Details

Bioprocessing for Biomolecules Production


Bioprocessing for Biomolecules Production


1. Aufl.

von: Gustavo Molina, Vijai Kumar Gupta, Brahma N. Singh, Nicholas Gathergood

170,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 28.10.2019
ISBN/EAN: 9781119434368
Sprache: englisch
Anzahl Seiten: 536

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Presents the many recent innovations and advancements in the field of biotechnological processes</b></p> <p>This book tackles the challenges and potential of biotechnological processes for the production of new industrial ingredients, bioactive compounds, biopolymers, energy sources, and compounds with commercial/industrial and economic interest by performing an interface between the developments achieved in the recent worldwide research and its many challenges to the upscale process until the adoption of commercial as well as industrial scale.</p> <p><i>Bioprocessing for Biomolecules Production</i> examines the current status of the use and limitation of biotechnology in different industrial sectors, prospects for development combined with advances in technology and investment, and intellectual and technical production around worldwide research. It also covers new regulatory bodies, laws and regulations, and more. Chapters look at biological and biotechnological processes in the food, pharmaceutical, and biofuel industries; research and production of microbial PUFAs; organic acids and their potential for industry; second and third generation biofuels; the fermentative production of beta-glucan; and extremophiles for hydrolytic enzymes productions. The book also looks at bioethanol production from fruit and vegetable wastes; bioprocessing of cassava stem to bioethanol using soaking in aqueous ammonia pretreatment; bioprospecting of microbes for bio-hydrogen production; and more.</p> <ul> <li>Provides up to date information about the advancements made on the production of important biotechnological ingredients</li> <li>Complete visualization of the general developments of world research around diverse products and ingredients of technological, economic, commercial and social importance</li> <li>Investigates the use and recovery of agro-industrial wastes in biotechnological processes</li> <li>Includes the latest updates from regulatory bodies for commercialization feasibility</li> </ul> <p>Offering new products and techniques for the industrial development and diversification of commercial products,<i> Bioprocessing for Biomolecules Production</i> is an important book for graduate students, professionals, and researchers involved in food technology, biotechnology; microbiology, bioengineering, biochemistry, and enzymology.</p>
<p>Contributors xvii</p> <p><b>Part I General Overview of Biotechnology for Industrial Segments: An Industrial Approach </b><b>1</b></p> <p><b>1 An Overview of Biotechnological Processes in the Food Industry </b><b>3<br /> </b><i>Bianca M.P. Silveira, Mayara C.S. Barcelos, Kele A.C. Vespermann, Franciele M. Pelissari, and Gustavo Molina</i></p> <p>1.1 Introduction 3</p> <p>1.2 Biotechnological Process Applied to Food Products 4</p> <p>1.2.1 Organic Acids 4</p> <p>1.2.2 Flavors 5</p> <p>1.2.3 Polysaccharides 6</p> <p>1.2.4 Amino Acids 6</p> <p>1.2.5 Enzymes 7</p> <p>1.2.6 Surfactants 7</p> <p>1.2.7 Pigments 8</p> <p>1.3 Genetically Modified Organisms (GMO) 9</p> <p>1.4 Future Perspectives of Biotechnological Processes in the Food Industry 10</p> <p>1.5 Concluding Remarks and Perspectives 11</p> <p>References 12</p> <p><b>2 Status of Biotechnological Processes in the Pharmaceutical Industry </b><b>21<br /> </b><i>Natalia Videira, Robson Tramontina, Victoria Ramos Sodré, and Fabiano Jares Contesini</i></p> <p>2.1 Introduction 21</p> <p>2.2 Main Biotechnological Products in the Pharmaceutical Industry 23</p> <p>2.2.1 Antibiotics in the Pharmaceutical Industry 23</p> <p>2.2.2 Enzymes in the Pharmaceutical Industry 24</p> <p>2.2.3 Antibodies in the Pharmaceutical Industry 27</p> <p>2.3 Prospects for Area Development 33</p> <p>2.3.1 Patent Generation 33</p> <p>2.3.2 Perspectives for Biotechnology in the Pharmaceutical Sector 35</p> <p>2.4 Conclusion 38</p> <p>References 39</p> <p><b>3 Current Status of Biotechnological Processes in the Biofuel Industries </b><b>47<br /> </b><i>Gustavo Pagotto Borin, Rafael Ferraz Alves, and Antônio Djalma Nunes Ferraz Júnior</i></p> <p>3.1 Introduction 47</p> <p>3.2 Biofuels and an Overview of the Industrial Processes 49</p> <p>3.2.1 Bioethanol 49</p> <p>3.2.2 Biodiesel 53</p> <p>3.2.3 Biobutanol 54</p> <p>3.2.4 Biogas 56</p> <p>3.2.5 Microalgal Biomass for Biofuels Production 61</p> <p>3.3 Conclusion 62</p> <p>References 62</p> <p><b>Part II Biotechnological Research and Production of Food Ingredients </b><b>71</b></p> <p><b>4 Research, Development, and Production of Microalgal and Microbial Biocolorants </b><b>73<br /> </b><i>Laurent Dufossé</i></p> <p>4.1 Introduction 73</p> <p>4.2 Carotenoids 74</p> <p>4.2.1 Lutein and Zeaxanthin 74</p> <p>4.2.2 Aryl Carotenoids (Orange Colors and Highly Active Antioxidants) are Specific to Some Microorganisms 77</p> <p>4.2.3 C<sub>50 </sub>Carotenoids (Sarcinaxanthin, Decaprenoxanthin) 78</p> <p>4.2.4 Techniques for the Production of Novel Carotenoids with Improved Color Strength/Stability/Antioxidant Properties 79</p> <p>4.3 Azaphilones 80</p> <p>4.3.1 Toward Mycotoxin-Free Monascus Red 80</p> <p>4.3.2<i> Monascus</i>-Like Pigments from Nontoxigenic Fungal Strains 83</p> <p>4.4 Anthraquinones 84</p> <p>4.4.1 Fungal Natural Red 84</p> <p>4.4.2 Other Fungal Anthraquinones 85</p> <p>4.5 Phycobiliproteins 85</p> <p>4.6 Conclusion 87</p> <p>References 89</p> <p><b>5 Prospective Research and Current Technologies for Bioflavor Production </b><b>93<br /> </b><i>Marina Gabriel Pessôa, Bruno Nicolau Paulino, Gustavo Molina, and Glaucia Maria Pastore</i></p> <p>5.1 Introduction 93</p> <p>5.2 Microbial Production of Bioflavors 100</p> <p>5.2.1 Biotransformation of Terpenes 100</p> <p>5.2.2 De Novo Synthesis 104</p> <p>5.3 Enzymatic Production of Bioflavors 108</p> <p>5.4 Conclusion 112</p> <p>References 112</p> <p><b>6 Research and Production of Biosurfactants for the Food Industry </b><b>125<br /> </b><i>Eduardo J. Gudiña and Lígia R. Rodrigues</i></p> <p>6.1 Introduction 125</p> <p>6.2 Biosurfactants as Food Additives 126</p> <p>6.3 Biosurfactants as Powerful Antimicrobial and Anti-Adhesive Weapons for the Food Industry 129</p> <p>6.4 Potential Role of Biosurfactants in New Nano-Solutions for the Food Industry 134</p> <p>6.5 Conclusions and Future Perspectives 135</p> <p>Acknowledgments 136</p> <p>References 136</p> <p><b>7 Fermentative Production of Microbial Exopolysaccharides </b><b>145<br /> </b><i>Jochen Schmid and Volker Sieber</i></p> <p>7.1 Introduction 145</p> <p>7.2 Cultivation Media and Renewable Resources 147</p> <p>7.3 Bioreactor Geometries and Design 148</p> <p>7.4 Fermentation Strategies for Microbial Exopolysaccharide Production 152</p> <p>7.5 Approaches to Reduce Fermentation Broth Viscosity 153</p> <p>7.6 Polymer Byproducts and Purity 154</p> <p>7.7 Downstream Processing of Microbial Exopolysaccharides 155</p> <p>7.7.1 Removal of Cell Biomass 155</p> <p>7.7.2 Precipitation of the Polysaccharides 156</p> <p>7.7.3 Dewatering/Drying of the Polysaccharides 158</p> <p>7.8 Conclusions 159</p> <p>References 159</p> <p><b>8 Research and Production of Microbial Polyunsaturated Fatty Acids </b><b>167<br /> </b><i>Gwendoline Christophe, Pierre Fontanille, and Christian Larroche</i></p> <p>8.1 Introduction 167</p> <p>8.2 Lipids Used for Food Supplement 168</p> <p>8.2.1 PUFAs: Omega-3 and Omega-6 Families 168</p> <p>8.2.2 Role of PUFAs in Health 169</p> <p>8.3 Microbial Lipids 170</p> <p>8.3.1 Biosynthesis in Oleaginous Microorganisms 170</p> <p>8.3.2 Microorganisms Involved in PUFAs Production 175</p> <p>8.4 Production Strategies 182</p> <p>8.4.1 Culture Conditions 182</p> <p>8.5 Process Strategies 185</p> <p>8.5.1 Modes of Culture 185</p> <p>8.5.2 Substrates 186</p> <p>8.5.3 Metabolic Engineering 186</p> <p>8.6 Conclusions 187</p> <p>References 187</p> <p><b>9 Research and Production of Organic Acids and Industrial Potential </b><b>195<br /> </b><i>Sandeep Kumar Panda, Lopamudra Sahu, Sunil Kumar Behera, and Ramesh Chandra Ray</i></p> <p>9.1 Introduction: History and Current Trends 195</p> <p>9.2 Current and Future Markets for Organic Acids 196</p> <p>9.3 Types of Organic Acids 196</p> <p>9.3.1 Citric Acid 197</p> <p>9.3.2 Acetic Acid 198</p> <p>9.3.3 Propionic Acid (PA) 198</p> <p>9.3.4 Succinic Acid 199</p> <p>9.3.5 Lactic Acid 200</p> <p>9.3.6 Other Organic Acids 200</p> <p>9.4 Metabolic/Genetic Engineering: Trends in Organic Acid Technology 201</p> <p>9.5 Research Gaps and Techno-Economic Feasibility 202</p> <p>9.6 Conclusion 204</p> <p>References 204</p> <p><b>10 Research and Production of Microbial Polymers for Food Industry </b><b>211<br /> </b><i>Sinem Selvin Selvi, Edina Eminagic, Muhammed Yusuf Kandur, Emrah Ozcan, Ceyda Kasavi, and Ebru Toksoy Oner</i></p> <p>10.1 Introduction 211</p> <p>10.1.1 Biosynthesis of Microbial Polymers 212</p> <p>10.2 Levan 213</p> <p>10.2.1 General Properties of Levan 213</p> <p>10.2.2 Production Processes for Levan 213</p> <p>10.2.3 Food Applications of Levan 216</p> <p>10.3 Pullulan 216</p> <p>10.3.1 General Properties of Pullulan 216</p> <p>10.3.2 Production Processes of Pullulan 216</p> <p>10.3.3 Food Applications of Pullulan 218</p> <p>10.4 Alginate 218</p> <p>10.4.1 General Properties of Alginate 218</p> <p>10.4.2 Production Processes for Alginate 218</p> <p>10.4.3 Food Applications of Alginate 219</p> <p>10.5 Curdlan 219</p> <p>10.5.1 General Properties of Curdlan 219</p> <p>10.5.2 Production Processes for Curdlan 220</p> <p>10.5.3 Food Applications of Curdlan 221</p> <p>10.6 Gellan Gum 221</p> <p>10.6.1 General Properties of Gellan Gum 221</p> <p>10.6.2 Production Processes for Gellan Gum 221</p> <p>10.6.3 Food Applications of Gellan Gum 222</p> <p>10.7 Polyhydroxyalkanoates (PHAs) 223</p> <p>10.7.1 General Properties of PHAs 223</p> <p>10.7.2 Food Applications of PHAs 225</p> <p>10.8 Scleroglucan 225</p> <p>10.8.1 General Properties of Scleroglucan 225</p> <p>10.8.2 Production Processes for Scleroglucan 226</p> <p>10.8.3 Food Applications of Scleroglucans 226</p> <p>10.9 Xanthan Gum 226</p> <p>10.9.1 General Properties of Xanthan Gum 226</p> <p>10.9.2 Production Processes of Xanthan Gum 227</p> <p>10.9.3 Food Applications of Xanthan Gum 227</p> <p>10.10 Dextran 228</p> <p>10.10.1 General Properties of Dextran 228</p> <p>10.10.2 Production Processes of Dextran 229</p> <p>10.10.3 Food Applications of Dextran 230</p> <p>10.11 Conclusions 230</p> <p>References 232</p> <p><b>11 Research and Production of Microbial Functional Sugars and Their Potential for Industry </b><b>239<br /> </b><i>Helen Treichel, Simone Maria Golunski, Aline Frumi Camargo, Thamarys Scapini, Tatiani Andressa Modkovski, Bruno Venturin, Eduarda Roberta Bordin, Vanusa Rossetto, and Altemir José Mossi</i></p> <p>11.1 Introduction 239</p> <p>11.2 Bioactive Compounds 240</p> <p>11.2.1 Probiotics 240</p> <p>11.2.2 Prebiotics 241</p> <p>11.3 Production Technology for Probiotic Strains 243</p> <p>11.4 Stabilization Technology for Probiotic Strains 244</p> <p>11.4.1 Microencapsulation 244</p> <p>11.4.2 Spray Drying 246</p> <p>11.4.3 Freeze Drying 246</p> <p>11.4.4 Fluidized Bed and Vacuum Drying 247</p> <p>11.4.5 Other Technologies 247</p> <p>11.5 Study of Scale-Up Process: Advances, Difficulties, and Limitations Achieved 248</p> <p>11.6 Potential Development of the Area and Future Prospects 248</p> <p>11.7 Conclusion 249</p> <p>References 250</p> <p><b>12 Research and Production of Ingredients Using Unconventional Raw Materials as Alternative Substrates </b><b>255<br /> </b><i>Susana Rodríguez-Couto</i></p> <p>12.1 Introduction 255</p> <p>12.2 Solid-State Fermentation (SSF) 256</p> <p>12.3 Production of Food Ingredients from Unconventional Raw Materials by SSF 257</p> <p>12.3.1 Organic Acids 257</p> <p>12.3.2 Phenolic Compounds 264</p> <p>12.3.3 Flavor and Aroma Compounds 265</p> <p>12.3.4 Pigments 266</p> <p>12.4 Outlook 267</p> <p>References 267</p> <p><b>Part III Biotechnological Research and Production of Biomolecules </b><b>273</b></p> <p><b>13 Genetic Engineering as a Driver for Biotechnological Developments and Cloning Tools to Improve Industrial Microorganisms </b><b>275<br /> </b><i>Cíntia Lacerda Ramos, Leonardo de Figueiredo Vilela, and Rosane Freitas Schwan</i></p> <p>13.1 Introduction 275</p> <p>13.2 Microorganisms and Metabolites of Industrial Interest 275</p> <p>13.2.1 Primary Metabolites 276</p> <p>13.2.2 Secondary Metabolites 277</p> <p>13.2.3 Microbial Enzymes 278</p> <p>13.3 The Culture-Independent Method for Biotechnological Developments 279</p> <p>13.4 Tools and Methodologies Applied to GMOs Generation 280</p> <p>13.5 Conclusion 285</p> <p>References 285</p> <p><b>14 Advances in Biofuel Production by Strain Development in Yeast from Lignocellulosic Biomass </b><b>289<br /> </b><i>Aravind Madhavan, Raveendran Sindhu, K.B. Arun, Ashok Pandey, Parameswaran Binod, and Edgard Gnansounou</i></p> <p>14.1 Introduction 289</p> <p>14.2 Improvement of Ethanol Tolerance in <i>Saccharomyces cerevisiae</i> 290</p> <p>14.3 Engineering of Substrate Utilization in <i>Saccharomyces cerevisiae</i> 291</p> <p>14.4 Engineering Tolerance Against Inhibitors, Temperature, and Solvents 293</p> <p>14.5 Future Perspectives and Conclusions 295</p> <p>Acknowledgments 296</p> <p>References 297</p> <p><b>15 Fermentative Production of Beta-Glucan: Properties and Potential Applications </b><b>303<br /> </b><i>Rafael Rodrigues Philippini, Sabrina Evelin Martiniano, Júlio César dos Santos, Silvio Silvério da Silva, and Anuj Kumar Chandel</i></p> <p>15.1 Introduction 303</p> <p>15.2 Beta-Glucan Structure and Properties 304</p> <p>15.3 Microorganisms: Assets in Beta-Glucan Production 307</p> <p>15.4 Strain Improvement Methods for Beta-Glucan Production 308</p> <p>15.5 Fermentation: Methods and New Formulations 308</p> <p>15.5.1 Carbon Sources 310</p> <p>15.5.2 Nitrogen Sources 310</p> <p>15.5.3 Micronutrients, Additives, and Vitamins 310</p> <p>15.5.4 pH, Temperature, and Fermentation Time 311</p> <p>15.5.5 Fermentation Methods 311</p> <p>15.6 Beta-Glucan Recovery Methods 312</p> <p>15.7 Potential Applications of Beta-Glucan 312</p> <p>15.7.1 Food Applications 312</p> <p>15.7.2 Chemical Applications 313</p> <p>15.7.3 Pharmaceutical Applications 314</p> <p>15.7.4 Utilization of Agroindustrial Byproducts as Carbon and Nitrogen Sources 314</p> <p>15.7.5 Future Commercial Prospects 315</p> <p>15.8 Conclusions 315</p> <p>Acknowledgment 315</p> <p>References 316</p> <p><b>16 Extremophiles for Hydrolytic Enzymes Productions: Biodiversity and Potential Biotechnological Applications </b><b>321<br /> </b><i>Divjot Kour, Kusam Lata Rana, Tanvir Kaur, Bhanumati Singh, Vinay Singh Chauhan, Ashok Kumar, Ali A. Rastegari, Neelam Yadav, Ajar Nath Yadav, and Vijai Kumar Gupta</i></p> <p>16.1 Introduction 321</p> <p>16.2 Enumeration and Characterization of Extremophiles 322</p> <p>16.3 Biodiversity and Abundance of Extremophiles 325</p> <p>16.4 Diversity of Extremozymes and Their Biotechnological Applications 333</p> <p>16.4.1 Amylase 333</p> <p>16.4.2 Proteases 337</p> <p>16.4.3 Pectinase 337</p> <p>16.4.4 Cellulase 339</p> <p>16.4.5 Xylanases 340</p> <p>16.4.6 Lipases 348</p> <p>16.4.7 L-Glutaminase 350</p> <p>16.4.8 β-Galactosidase 351</p> <p>16.4.9 Tannases 352</p> <p>16.4.10 Aminopeptidases 352</p> <p>16.4.11 Polysaccharide Lyases 353</p> <p>16.4.12 Phytases 354</p> <p>16.5 Conclusion and Future Scope 355</p> <p>Acknowledgment 355</p> <p>References 356</p> <p><b>17 Recent Development in Ferulic Acid Esterase for Industrial Production </b><b>373<br /> </b><i>Surabhi Singh, Om Prakash Dwivedi, and Shashank Mishra</i></p> <p>17.1 Introduction 373</p> <p>17.2 Microbial Production of Ferulic Acid Esterase 374</p> <p>17.3 Microbial Assay for FAE Production 374</p> <p>17.4 Worldwide Demand and Production of FAE 375</p> <p>17.5 Process Optimization for FAE Production 375</p> <p>17.6 Recent Development and Genetic Engineering for the Enhancement of FAE Production 378</p> <p>17.7 Conclusion 379</p> <p>References 379</p> <p><b>18 Research and Production of Second-Generation Biofuels </b><b>383<br /> </b><i>H.L. Raghavendra, Shashank Mishra, Shivaleela P. Upashe, and Juliana F. Floriano</i></p> <p>18.1 Introduction 383</p> <p>18.1.1 Second-Generation Biofuels 384</p> <p>18.1.2 Feedstocks for Biofuels 384</p> <p>18.1.2.5 Energy Crops 386</p> <p>18.1.3 Feedstocks for Biodiesel 386</p> <p>18.1.4 Types of Second-Generation Biofuels 386</p> <p>18.1.5 Research on Second-Generation Biofuels 389</p> <p>18.1.6 Production of Second-Generation Biofuels 392</p> <p>18.1.7 The Impact on the Environment During the Production of Second-Generation Biofuels 395</p> <p>18.1.8 Conclusions 396</p> <p>References 397</p> <p><b>19 Research and Production of Third-Generation Biofuels </b><b>401<br /> </b><i>Saurabh Singh, Arthur P.A. Pereira, and Jay Prakash Verma</i></p> <p>19.1 Introduction 401</p> <p>19.2 Cultivation of Algal Cells 402</p> <p>19.3 Strain Selection 404</p> <p>19.4 Types of Micro-Algae Used to Produce Third-Generation Biofuels 405</p> <p>19.5 Biomass Preparation for Third-Generation Biofuel 405</p> <p>19.6 Photobioreactors 406</p> <p>19.6.1 Open Ponds 406</p> <p>19.6.2 Vertical Column Photobioreactors 407</p> <p>19.6.3 Flat-Plate Photobioreactors 407</p> <p>19.6.4 Tubular Photobioreactors 407</p> <p>19.6.5 Internally Illuminated Photobioreactors 408</p> <p>19.7 Production of Biofuels from Algal Cultures 408</p> <p>19.7.1 Biochemical Conversion 408</p> <p>19.7.2 Thermochemical Conversion 410</p> <p>19.7.3 Chemical Conversion 410</p> <p>19.8 Factors Governing the Production of Third-Generation Biofuels 411</p> <p>19.9 Advantages of Third-Generation Biofuel Production 411</p> <p>19.10 Conclusions and Future Perspectives 412</p> <p>Acknowledgments 413</p> <p>References 413</p> <p><b>20 Bioethanol Production from Fruit and Vegetable Wastes </b><b>417<br /> </b><i>Meganathan Bhuvaneswari and Nallusamy Sivakumar</i></p> <p>20.1 Introduction 417</p> <p>20.2 Importance of Biofuels 418</p> <p>20.3 Bioethanol as a Promising Biofuel 418</p> <p>20.4 Bioethanol from Wastes 419</p> <p>20.5 General Mechanism of Production of Bioethanol 420</p> <p>20.6 Ethanol Production Using Fruit Wastes 420</p> <p>20.6.1 Bioethanol from Banana Wastes 420</p> <p>20.6.2 Bioethanol from Citrus Fruit Wastes 421</p> <p>20.6.3 Bioethanol from Pineapple Wastes 422</p> <p>20.6.4 Bioethanol from Pomegranate 422</p> <p>20.6.5 Bioethanol from Mango Wastes 423</p> <p>20.6.6 Bioethanol from Jackfruit Wastes 423</p> <p>20.6.7 Bioethanol from Date Palm Fruit Wastes 423</p> <p>20.6.8 Pistachio-Wastes as Potential Raw Material 423</p> <p>20.6.9 Bioethanol from Other Fruit Wastes 424</p> <p>20.7 Bioethanol from Vegetable Wastes 424</p> <p>20.8 Conclusion 425</p> <p>References 425</p> <p><b>21 Bioprocessing of Cassava Stem to Bioethanol Using Soaking in Aqueous Ammonia Pretreatment </b><b>429<br /> </b><i>Ashokan Anushya, Moorthi Swathika, Selvaraju Sivamani, and Nallusamy Sivakumar</i></p> <p>21.1 Introduction 429</p> <p>21.2 Characterization of Cassava Stem 431</p> <p>21.3 SAA Pretreatment of Cassava Stem 431</p> <p>21.3.1 Effect of Temperature 432</p> <p>21.3.2 Effect of Ammonia Concentration 434</p> <p>21.3.3 Effect of SLR 434</p> <p>21.4 Ethanol Fermentation 437</p> <p>21.5 Conclusion 437</p> <p>References 438</p> <p><b>22 Bioprospecting of Microbes for Biohydrogen Production: Current Status and Future Challenges </b><b>443<br /> </b><i>Sunil Kumar, Sushma Sharma, Sapna Thakur, Tanuja Mishra, Puneet Negi, Shashank Mishra, Abd El-Latif Hesham, Ali A. Rastegari, Neelam Yadav, and Ajar Nath Yadav</i></p> <p>22.1 Introduction 443</p> <p>22.2 Biohydrogen Production Process 444</p> <p>22.2.1 Photofermentation 444</p> <p>22.2.2 Dark Fermentation 449</p> <p>22.2.3 Biophotolysis 452</p> <p>22.2.4 Microbial Electrolysis Cells 454</p> <p>22.3 Molecular Aspects of Hydrogen Production 458</p> <p>22.4 Biotechnological Tools Involved in the Process 459</p> <p>22.5 Reactors for Biohydrogen Production 460</p> <p>22.5.1 Tubular Reactor 460</p> <p>22.5.2 Flat Panel Reactor 461</p> <p>22.6 Scientific Advancements and Major Challenges in Biohydrogen Production Processes 461</p> <p>22.7 Conclusions and Future Prospects 462</p> <p>Acknowledgment 462</p> <p>References 462</p> <p>Index 473</p>
<p><b>About the Editors</b> <p><b>GUSTAVO MOLINA,</b> is Associate Professor in Food Engineering at the University of Diamantina, Brazil. <p><b>VIJAI KUMAR GUPTA,</b> is Senior Research Scientist of Microbial Biotechnology, Department of Chemistry and Biotechnology at Tallinn University of Technology, Estonia. He is also the Secretary of European Mycological Association. <p><b>BRAHMA N. SINGH,</b> is a Scientist in the Pharmacology Division at CSIR-National Botanical Research Institute, Lucknow, India. <p><b>NICHOLAS GATHERGOOD,</b> is Professor in the Chemistry Division of the Department of Chemistry and Biotechnology at Tallinn University of Technology, Estonia.
<p><b>Presents the many recent innovations and advancements in the field of biotechnological processes</b> <p>This book tackles the challenges and potential of biotechnological processes for the production of new industrial ingredients, bioactive compounds, biopolymers, energy sources, and compounds with commercial/industrial and economic interest by performing an interface between the developments achieved in the recent worldwide research and its many challenges to the upscale process until the adoption of commercial as well as industrial scale. <p><i>Bioprocessing for Biomolecules Production</i> examines the current status of the use and limitation of biotechnology in different industrial sectors, prospects for development combined with advances in technology and investment, and intellectual and technical production around worldwide research. It also covers new regulatory bodies, laws and regulations, and more. Chapters look at biological and biotechnological processes in the food, pharmaceutical, and biofuel industries; research and production of microbial PUFAs; organic acids and their potential for industry; second and third generation biofuels; the fermentative production of beta-glucan; and extremophiles for hydrolytic enzymes productions. The book also looks at bioethanol production from fruit and vegetable wastes; bioprocessing of cassava stem to bioethanol using soaking in aqueous ammonia pretreatment; bioprospecting of microbes for bio-hydrogen production; and more. <ul> <li>Provides up to date information about the advancements made on the production of important biotechnological ingredients</li> <li>Complete visualization of the general developments of world research around diverse products and ingredients of technological, economic, commercial and social importance</li> <li>Investigates the use and recovery of agro-industrial wastes in biotechnological processes</li> <li>Includes the latest updates from regulatory bodies for commercialization feasibility</li> </ul> <p>Offering new products and techniques for the industrial development and diversification of commercial products,<i> Bioprocessing for Biomolecules Production</i> is an important book for graduate students, professionals, and researchers involved in food technology, biotechnology; microbiology, bioengineering, biochemistry, and enzymology.

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €