is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.</p>
<p>List of Contributors xv</p> <p>Preface xxi</p> <p>About the Editors xxiii</p> <p>Acknowledgments xxv</p> <p><b>1 An Introduction to Plant Biodiversity and Bioprospecting </b><b>1<br /></b><i>Ramya Krishnan, Sudhir P. Singh, and Santosh Kumar Upadhyay</i></p> <p>1.1 Introduction 1</p> <p>1.2 What is Bioprospecting 1</p> <p>1.2.1 Chemical Prospecting 3</p> <p>1.2.2 Gene Prospecting 3</p> <p>1.2.3 Bionic Prospecting 4</p> <p>1.3 Significance of Plants in Bioprospecting 4</p> <p>1.4 Pros and Cons of Bioprospecting 5</p> <p>1.5 Recent Trends in Bioprospecting 6</p> <p>1.6 Omics for Bioprospecting and in silico Bioprospecting 7</p> <p>1.7 An Insight into the Book 8</p> <p>References 10</p> <p><b>2 Entomotoxic Proteins from Plant Biodiversity to Control the Crop Insect Pests </b><b>15<br /></b><i>Surjeet Kumar Arya, Shatrughan Shiva, and Santosh Kumar Upadhyay</i></p> <p>2.1 Introduction 15</p> <p>2.2 Lectins 16</p> <p>2.3 Proteinase Inhibitors 21</p> <p>2.4 α-Amylase Inhibitors 24</p> <p>2.5 Ribosome-Inactivating Proteins (RIPs) 27</p> <p>2.6 Arcelins 30</p> <p>2.7 Defensins 32</p> <p>2.8 Cyclotides 32</p> <p>2.9 Canatoxin-Like Proteins 33</p> <p>2.10 Ureases and Urease-Derived Encrypted Peptides 33</p> <p>2.11 Chitinases 36</p> <p>2.12 Proteases 36</p> <p>2.13 Conclusions 37</p> <p>References 37</p> <p><b>3 Bioprospecting of Natural Compounds for Industrial and Medical Applications: Current Scenario and Bottleneck </b><b>53<br /></b><i>Sameer Dixit, Akanchha Shukla, Vinayak Singh, and Santosh Kumar Upadhyay</i></p> <p>3.1 Introduction 53</p> <p>3.2 Why Bioprospecting Is Important 54</p> <p>3.3 Major Sites for Bioprospecting 54</p> <p>3.4 Pipeline of Bioprospecting 55</p> <p>3.5 Biopiracy: An Unethical Bioprospecting 55</p> <p>3.6 Bioprospecting Derived Products in Agriculture Industry 56</p> <p>3.7 Bioprospecting Derived Products for Bioremediation 57</p> <p>3.8 Bioprospecting for Nanoparticles Development 59</p> <p>3.9 Bioprospecting Derived Products in Pharmaceutical Industry 60</p> <p>3.10 Conclusion and Future Prospects 63</p> <p>Acknowledgments 64</p> <p>References 64</p> <p><b>4 Role of Plants in Phytoremediation of Industrial Waste </b><b>73<br /></b><i>Pankaj Srivastava and Nishita Giri</i></p> <p>4.1 Introduction 73</p> <p>4.2 Different Toxic Materials from Industries 75</p> <p>4.2.1 Fly Ash from Thermal Power Plants 75</p> <p>4.2.2 Heavy Metals and Pesticides in Environment 75</p> <p>4.2.2.1 Cadmium 75</p> <p>4.2.2.2 Arsenic 76</p> <p>4.2.2.3 Chromium 76</p> <p>4.2.2.4 Pesticide in Environment 76</p> <p>4.2.3 Phytoremediation Technology in Present Scenario 77</p> <p>4.2.4 Conclusion 80</p> <p>References 81</p> <p><b>5 Ecological Restoration and Plant Biodiversity </b><b>91<br /></b><i>Shalini Tiwari and Puneet Singh Chauhan</i></p> <p>5.1 Introduction 91</p> <p>5.2 Major Areas of Bioprospecting 92</p> <p>5.2.1 Chemical/Biochemical Prospecting 92</p> <p>5.2.2 Gene/Genetic Prospecting 92</p> <p>5.2.3 Bionic Prospecting 93</p> <p>5.3 Bioprospecting: Creating a Value for Biodiversity 93</p> <p>5.4 Conservation and Ecological Restoration for Sustainable Utilization of Resources 94</p> <p>5.5 Biodiversity Development Agreements 95</p> <p>5.6 Conclusions 96</p> <p>References 96</p> <p><b>6 Endophyte Enzymes and Their Applications in Industries </b><b>99<br /></b><i>Rufin Marie Kouipou Toghueo and Fabrice Fekam Boyom</i></p> <p>6.1 Introduction 99</p> <p>6.2 The Rationale for Bioprospecting Endophytes for Novel Industrial Enzymes 100</p> <p>6.3 Endophytes as a Source of Industrial Enzymes 101</p> <p>6.3.1 Amylases 104</p> <p>6.3.2 Asparaginase 105</p> <p>6.3.3 Cellulases 107</p> <p>6.3.4 Chitinases 109</p> <p>6.3.5 Laccases 110</p> <p>6.3.6 Lipases 111</p> <p>6.3.7 Proteases 113</p> <p>6.3.8 Xylanases 115</p> <p>6.3.9 Other Enzymes Produced by Endophytes 116</p> <p>6.3.9.1 AHL-Lactonase 116</p> <p>6.3.9.2 Agarase 116</p> <p>6.3.9.3 Chromate Reductase 116</p> <p>6.3.9.4 β-Mannanase 117</p> <p>6.4 Overview of the Methods Used to Investigate Endophytes as Sources of Enzymes 117</p> <p>6.5 Strategies Applied to Improve the Production of Enzymes by Endophytes 118</p> <p>6.6 Conclusion 119</p> <p>Acknowledgements 122</p> <p>References 122</p> <p><b>7 Resource Recovery from the Abundant Agri-biomass </b><b>131<br /></b><i>Shilpi Bansal, Jyoti Singh Jadaun, and Sudhir P. Singh</i></p> <p>7.1 Introduction 131</p> <p>7.2 Potential of Agri-biomass to Produce Different Products 133</p> <p>7.2.1 Conversion of Agri-biomass into Valuable Chemicals 133</p> <p>7.2.2 Energy Production Using Agri-biomass 134</p> <p>7.2.3 Role of Agri-biomass in Heavy Metal Decontamination 135</p> <p>7.2.4 Manufacturing of Lightweight Materials 137</p> <p>7.3 Case Studies 138</p> <p>7.3.1 Utilization of Paddy Waste 138</p> <p>7.3.2 Utilization of Mustard Waste 140</p> <p>7.3.3 Utilization of Maize Waste 140</p> <p>7.3.4 Utilization of Horticulture Waste 142</p> <p>7.4 Conclusion and Future Perspectives 144</p> <p>References 144</p> <p><b>8 Antimicrobial Products from Plant Biodiversity </b><b>153<br /></b><i>Pankaj Kumar Verma, Shikha Verma, Nalini Pandey, and Debasis Chakrabarty</i></p> <p>8.1 Introduction 153</p> <p>8.2 Use of Plant Products as Antimicrobials: Historical Perspective 154</p> <p>8.3 Major Groups of Plants-Derived Antimicrobial Compound 156</p> <p>8.3.1 Simple Phenols and Phenolic Acids 156</p> <p>8.3.1.1 Flavonoids 156</p> <p>8.3.1.2 Quinones 160</p> <p>8.3.1.3 Tannins 160</p> <p>8.3.1.4 Coumarins 161</p> <p>8.3.2 Terpenes and Essential Oils 162</p> <p>8.3.3 Alkaloids 163</p> <p>8.4 Mechanisms of Antimicrobial Activity 163</p> <p>8.4.1 Plant Extracts with Efflux Pump Inhibitory Activity 164</p> <p>8.4.2 Plant Extracts with Bacterial Quorum Sensing Inhibitory Activity 164</p> <p>8.4.3 Plant Extracts with Biofilm Inhibitory Activity 165</p> <p>8.5 Conclusions and Future Prospects 165</p> <p>References 166</p> <p><b>9 Functional Plants as Natural Sources of Dietary Antioxidants </b><b>175<br /></b><i>Ao Shang, Jia-Hui Li, Xiao-Yu Xu, Ren-You Gan, Min Luo, and Hua-Bin Li</i></p> <p>9.1 Introduction 175</p> <p>9.2 Evaluation of the Antioxidant Activity 176</p> <p>9.3 Antioxidant Activity of Functional Plants 176</p> <p>9.3.1 Vegetables 176</p> <p>9.3.2 Fruits 177</p> <p>9.3.3 Medicinal Plants 181</p> <p>9.3.4 Cereal Grains 181</p> <p>9.3.5 Flowers 181</p> <p>9.3.6 Microalgae 181</p> <p>9.3.7 Teas 182</p> <p>9.4 Applications of Plant Antioxidants 182</p> <p>9.4.1 Food Additives 182</p> <p>9.4.2 Dietary Supplements 183</p> <p>9.5 Conclusions 183</p> <p>References 184</p> <p><b>10 Biodiversity and Importance of Plant Bioprospecting in Cosmetics </b><b>189<br /></b><i>K. Sri Manjari, Debarati Chakraborty, Aakanksha Kumar, and Sakshi Singh</i></p> <p>10.1 Biodiversity, Bioprospecting, and Cosmetics – A Harmony of Triad 189</p> <p>10.2 The Fury of Synthetic Chemicals in Cosmetics on Health 191</p> <p>10.3 India’s Biodiversity and Its Traditional Knowledge/Medicine in Cosmetics 191</p> <p>10.3.1 Herbal Cosmetics 194</p> <p>10.4 Use of Plant-Based Products in the Cosmetic Industry 194</p> <p>10.5 Green Cosmetics – Significance and Current Status of the Global Market 196</p> <p>10.5.1 Sustainable Development Goals (Economic, Ecological Benefits) in Cosmetic Industry – How Bioprospecting and Green Cosmetics Can Help? 199</p> <p>10.6 Ethical and Legal Implications of Bioprospecting and Cosmetics 200</p> <p>10.6.1 International Laws Regulating Bioprospecting 201</p> <p>10.6.2 Indian Law Regulating Bioprospecting 202</p> <p>10.6.3 Access and Benefit Sharing (ABS) 202</p> <p>10.6.4 World Intellectual Property Organization (WIPO) 203</p> <p>10.6.5 Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge, and Folklore (IGC) 203</p> <p>10.7 Laws Regulating Cosmetics 203</p> <p>10.8 Role of Biotechnology in Bioprospecting and Cosmetics 204</p> <p>References 205</p> <p><b>11 Therapeutic Lead Secondary Metabolites Production Using Plant <i>In Vitro </i>Cultures </b><b>211<br /></b><i>Vikas Srivastava, Aksar Ali Chowdhary, Skalzang Lhamo, Sonal Mishra, and Shakti Mehrotra</i></p> <p>11.1 Introduction 211</p> <p>11.2 Secondary Metabolites and Pharmaceutical Significance 212</p> <p>11.3 Plant <i>In Vitro </i>Cultures and Strategies for Secondary Metabolite Production 214</p> <p>11.3.1 Precursor Feeding 214</p> <p>11.3.2 Metabolic Engineering 215</p> <p>11.3.3 Elicitation 216</p> <p>11.3.4 Bioreactor Up-scaling 216</p> <p>11.4 Exemplification of the Utilization of Different Types of Plant <i>In Vitro </i>Cultures for SMs Production 217</p> <p>11.4.1 Shoot Culture 217</p> <p>11.4.2 Adventitious Root Culture 220</p> <p>11.4.3 Callus and Cell Suspension Culture 220</p> <p>11.4.4 Hairy Root Cultures 221</p> <p>11.5 Conclusion 221</p> <p>References 222</p> <p><b>12 Plant Diversity and Ethnobotanical Knowledge of Spices and Condiments </b><b>231<br /></b><i>Thakku R. Ramkumar and Subbiah Karuppusamy</i></p> <p>12.1 Introduction 231</p> <p>12.2 Habitat and Diversity of Major Spices and Condiments in India 232</p> <p>12.3 Ethnobotanical Context of Spices and Condiments in India 241</p> <p>12.4 Major Spices and Condiments in India 243</p> <p>12.4.1 Black Pepper 243</p> <p>12.4.2 Capsicums 243</p> <p>12.4.3 Cinnamomum 244</p> <p>12.4.4 Coriander 244</p> <p>12.4.5 Cumin 244</p> <p>12.4.6 Cardamom 245</p> <p>12.4.7 Fennel 245</p> <p>12.4.8 Ginger 245</p> <p>12.4.9 Mustard Seed 246</p> <p>12.4.10 Nutmeg 246</p> <p>12.4.11 Saffron 246</p> <p>12.4.12 Turmeric 246</p> <p>12.4.13 Vanilla 247</p> <p>12.5 Importance of Indian Spices 247</p> <p>12.6 Spice Plantation and Cultivation in India 249</p> <p>12.7 Cultivation Technology of Caper Bud in India 250</p> <p>12.8 Export of Indian Spices 251</p> <p>12.9 Conservation Efforts Against Selected Uncultivated Wild Spices and Condiments 254</p> <p>12.10 Institutions and Organization Dedicated for Research and Development in Spices and Condiments in India 254</p> <p>12.11 Recent Researches on Spices and Condiments 255</p> <p>12.12 Conclusion and Future Perspectives 256</p> <p>Acknowledgments 256</p> <p>Authors’ Contribution 256</p> <p>References 257</p> <p><b>13 Plants as Source of Essential Oils and Perfumery Applications </b><b>261<br /></b><i>Monica Butnariu</i></p> <p>13.1 Background 261</p> <p>13.2 Biochemistry of Essential Oils 262</p> <p>13.2.1 The Physiological Mechanism of Biosynthesis of Essential Oils 262</p> <p>13.2.2 The Role of Terpenes in Plants 263</p> <p>13.2.3 The Prevalence Essential Oils in Plants 264</p> <p>13.2.4 Paths of Biosynthesis of Volatile Compounds in Plants 265</p> <p>13.2.4.1 Metabolic Cycles Involved in the Biosynthesis of Different Groups of Secondary Metabolites 265</p> <p>13.2.4.2 Metabolic Cycles of Biosynthesis of Phenolic Compounds 266</p> <p>13.3 The Metabolism Terpenes 269</p> <p>13.3.1 Metabolic Cycle of Mevalonic Acid Biosynthesis 271</p> <p>13.3.2 Metabolic Cycle of Methylerythritol Phosphate Biosynthesis 272</p> <p>13.4 The Role of Essential Oils and the Specificity of Their Accumulation in Plants 272</p> <p>13.5 Essential Oils from Plants in Perfume 281</p> <p>13.5.1 Linalool (3,7-dimethylocta-1,6-dien-3-ol), C<sub>10</sub>H<sub>18</sub>O 286</p> <p>13.5.2 Camphor (1,7,7-trimethylbicyclo [2.2.1] heptan-2-one), C<sub>10</sub>H<sub>16</sub>O 286</p> <p>13.5.3 Cedrol (1<i>S</i>, 2<i>R</i>, 5<i>S</i>, 7<i>R</i>, 8<i>R</i>)-(2,6,6,8-tetramethyltricyclo [5.3.1.01,5] undecan-8-ol or cedran-8-ol), C<sub>15</sub>H<sub>26</sub>O 286</p> <p>13.5.4 Eugenol (2-methoxy-4-allylphenol; 1-hydroxy-2-methoxy-4-allylbenzene), C<sub>10</sub>H<sub>12</sub>O<sub>2</sub> 287</p> <p>13.5.5 Citral (3,7-dimethyl-2,6-octadien-1-al), C<sub>10</sub>H<sub>16</sub>O 287</p> <p>13.5.6 Vanillin (4-hydroxy-3-methoxybenzaldehyde) C<sub>8</sub>H<sub>8</sub>O<sub>3</sub> 287</p> <p>13.5.7 Syringe Aldehyde (4-hydroxy-3,5-dimethoxybenzaldehyde) C<sub>9</sub>H<sub>10</sub>O<sub>4</sub> 288</p> <p>13.6 Conclusions and Remarks 289</p> <p>References 290</p> <p><b>14 Bioprospection of Plants for Essential Mineral Micronutrients </b><b>293<br /></b><i>Nikita Bisht and Puneet Singh Chauhan</i></p> <p>14.1 Introduction 293</p> <p>14.2 Plants as a Source of Mineral Micronutrients 293</p> <p>14.3 Bioavailability of Micronutrients from Plants 294</p> <p>14.3.1 Bioavailability of Fe and Zn 294</p> <p>14.3.2 Impact of Food Processing on Micronutrient Bioavailability from Plant Foods 295</p> <p>14.4 Manipulating Plant Micronutrients 296</p> <p>14.4.1 Improving Bioavailability of Micronutrients from Plant Foods 296</p> <p>14.4.2 Metabolic Engineering of Micronutrients in Crop Plants 297</p> <p>14.5 Microbes in the Biofortification of Micronutrients in Crops 298</p> <p>14.6 Conclusions 299</p> <p>References 299</p> <p><b>15 Algal Biomass: A Natural Resource of High-Value Biomolecules </b><b>303<br /></b><i>Dinesh Kumar Yadav, Ananya Singh, Variyata Agrawal, and Neelam Yadav</i></p> <p>15.1 Introduction 303</p> <p>15.2 Carbon Dioxide Capture and Sequestration 304</p> <p>15.3 Algae in High-Value Biomolecules Production 306</p> <p>15.3.1 Proteins, Peptides, and Amino Acids 310</p> <p>15.3.2 Polyunsaturated Fatty Acids (PUFAs) 311</p> <p>15.3.3 Polysaccharides 312</p> <p>15.3.4 Pigments 313</p> <p>15.3.4.1 Chlorophylls 313</p> <p>15.3.4.2 Carotenoids 314</p> <p>15.3.4.3 Phycobilliproteins (PBPs) 315</p> <p>15.3.5 Vitamins 316</p> <p>15.3.6 Polyphenols 316</p> <p>15.3.7 Phytosterols 317</p> <p>15.3.8 Phytohormones 318</p> <p>15.3.9 Minerals 318</p> <p>15.4 Algae in Biofuel Production/Generation 319</p> <p>15.4.1 Thermochemical Conversion 319</p> <p>15.4.2 Chemical Conversion by Transesterification 321</p> <p>15.4.3 Biochemical Conversion 322</p> <p>15.4.4 Photosynthetic Microbial Fuel Cell (MFC) 324</p> <p>15.5 Algae in Additional Applications 325</p> <p>15.5.1 Algae as Livestock Feed and Nutrition 325</p> <p>15.5.2 Algae as Feed in Aquaculture 326</p> <p>15.5.3 Algae as Bio-Fertilizer 326</p> <p>15.6 Conclusion and Future Prospects 326</p> <p>References 327</p> <p><b>16 Plant Bioprospecting for Biopesticides and Bioinsecticides </b><b>335<br /></b><i>Aradhana Lucky Hans and Sangeeta Saxena</i></p> <p>16.1 Introduction 335</p> <p>16.2 Current Scenario in India 336</p> <p>16.3 Plants-Based Active Compounds 337</p> <p>16.3.1 Azadirachtin 337</p> <p>16.3.2 Pyrethrins 338</p> <p>16.3.3 Rotenone 338</p> <p>16.3.4 Sabadilla 339</p> <p>16.3.5 Ryania 339</p> <p>16.3.6 Nicotine 339</p> <p>16.3.7 Acetogenins 339</p> <p>16.3.8 Capsaicinoids 339</p> <p>16.3.9 Essential Oils 340</p> <p>16.4 Advantages and Future Prospects of Bioinsecticides 340</p> <p>16.5 Conclusions 342</p> <p>Acknowledgment 343</p> <p>References 343</p> <p><b>17 Plant Biomass to Bioenergy </b><b>345<br /></b><i>Mrinalini Srivastava and Debasis Chakrabarty</i></p> <p>17.1 Introduction 345</p> <p>17.2 Plant Biomass 346</p> <p>17.2.1 Types of Biomass (Source: [17]) 347</p> <p>17.3 Bioenergy 347</p> <p>17.4 Biomass Conversion into Bioenergy 348</p> <p>17.4.1 Cogeneration 349</p> <p>17.5 The Concept of Biomass Energy (Source: [27]) 349</p> <p>17.5.1 Thermochemical Conversion 349</p> <p>17.5.1.1 Direct Combustion 349</p> <p>17.5.1.2 Pyrolysis 349</p> <p>17.5.1.3 Gasification 349</p> <p>17.5.2 Biochemical Conversion 350</p> <p>17.5.2.1 Anaerobic Digestion 350</p> <p>17.5.2.2 Alcohol Fermentation 350</p> <p>17.5.2.3 Hydrogen Production from Biomass 350</p> <p>17.6 Use of Biofuel in Transportation 350</p> <p>17.7 Production of Biogas and Biomethane from Biomass 350</p> <p>17.8 Generation of Biofuel 351</p> <p>17.8.1 Bioethanol 351</p> <p>17.8.2 Biodiesel 352</p> <p>17.9 Advanced Technologies in the Area of Bioenergy 352</p> <p>17.10 Conclusion 353</p> <p>Acknowledgment 354</p> <p>References 354</p> <p><b>18 Bioenergy Crops as an Alternate Energy Resource </b><b>357<br /></b><i>Garima Pathak and Shivanand Suresh Dudhagi</i></p> <p>18.1 Introduction 357</p> <p>18.2 Classification of Bioenergy Crops 358</p> <p>18.2.1 First-Generation Bioenergy Crops 358</p> <p>18.2.1.1 Sugarcane 359</p> <p>18.2.1.2 Corn 359</p> <p>18.2.1.3 Sweet Sorghum 359</p> <p>18.2.1.4 Oil Crops 360</p> <p>18.2.2 Second-Generation Bioenergy Crops 360</p> <p>18.2.2.1 Switchgrass 360</p> <p>18.2.2.2 Miscanthus 361</p> <p>18.2.2.3 Alfalfa 361</p> <p>18.2.2.4 Reed Canary Grass 361</p> <p>18.2.2.5 Other Plants 361</p> <p>18.2.3 Third-Generation Bioenergy Crops 362</p> <p>18.2.3.1 Boreal Plants 362</p> <p>18.2.3.2 Crassulacean Acid Metabolism (CAM) Plants 362</p> <p>18.2.3.3 Eucalyptus 362</p> <p>18.2.3.4 Agave 362</p> <p>18.2.3.5 Microalgae 363</p> <p>18.2.4 Dedicated Bioenergy Crops 363</p> <p>18.2.5 Halophytes 363</p> <p>18.3 Characteristics of Bioenergy Crops 364</p> <p>18.3.1 Physiological and Ecological Traits 364</p> <p>18.3.2 Agronomic and Metabolic Traits 364</p> <p>18.3.3 Biochemical Composition and Caloric Content 365</p> <p>18.4 Genetic Improvement of Bioenergy Crops 365</p> <p>18.5 Environmental Impacts of Bioenergy Crops 366</p> <p>18.5.1 Soil Quality 366</p> <p>18.5.2 Water and Minerals 367</p> <p>18.5.3 Carbon Sequestration 367</p> <p>18.5.4 Phytoremediation 367</p> <p>18.5.5 Biodiversity 368</p> <p>18.6 Conclusion and Future Prospect 369</p> <p>References 369</p> <p><b>19 Marine Bioprospecting: Seaweeds for Industrial Molecules </b><b>377<br /></b><i>Achintya Kumar Dolui</i></p> <p>19.1 Introduction 377</p> <p>19.2 Seaweeds as Nutraceuticals and Functional Foods 378</p> <p>19.3 Seaweeds in the Alleviation of Lifestyle Disorders 380</p> <p>19.4 Anti-Inflammatory Activity of Seaweeds 381</p> <p>19.5 Seaweed Is a Source of Anticoagulant Agent 381</p> <p>19.6 Anticancer Property of Seaweed 382</p> <p>19.7 Seaweeds as Antiviral Drugs and Mosquitocides 384</p> <p>19.8 Use of Seaweeds in the Cosmeceutical Industry 385</p> <p>19.9 Use of Seaweed as Contraceptive Agents 386</p> <p>19.10 Extraction of Active Ingredients from Seaweed 388</p> <p>19.10.1 Supercritical Fluid Extraction (SFE) 388</p> <p>19.10.2 Ultrasound-Assisted Extraction (UAE) 389</p> <p>19.10.3 Microwave-Assisted Extraction (MAE) 389</p> <p>19.10.4 Enzyme-Assisted Extraction (EAE) and EMEA 390</p> <p>19.11 Market Potential of Seaweeds 390</p> <p>19.12 Conclusion 391</p> <p>References 391</p> <p><b>20 Bioprospection of Orchids and Appraisal of Their Therapeutic Indications </b><b>401<br /></b><i>Devina Ghai, Jagdeep Verma, Arshpreet Kaur, Kranti Thakur, Sandip V. Pawar, and Jaspreet K. Sembi</i></p> <p>20.1 Introduction 401</p> <p>20.2 Orchids as a Bioprospecting Resource 402</p> <p>20.3 Orchids as Curatives in Traditional India 403</p> <p>20.4 Therapeutics Indications of Orchids in Asian Region 403</p> <p>20.5 Evidences of Medicinal Uses of Orchids in Ethnic African Groups 404</p> <p>20.6 Orchids as a Source of Restoratives in Europe 405</p> <p>20.7 Remedial Uses of Orchids in American and Australian Cultures 405</p> <p>20.8 Scientific Appraisal of Therapeutic Indications of Orchids 406</p> <p>20.8.1 Orchids as Potent Anticancer Agents 406</p> <p>20.8.2 Immunomodulatory Activity in Orchids 412</p> <p>20.8.3 Orchids and Their Antioxidant Potential 412</p> <p>20.8.4 Antimicrobial Studies in Orchids 412</p> <p>20.8.5 Orchids and Anti-inflammatory Activity 413</p> <p>20.8.6 Antidiabetic Prospects in Orchids 413</p> <p>20.8.7 Other Analeptic Properties in Orchids 414</p> <p>20.9 Conclusions 414</p> <p>Acknowledgments 415</p> <p>References 415</p> <p>Index 425</p>
<p><b>Santosh Kumar Upadhyay,</b> Assistant Professor, Department of Botany, Panjab University, Chandigarh, India. He has been working in the field of plant biotechnology for more than 14 years. His current research focuses on functional genomics.</p><p><b>Sudhir P. Singh,</b> Scientist, Biotechnology & Synthetic Biology, Center of Innovative and Applied Bioprocessing, Mohali, India. He has been working in the field of molecular biology and biotechnology for more than a decade. His current research is focused on gene mining and biocatalyst engineering for the development of approaches for transformation of agro-industrial residues and under- or un-utilized side-stream biomass into value-added bio-products.</p>
<p><b>A comprehensive collection of recent translational research on bioresource utilization and ecological sustainability</b></p><p><i>Bioprospecting of Plant Biodiversity for Industrial Molecules</i> provides an up-to-date overview of the ongoing search for biodiverse organic compounds for use in pharmaceuticals, bioceuticals, agriculture, and other commercial applications. Bringing together work from a panel of international contributors, this comprehensive monograph covers natural compounds of plants, endophyte enzymes and their applications in industry, plant bioprospecting in cosmetics, marine bioprospecting of seaweeds, and more.</p><p>Providing global perspectives on bioprospecting of plant biodiversity, the authors present research on enzymes, mineral micro-nutrients, biopesticides, algal biomass, and other bioactive molecules. In-depth chapters assess the health impacts and ecological sustainability of the various biomolecules and identify existing and possible applications ranging from ecological restoration to production of essential oils and cosmetics. Other topics include, bio-energy crops as alternative fuel resources, the role of plants in phytoremediation of industrial waste, and the industrial applications of endophyte enzymes.</p><p>This comprehensive resource:<p><ul><li>Includes a through introduction to plant biodiversity and bioprospecting</li><li>Will further the knowledge of application of different plants and improve research investigation techniques.</li><li>Summarizes novel approaches for researchers in food science, microbiology, biochemistry, and biotechnology</li></ul><p><i>Bioprospecting of Plant Biodiversity for Industrial Molecules</i> is an indispensable compendium of biological research for scientists, researchers, graduate and postgraduate students, and academics in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology.</p>

Diese Produkte könnten Sie auch interessieren:

Esau's Plant Anatomy
Esau's Plant Anatomy
von: Ray F. Evert, Susan E. Eichhorn
PDF ebook
187,99 €
The Fusarium Laboratory Manual
The Fusarium Laboratory Manual
von: John F. Leslie, Brett A. Summerell, Suzanne Bullock
PDF ebook
161,99 €
Plant Desiccation Tolerance
Plant Desiccation Tolerance
von: Matthew A. Jenks, Andrew J. Wood
PDF ebook
242,99 €