Details

Biophysical Chemistry of Biointerfaces


Biophysical Chemistry of Biointerfaces


1. Aufl.

von: Hiroyuki Ohshima

143,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 08.07.2010
ISBN/EAN: 9780470630624
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>The first book on the innovative study of biointerfaces using biophysical chemistry</b> <p>The biophysical phenomena that occur on biointerfaces, or biological surfaces, hold a prominent place in the study of biology and medicine, and are crucial for research relating to implants, biosensors, drug delivery, proteomics, and many other important areas. <i>Biophysical Chemistry of Biointerfaces</i> takes the unique approach of studying biological systems in terms of the principles and methods of physics and chemistry, drawing its knowledge and experimental techniques from a wide variety of disciplines to offer new tools to better understand the intricate interactions of biointerfaces. <i>Biophysical Chemistry of Biointerfaces:</i></p> <ul> <li> <p>Provides a detailed description of the thermodynamics and electrostatics of soft particles</p> </li> <li> <p>Fully describes the biophysical chemistry of soft interfaces and surfaces (polymer-coated interfaces and surfaces) as a model for biointerfaces</p> </li> <li> <p>Delivers many approximate analytic formulas which can be used to describe various interfacial phenomena and analyze experimental data</p> </li> <li> <p>Offers detailed descriptions of cutting-edge topics such as the biophysical and interfacial chemistries of lipid membranes and gel surfaces, which serves as good model for biointerfaces in microbiology, hematology, and biotechnology</p> </li> </ul> <p><i>Biophysical Chemistry of Biointerfaces</i> pairs sound methodology with fresh insight on an emerging science to serve as an information-rich reference for professional chemists as well as a source of inspiration for graduate and postdoctoral students looking to distinguish themselves in this challenging field.</p>
<p>Preface xiii</p> <p>List of Symbols xv</p> <p><b>Part I Potential and Charge at Interfaces 1</b></p> <p><b>1 Potential and Charge of a Hard Particle 3</b></p> <p>1.1 Introduction 3</p> <p>1.2 The Poisson-Boltzmann Equation 3</p> <p>1.3 Plate 6</p> <p>1.3.1 Low Potential 8</p> <p>1.3.2 Arbitrary Potential: Symmetrical Electrolyte 8</p> <p>1.3.3 Arbitrary Potential: Asymmetrical Electrolyte 13</p> <p>1.3.4 Arbitrary Potential: General Electrolyte 14</p> <p>1.4 Sphere 16</p> <p>1.4.1 Low Potential 17</p> <p>1.4.2 Surface Charge Density-Surface Potential Relationship: Symmetrical Electrolyte 18</p> <p>1.4.3 Surface Charge Density-Surface Potential Relationship: Asymmetrical Electrolyte 21</p> <p>1.4.4 Surface Charge Density-Surface Potential Relationship: General Electrolyte 22</p> <p>1.4.5 Potential Distribution Around a Sphere with Arbitrary Potential 25</p> <p>1.5 Cylinder 31</p> <p>1.5.1 Low Potential 32</p> <p>1.5.2 Arbitrary Potential: Symmetrical Electrolyte 33</p> <p>1.5.3 Arbitrary Potential: General Electrolytes 34</p> <p>1.6 Asymptotic Behavior of Potential and Effective Surface Potential 37</p> <p>1.6.1 Plate 38</p> <p>1.6.2 Sphere 41</p> <p>1.6.3 Cylinder 42</p> <p>1.7 Nearly Spherical Particle 43</p> <p>References 45</p> <p><b>2 Potential Distribution Around a Nonuniformly Charged Surface and Discrete Charge Effects 47</b></p> <p>2.1 Introduction 47</p> <p>2.2 The Poisson-Boltzmann Equation for a Surface with an Arbitrary Fixed Surface Charge Distribution 47</p> <p>2.3 Discrete Charge Effect 56</p> <p>References 62</p> <p><b>3 Modified Poisson-Boltzmann Equation 63</b></p> <p>3.1 Introduction 63</p> <p>3.2 Electrolyte Solution Containing Rod-like Divalent Cations 63</p> <p>3.3 Electrolyte Solution Containing Rod-like Zwitterions 70</p> <p>3.4 Self-atmosphere Potential of Ions 77</p> <p>References 82</p> <p><b>4 Potential and Charge of a Soft Particle 83</b></p> <p>4.1 Introduction 83</p> <p>4.2 Planar Soft Surface 83</p> <p>4.2.1 Poisson–Boltzmann Equation 83</p> <p>4.2.2 Potential Distribution Across a Surface Charge Layer 87</p> <p>4.2.3 Thick Surface Charge Layer and Donnan Potential 90</p> <p>4.2.4 Transition Between Donnan Potential and Surface Potential 91</p> <p>4.2.5 Donnan Potential in a General Electrolyte 92</p> <p>4.3 Spherical Soft Particle 93</p> <p>4.3.1 Low Charge Density Case 93</p> <p>4.3.2 Surface Potential–Donnan Potential Relationship 95</p> <p>4.4 Cylindrical Soft Particle 100</p> <p>4.4.1 Low Charge Density Case 100</p> <p>4.4.2 Surface Potential–Donnan Potential Relationship 101</p> <p>4.5 Asymptotic Behavior of Potential and Effective Surface Potential of a Soft Particle 102</p> <p>4.5.1 Plate 102</p> <p>4.5.2 Sphere 103</p> <p>4.5.3 Cylinder 104</p> <p>4.6 Nonuniformly Charged Surface Layer: Isoelectric Point 104</p> <p>References 110</p> <p><b>5 Free Energy of a Charged Surface 111</b></p> <p>5.1 Introduction 111</p> <p>5.2 Helmholtz Free Energy and Tension of a Hard Surface 111</p> <p>5.2.1 Charged Surface with Ion Adsorption 111</p> <p>5.2.2 Charged Surface with Dissociable Groups 116</p> <p>5.3 Calculation of the Free Energy of the Electrical Double Layer 118</p> <p>5.3.1 Plate 119</p> <p>5.3.2 Sphere 120</p> <p>5.3.3 Cylinder 121</p> <p>5.4 Alternative Expression for F<sub>el</sub>  122</p> <p>5.5 Free Energy of a Soft Surface 123</p> <p>5.5.1 General Expression 123</p> <p>5.5.2 Expressions for the Double-Layer Free Energy for a Planar Soft Surface 127</p> <p>5.5.3 Soft Surface with Dissociable Groups 128</p> <p>References 130</p> <p><b>6 Potential Distribution Around a Charged Particle in a Salt-Free Medium 132</b></p> <p>6.1 Introduction 132</p> <p>6.2 Spherical Particle 133</p> <p>6.3 Cylindrical Particle 143</p> <p>6.4 Effects of a Small Amount of Added Salts 146</p> <p>6.5 Spherical Soft Particle 152</p> <p>References 162</p> <p><b>Part II Interaction Between Surfaces 163</b></p> <p><b>7 Electrostatic Interaction of Point Charges in an Inhomogeneous Medium 165</b></p> <p>7.1 Introduction 165</p> <p>7.2 Planar Geometry 166</p> <p>7.3 Cylindrical Geometry 180</p> <p>References 185</p> <p><b>8 Force and Potential Energy of the Double-Layer Interaction Between Two Charged Colloidal Particles 186</b></p> <p>8.1 Introduction 186</p> <p>8.2 Osmotic Pressure and Maxwell Stress 186</p> <p>8.3 Direct Calculation of Interaction Force 188</p> <p>8.4 Free Energy of Double-Layer Interaction 198</p> <p>8.4.1 Interaction at Constant Surface Charge Density 199</p> <p>8.4.2 Interaction at Constants Surface Potential 200</p> <p>8.5 Alternative Expression for the Electric Part of the Free Energy of Double-Layer Interaction 201</p> <p>8.6 Charge Regulation Model 201</p> <p>References 202</p> <p><b>9 Double-Layer Interaction Between Two Parallel Similar Plates 203</b></p> <p>9.1 Introduction 203</p> <p>9.2 Interaction Between Two Parallel Similar Plates 203</p> <p>9.3 Low Potential Case 207</p> <p>9.3.1 Interaction at Constant Surface Charge Density 208</p> <p>9.3.2 Interaction at Constant Surface Potential 211</p> <p>9.4 Arbitrary Potential Case 214</p> <p>9.4.1 Interaction at Constant Surface Charge Density 214</p> <p>9.4.2 Interaction at Constant Surface Potential 224</p> <p>9.5 Comparison Between the Theory of Derjaguin and Landau and the Theory of Verwey and Overbeek 226</p> <p>9.6 Approximate Analytic Expressions for Moderate Potentials 227</p> <p>9.7 Alternative Method of Linearization of the Poisson–Boltzmann Equation 231</p> <p>9.7.1 Interaction at Constant Surface Potential 231</p> <p>9.7.2 Interaction at Constant Surface Charge Density 234</p> <p>References 240</p> <p><b>10 Electrostatic Interaction Between Two Parallel Dissimilar Plates 241</b></p> <p>10.1 Introduction 241</p> <p>10.2 Interaction Between Two Parallel Dissimilar Plates 241</p> <p>10.3 Low Potential Case 244</p> <p>10.3.1 Interaction at Constant Surface Charge Density 244</p> <p>10.3.2 Interaction at Constant Surface Potential 251</p> <p>10.3.3 Mixed Case 252</p> <p>10.4 Arbitrary Potential: Interaction at Constant Surface Charge Density 252</p> <p>10.4.1 Isodynamic Curves 252</p> <p>10.4.2 Interaction Energy 258</p> <p>10.5 Approximate Analytic Expressions for Moderate Potentials 262</p> <p>References 263</p> <p><b>11 Linear Superposition Approximation for the Double-Layer Interaction of Particles at Large Separations 265</b></p> <p>11.1 Introduction 265</p> <p>11.2 Two Parallel Plates 265</p> <p>11.2.1 Similar Plates 265</p> <p>11.2.2 Dissimilar Plates 270</p> <p>11.2.3 Hypothetical Charge 276</p> <p>11.3 Two Spheres 278</p> <p>11.4 Two Cylinders 279</p> <p>References 281</p> <p><b>12 Derjaguin’s Approximation at Small Separations 283</b></p> <p>12.1 Introduction 283</p> <p>12.2 Two Spheres 283</p> <p>12.2.1 Low Potentials 285</p> <p>12.2.2 Moderate Potentials 286</p> <p>12.2.3 Arbitrary Potentials: Derjaguin’s Approximation Combined with the Linear Superposition Approximation 288</p> <p>12.2.4 Curvature Correction to Derjaguin’ Approximation 290</p> <p>12.3 Two Parallel Cylinders 292</p> <p>12.4 Two Crossed Cylinders 294</p> <p>References 297</p> <p><b>13 Donnan Potential-Regulated Interaction Between Porous Particles 298</b></p> <p>13.1 Introduction 298</p> <p>13.2 Two Parallel Semi-infinite Ion-penetrable Membranes (Porous Plates) 298</p> <p>13.3 Two Porous Spheres 306</p> <p>13.4 Two Parallel Porous Cylinders 310</p> <p>13.5 Two Parallel Membranes with Arbitrary Potentials 311</p> <p>13.5.1 Interaction Force and Isodynamic Curves 311</p> <p>13.5.2 Interaction Energy 317</p> <p>13.6 pH Dependence of Electrostatic Interaction Between Ion-penetrable Membranes 320</p> <p>References 322</p> <p><b>14 Series Expansion Representations for the Double-Layer Interaction Between Two Particles 323</b></p> <p>14.1 Introduction 323</p> <p>14.2 Schwartz’s Method 323</p> <p>14.3 Two Spheres 327</p> <p>14.4 Plate and Sphere 342</p> <p>14.5 Two Parallel Cylinders 348</p> <p>14.6 Plate and Cylinder 353</p> <p>References 356</p> <p><b>15 Electrostatic Interaction Between Soft Particles 357</b></p> <p>15.1 Introduction 357</p> <p>15.2 Interaction Between Two Parallel Dissimilar Soft Plates 357</p> <p>15.3 Interaction Between Two Dissimilar Soft Spheres 363</p> <p>15.4 Interaction Between Two Dissimilar Soft Cylinders 369</p> <p>References 374</p> <p><b>16 Electrostatic Interaction Between Nonuniformly Charged Membranes 375</b></p> <p>16.1 Introduction 375</p> <p>16.2 Basic Equations 375</p> <p>16.3 Interaction Force 376</p> <p>16.4 Isoelectric Points with Respect To Electrolyte Concentration 378</p> <p>Reference 380</p> <p><b>17 Electrostatic Repulsion Between Two Parallel Soft Plates After Their Contact 381</b></p> <p>17.1 Introduction 381</p> <p>17.2 Repulsion Between Intact Brushes 381</p> <p>17.3 Repulsion Between Compressed Brushes 382</p> <p>References 387</p> <p><b>18 Electrostatic Interaction Between Ion-Penetrable Membranes In a Salt-free Medium 388</b></p> <p>18.1 Introduction 388</p> <p>18.2 Two Parallel Hard Plates 388</p> <p>18.3 Two Parallel Ion-Penetrable Membranes 391</p> <p>References 398</p> <p><b>19 van der Waals Interaction Between Two Particles 399</b></p> <p>19.1 Introduction 399</p> <p>19.2 Two Molecules 399</p> <p>19.3 A Molecule and a Plate 401</p> <p>19.4 Two Parallel Plates 402</p> <p>19.5 A Molecule and a Sphere 404</p> <p>19.6 Two Spheres 405</p> <p>19.7 A Molecule and a Rod 407</p> <p>19.8 Two Parallel Rods 408</p> <p>19.9 A Molecule and a Cylinder  408</p> <p>19.10 Two Parallel Cylinders 410</p> <p>19.11 Two Crossed Cylinders 412</p> <p>19.12 Two Parallel Rings 412</p> <p>19.13 Two Parallel Torus-Shaped Particles 413</p> <p>19.14 Two Particles Immersed In a Medium 417</p> <p>19.15 Two Parallel Plates Covered with Surface Layers 418</p> <p>References 419</p> <p><b>20 DLVO Theory of Colloid Stability 420</b></p> <p>20.1 Introduction 420</p> <p>20.2 Interaction Between Lipid Bilayers 420</p> <p>20.3 Interaction Between Soft Spheres 425</p> <p>References 429</p> <p><b>Part III Electrokinetic Phenomena at Interfaces 431</b></p> <p><b>21 Electrophoretic Mobility of Soft Particles 433</b></p> <p>21.1 Introduction 433</p> <p>21.2 Brief Summary of Electrophoresis of Hard Particles 433</p> <p>21.3 General Theory of Electrophoretic Mobility of Soft Particles 435</p> <p>21.4 Analytic Approximations for the Electrophoretic Mobility of Spherical Soft Particles 440</p> <p>21.4.1 Large Spherical Soft Particles 440</p> <p>21.4.2 Weakly Charged Spherical Soft Particles 444</p> <p>21.4.3 Cylindrical Soft Particles 447</p> <p>21.5 Electrokinetic Flow Between Two Parallel Soft Plates 449</p> <p>21.6 Soft Particle Analysis of the Electrophoretic Mobility of Biological Cells and Their Model Particles 454</p> <p>21.6.1 RAW117 Lymphosarcoma Cells and Their Variant Cells 454</p> <p>21.6.2 Poly(N-isopropylacrylamide) Hydrogel-Coated Latex 455</p> <p>21.7 Electrophoresis of Nonuniformly Charged Soft Particles 457</p> <p>21.8 Other Topics of Electrophoresis of Soft Particles 463</p> <p>References 464</p> <p><b>22 Electrophoretic Mobility of Concentrated Soft Particles 468</b></p> <p>22.1 Introduction 468</p> <p>22.2 Electrophoretic Mobility of Concentrated Soft Particles 468</p> <p>22.3 Electroosmotic Velocity in an Array of Soft Cylinders 475</p> <p>References 479</p> <p><b>23 Electrical Conductivity of a Suspension of Soft Particles 480</b></p> <p>23.1 Introduction 480</p> <p>23.2 Basic Equations 480</p> <p>23.3 Electrical Conductivity 481</p> <p>References 484</p> <p><b>24 Sedimentation Potential and Velocity in a Suspension of Soft Particles 485</b></p> <p>24.1 Introduction 485</p> <p>24.2 Basic Equations 485</p> <p>24.3 Sedimentation Velocity of a Soft Particle 490</p> <p>24.4 Average Electric Current and Potential 490</p> <p>24.5 Sedimentation Potential 491</p> <p>24.6 Onsager’s Reciprocal Relation 494</p> <p>24.7 Diffusion Coefficient of a Soft Particle 495</p> <p>References 495</p> <p><b>25 Dynamic Electrophoretic Mobility of a Soft Particle 497</b></p> <p>25.1 Introduction 497</p> <p>25.2 Basic Equations 497</p> <p>25.3 Linearized Equations 499</p> <p>25.4 Equation of Motion of a Soft Particle 501</p> <p>25.5 General Mobility Expression 501</p> <p>25.6 Approximate Mobility Formula 503</p> <p>References 506</p> <p><b>26 Colloid Vibration Potential in a Suspension of Soft Particles 508</b></p> <p>26.1 Introduction 508</p> <p>26.2 Colloid Vibration Potential and Ion Vibration Potential 508</p> <p>References 513</p> <p><b>27 Effective Viscosity of a Suspension of Soft Particles 515</b></p> <p>27.1 Introduction 515</p> <p>27.2 Basic Equations 516</p> <p>27.3 Linearized Equations 518</p> <p>27.4 Electroviscous Coefficient 520</p> <p>27.5 Approximation for Low Fixed-Charge Densities 523</p> <p>27.6 Effective Viscosity of a Concentrated Suspension of Uncharged Porous Spheres 527</p> <p>Appendix 27a 530</p> <p>References 531</p> <p><b>Part IV other Topics 533</b></p> <p><b>28 Membrane Potential and Donnan Potential 535</b></p> <p>28.1 Introduction 535</p> <p>28.2 Membrane Potential and Donnan Potential 535</p> <p>References 541</p> <p>Index 543</p>
"Ohshima (pharmaceutical science, Tokyo U. of Science) sets out a set of tools for discussing various phenomena at biological interfaces - such as cell surfaces - in terms of biophysical chemistry." (SciTech <i>Book News,</i> December 2010)<br /> <br />
<b>HIROYUKI OHSHIMA</b> is Professor of Pharmaceutical Sciences at the Tokyo University of Science, Japan. He is the author or co-author of seven books and over 300 book chapters and journal publications reflecting his research interests in the colloid and interfacial sciences as well as biophysical chemistry. He is a member of the New York Academy of Sciences, American Chemical Society, the Physical Society of Japan, the Chemical Society of Japan, and the Pharmaceutical Society of Japan. Dr. Ohshima received the BS, MS, and PhD degrees in physics from the University of Tokyo, Japan. He currently edits two journals, <i>Colloids and Surfaces B: Biointerfaces</i> and <i>Colloid and Polymer Science.</i>
<b>The first book on the innovative study of biointerfaces using biophysical chemistry</b> <p>The biophysical phenomena that occur on biointerfaces, or biological surfaces, hold a prominent place in the study of biology and medicine, and are crucial for research relating to implants, biosensors, drug delivery, proteomics, and many other important areas. <i>Biophysical Chemistry of Biointerfaces</i> takes the unique approach of studying biological systems in terms of the principles and methods of physics and chemistry, drawing its knowledge and experimental techniques from a wide variety of disciplines to offer new tools to better understand the intricate interactions of biointerfaces. <i>Biophysical Chemistry of Biointerfaces:</i></p> <ul> <li> <p>Provides a detailed description of the thermodynamics and electrostatics of soft particles</p> </li> <li> <p>Fully describes the biophysical chemistry of soft interfaces and surfaces (polymer-coated interfaces and surfaces) as a model for biointerfaces</p> </li> <li> <p>Delivers many approximate analytic formulas which can be used to describe various interfacial phenomena and analyze experimental data</p> </li> <li> <p>Offers detailed descriptions of cutting-edge topics such as the biophysical and interfacial chemistries of lipid membranes and gel surfaces, which serves as good model for biointerfaces in microbiology, hematology, and biotechnology</p> </li> </ul> <p><i>Biophysical Chemistry of Biointerfaces</i> pairs sound methodology with fresh insight on an emerging science to serve as an information-rich reference for professional chemists as well as a source of inspiration for graduate and postdoctoral students looking to distinguish themselves in this challenging field.</p>

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €