Details

Biomaterials from Nature for Advanced Devices and Therapies


Biomaterials from Nature for Advanced Devices and Therapies


Wiley-Society for Biomaterials 1. Aufl.

von: Nuno M. Neves, Rui L. Reis

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 13.10.2016
ISBN/EAN: 9781119178071
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>In-depth information on natural biomaterials and their applications for translational medicine!</p> <ul> <li>Undiluted expertise: edited by world-leading experts with contributions from top-notch international scientists, collating experience and cutting-edge knowledge on natural biomaterials from all over the world</li> <li>A must-have on the shelf in every biomaterials lab: graduate and PhD students beginning their career in biomaterials science and experienced researchers and practitioners alike will turn to this comprehensive reference in their daily work</li> <li>Link to clinical practice: chapters on translational research make readers aware of what needs to be considered when a biomaterial leaves the lab to be routinely used</li> </ul>
<p>CONTRIBUTORS xix</p> <p>PREFACE xxix</p> <p><b>PART I 1 Collagen-Based Porous Scaffolds for Tissue Engineering 3<br /></b><i>Guoping Chen and Naoki Kawazoe</i></p> <p>1.1 Introduction, 3</p> <p>1.2 Collagen Sponges, 4</p> <p>1.3 Collagen Sponges with Micropatterned Pore Structures, 7</p> <p>1.4 Collagen Sponges with Controlled Bulk Structures, 10</p> <p>1.5 Hybrid Scaffolds, 12</p> <p>1.6 Conclusions, 13</p> <p>References, 14</p> <p><b>2 Marine Collagen Isolation and Processing Envisaging Biomedical Applications 16</b><br /><i>Joana Moreira-Silva, Gabriela S. Diogo, Ana L. P. Marques, Tiago H. Silva, and Rui L. Reis</i></p> <p>2.1 Introduction, 16</p> <p>2.2 Extraction of Collagen from Marine Sources, 18</p> <p>2.3 Collagen Characterization, 22</p> <p>2.4 Marine Collagen Wide Applications, 25</p> <p>2.5 Final Remarks, 32</p> <p>Acknowledgements, 34</p> <p>References, 34</p> <p><b>3 Gelatin-Based Biomaterials for Tissue Engineering and Stem Cell Bioengineering 37</b><br /><i>Mehdi Nikkhah, Mohsen Akbari, Arghya Paul, Adnan Memic, Alireza Dolatshahi-Pirouz, and Ali Khademhosseini</i></p> <p>3.1 Introduction, 37</p> <p>3.2 Crosslinking of Gelatin, 38</p> <p>3.3 Physical Properties of Gelatin, 39</p> <p>3.4 Application of Gelatin-Based Biomaterials in Tissue Engineering, 40</p> <p>3.5 Gelatin for Stem Cell Therapy, 45</p> <p>3.6 Application of Gelatin in Delivery Systems, 49</p> <p>3.7 Conclusion and Perspectives, 50</p> <p>Acknowledgements, 50</p> <p>Abbreviations, 50</p> <p>References, 51</p> <p><b>4 Hyaluronic Acid-Based Hydrogels on a Micro and Macro Scale 63</b><br /><i>A. Borzacchiello, L. Russo, and L. Ambrosio</i></p> <p>4.1 Classification and Structure of Hydrogels, 63</p> <p>4.2 Hyaluronic Acid, 65</p> <p>4.3 Hydrogel Mechanical Properties, 66</p> <p>4.4 HA-Based Hydrogel for Biomedical Applications, 70</p> <p>References, 75</p> <p><b>5 Chondroitin Sulfate as a Bioactive Macromolecule for Advanced Biological Applications and Therapies 79</b><br /><i>Nicola Volpi</i></p> <p>5.1 CS Structure, 81</p> <p>5.2 Biological Roles of CS, 81</p> <p>5.3 Osteoarthritis Treatment, 84</p> <p>5.4 Cardio-Cerebrovascular Disease, 84</p> <p>5.5 Tissue Regeneration and Engineering, 85</p> <p>5.6 Chondroitin Sulfate-Polymer Conjugates, 86</p> <p>5.7 Conclusions and Future Perspectives, 87</p> <p>References, 88</p> <p><b>6 Keratin 93</b><br /><i>Mark Van Dyke</i></p> <p>6.1 Introduction, 93</p> <p>6.2 Preparation of Keratoses, 98</p> <p>6.3 Preparation of Kerateines, 100</p> <p>6.4 Oxidative Sulfitolysis, 101</p> <p>6.5 Summary, 102</p> <p>References, 102</p> <p><b>7 Elastin-Like Polypeptides: Bio-Inspired Smart Polymers for Protein Purification, Drug Delivery and Tissue Engineering 106</b><br /><i>Jayanta Bhattacharyya, Joseph J. Bellucci, and Ashutosh Chilkoti</i></p> <p>7.1 Introduction, 106</p> <p>7.2 Recombinant Protein Production Using ELPs as Purification Tags, 107</p> <p>7.3 Delivery of Therapeutics with ELPs, 113</p> <p>7.4 Tissue Engineering with ELPs, 119</p> <p>7.5 Conclusions, 122</p> <p>Acknowledgements, 122</p> <p>Abbreviations, 122</p> <p>References, 123</p> <p><b>8 Silk: A Unique Family of Biopolymers 127</b><br /><i>A. Motta, M. Floren, and C. Migliaresi</i></p> <p>8.1 Introduction, 127</p> <p>8.2 Main Silk Polymers, 129</p> <p>8.3 Fibroin Basic Processing: Regenerated Silk Fibroin, 131</p> <p>8.4 Materials Fabrication of Silk Proteins, 131</p> <p>8.5 Advanced Material Applications of Silks, 135</p> <p>8.6 Conclusion, 136</p> <p>References, 137</p> <p><b>9 Silk Protein Sericin: Promising Biopolymer for Biological and Biomedical Applications 142</b><br /><i>Sunita Nayak and Subhas C. Kundu</i></p> <p>9.1 Introduction, 142</p> <p>9.2 Sericin Extraction and Processing, 146</p> <p>9.3 Potential Applications of Sericin, 147</p> <p>9.4 Immunogenicity and Toxicity of Sericin, 152</p> <p>9.5 Conclusion, 153</p> <p>Acknowledgements, 154</p> <p>References, 154</p> <p><b>10 Fibrin 159</b><br /><i>Markus Kerbl, Philipp Heher, James Ferguson, and Heinz Redl</i></p> <p>10.1 Introduction, 159</p> <p>10.2 Fibrin Clotting, 160</p> <p>10.3 Fibrin Degradation, 160</p> <p>10.4 Fibrin Glue, 163</p> <p>10.5 Conclusion, 170</p> <p>Acknowledgement, 171</p> <p>References, 171</p> <p><b>11 Casein Proteins 176</b><br /><i>Pranav K. Singh and Harjinder Singh</i></p> <p>11.1 Introduction, 176</p> <p>11.2 Structures and Properties of Casein, 178</p> <p>11.3 Interaction of Caseins with Metal Ions, 184</p> <p>11.4 Conclusions, 185</p> <p>References, 186</p> <p><b>12 Biomaterials from Decellularized Tissues 190</b><br /><i>Ricardo Londono and Stephen F. Badylak</i></p> <p>12.1 Introduction, 190</p> <p>12.2 Host Response to Implanted ECM-Derived Biomaterials, 196</p> <p>References, 199</p> <p><b>13 Demineralized Bone Matrix: A Morphogenetic Extracellular Matrix 211</b><br /><i>A. Hari Reddi and Ryosuke Sakata</i></p> <p>13.1 Introduction, 211</p> <p>13.2 Demineralized Bone Matrix (DBM), 211</p> <p>13.3 From DBM to Bone Morphogenetic Proteins (BMPs), 213</p> <p>13.4 BMPs Bind to Extracellular Matrix, 216</p> <p>13.5 BMP Receptors, 216</p> <p>13.6 Future Perspectives, 218</p> <p>Acknowledgements, 218</p> <p>References, 218</p> <p>PART II</p> <p><b>14 Recent Developments on Chitosan Applications in Regenerative Medicine 223</b><br /><i>Ana Rita C. Duarte, Vitor M. Correlo, Joaquim M. Oliveira, and Rui L. Reis</i></p> <p>14.1 Introduction, 223</p> <p>14.2 Chitosan and Derivatives, 224</p> <p>14.3 Regenerative Medicine Applications of Chitosan, 227</p> <p>14.4 Processing Methodologies, 231</p> <p>14.5 Final Remarks, 236</p> <p>Acknowledgments, 237</p> <p>References, 237</p> <p><b>15 Starch-Based Blends in Tissue Engineering 244</b><br /><i>P.P. Carvalho, M.T. Rodrigues, R.L. Reis, and M.E. Gomes</i></p> <p>15.1 Introduction, 244</p> <p>15.2 Starch, 245</p> <p>15.3 Modification of Starch for Biomedical Applications, 247</p> <p>15.4 Starch-Based Blends, 248</p> <p>15.5 Conclusions and Future Perspectives, 254</p> <p>References, 255</p> <p><b>16 Agarose Hydrogel Characterization for Regenerative Medicine Applications: Focus on Engineering Cartilage 258</b><br /><i>Brendan L. Roach, Adam B. Nover, Gerard A. Ateshian, and Clark T. Hung</i></p> <p>16.1 The Foundations of Agarose, 258</p> <p>16.2 Structure-Function Relationships of Agarose Hydrogels, 259</p> <p>16.3 Agarose as a Tissue Engineering Scaffold, 261</p> <p>16.4 Agarose in the Clinic, 266</p> <p>16.5 A Scaffold to Build On, 267</p> <p>Acknowledgements, 268</p> <p>References, 268</p> <p><b>17 Bioengineering Alginate for Regenerative Medicine Applications 274</b><br /><i>Emil Ruvinov and Smadar Cohen</i></p> <p>17.1 Introduction, 274</p> <p>17.2 Regenerative Medicine: Definition and Strategies, 275</p> <p>17.3 Alginate Biomaterial, 277</p> <p>17.4 Alginate Implant: First in Man Trial for Prevention of Heart Failure, 281</p> <p>17.5 Alginate Hydrogel as a Vehicle for Stem Cell Delivery and Retention, 284</p> <p>17.6 Engineering Alginate-Based Cell Microenvironments, 287</p> <p>17.7 Alginate Hydrogel Carrier for Growth Factor Delivery, 289</p> <p>17.8 Engineering Alginate for Affinity Binding and Presentation of Heparin-Binding Growth Factors, 292</p> <p>References, 300</p> <p><b>18 Dextran 307</b><br /><i>Rong Wang, Pieter J. Dijkstra, and Marcel Karperien</i></p> <p>18.1 Introduction, 307</p> <p>18.2 Structure and Properties, 308</p> <p>18.3 Dextran Derivatives, 310</p> <p>18.4 Dextran Copolymers, 314</p> <p>18.5 Degradation, 316</p> <p>18.6 Outlook, 316</p> <p>References, 316</p> <p><b>19 Gellan Gum-based Hydrogels for Tissue Engineering Applications 320</b><br /><i>Joana Silva-Correia, Joaquim Miguel Oliveira, and Rui Lu´ys Reis</i></p> <p>19.1 Introduction, 320</p> <p>19.2 Gellan Gum and its Derivatives, 322</p> <p>19.3 Tissue Engineering Applications, 325</p> <p>19.4 Final Remarks, 331</p> <p>Acknowledgments, 332</p> <p>References, 332</p> <p>PART III</p> <p><b>20 Biomedical Applications of Polyhydroxyalkanoates 339</b><br /><i>L.R. Lizarraga-Valderrama, B. Panchal, C. Thomas, A.R. Boccaccini, and I. Roy</i></p> <p>20.1 Introduction, 339</p> <p>20.2 Skin Tissue Engineering, 341</p> <p>20.3 Nerve Tissue Engineering, 344</p> <p>20.4 Cardiac Tissue Engineering, 348</p> <p>20.5 Dental Tissue Engineering, 356</p> <p>20.6 Bone Tissue Engineering, 358</p> <p>20.7 Cartilage Tissue Engineering, 366</p> <p>20.8 Osteochondral Tissue Engineering, 368</p> <p>20.9 Drug Delivery, 370</p> <p>20.10 Conclusions and the Future Potential of PHAs in Biomedical Applications, 373</p> <p>References, 373</p> <p><b>21 Bacterial Cellulose 384</b><br /><i>Hernane S. Barud, Junkal Gutierrez, Wilton R. Lustri, Maristela F.S. Peres, Sidney J.L. Ribeiro, Sybele Saska, and Agniezska Tercjak</i></p> <p>21.1 Introduction, 384</p> <p>21.2 BC Dressings, 385</p> <p>21.3 Bacterial Cellulose for Tissue Engineering and Regenerative Medicine, 388</p> <p>21.4 Concluding Remarks, 393</p> <p>Acknowledgments, 394</p> <p>References, 394</p> <p>PART IV</p> <p><b>22 Molecularly Imprinted Cryogels for Protein Purification 403</b><br /><i>Müge Andac¸, Igor Yu Galaev, and Adil Denizli</i></p> <p>22.1 Introduction, 403</p> <p>22.2 Molecularly Imprinted Cryogels for Protein Purification, 405</p> <p>22.3 Some Selected Applications of Molecularly Imprinted Cryogels (MIC) for Macromolecules, 414</p> <p>22.4 Concluding Remarks and Future Perspectives, 421</p> <p>References, 423</p> <p><b>23 Immunogenic Reaction of Implanted Biomaterials from Nature 429</b><br /><i>Martijn Van Griensven and Elizabeth Rosado Balmayor</i></p> <p>23.1 Introduction, 429</p> <p>23.2 Implantation Leads to Tissue Injury, 430</p> <p>23.3 Inflammatory Responses, 431</p> <p>23.4 Foreign Body Reaction, 433</p> <p>23.5 Immunogenic Reactions Towards Natural Biomaterials, 435</p> <p>23.6 Final Remarks, 438</p> <p>References, 438</p> <p><b>24 Chemical Modification of Biomaterials from Nature 444</b><br /><i>J.C. Rodr´yguez Cabello, I. Gonz´alez De Torre, M. Santos, A.M. Testera, and M. Alonso</i></p> <p>24.1 Protein Modification, 444</p> <p>24.2 Lipid Modifications, 451</p> <p>24.3 Polysaccharide Chemical Modifications, 457</p> <p>References, 466</p> <p>PART V</p> <p><b>25 Processing of Biomedical Devices for Tissue Engineering and Regenerative Medicine Applications 477</b><br /><i>Vitor M. Correlo, Albino Martins, Nuno M. Neves, and Rui L. Reis</i></p> <p>25.1 Introduction, 477</p> <p>25.2 Processing Techniques of Naturally Derived Biomaterial, 478</p> <p>25.3 Processing Techniques of Natural-Based Polymeric Blends, 483</p> <p>References, 487</p> <p><b>26 General Characterization of Physical Properties of Natural-Based Biomaterials 494</b><br /><i>Manuel Alatorre-Meda and Joäo F. Mano</i></p> <p>26.1 Introduction, 494</p> <p>26.2 Bulk Properties, 495</p> <p>26.3 Surface Properties, 507</p> <p>26.4 Concluding Remarks, 512</p> <p>Acknowledgments, 512</p> <p>References, 512</p> <p><b>27 General Characterization of Chemical Properties of Natural-Based Biomaterials 517</b><br /><i>Manuel Alatorre-Meda and Joäo F. Mano</i></p> <p>27.1 Introduction, 517</p> <p>27.2 Molecular Weight and Elemental Composition, 518</p> <p>27.3 Physiological Degradation, 524</p> <p>27.4 Concluding Remarks, 527</p> <p>Acknowledgments, 529</p> <p>References, 529</p> <p><b>28 In Vitro Biological Testing in the Development of New Devices 532</b><br /><i>Marta L. Alves Da Silva, Albino Martins, Ana Costa-Pinto, Rui L. Reis, and Nuno M. Neves</i></p> <p>28.1 Introduction, 532</p> <p>28.2 Cytotoxicity Assays, 533</p> <p>28.3 Evaluation of Cell Morphology and Distribution, 533</p> <p>28.4 Cell Viability Assays, 535</p> <p>28.5 Cell Proliferation Assays, 536</p> <p>28.6 Biochemical Analysis, 537</p> <p>28.7 Genotypic Expression Analysis, 541</p> <p>28.8 Histological Assessment, 542</p> <p>28.9 In Vitro Engineered Tissues, 543</p> <p>28.10 Concluding Remarks, 548</p> <p>References, 548</p> <p><b>29 Advanced In-Vitro Cell Culture Methods Using Natural Biomaterials 551</b><br /><i>Marta L. Alves Da Silva, Rui L. Reis, and Nuno M. Neves</i></p> <p>29.1 Introduction, 551</p> <p>29.2 Bioreactors, 552</p> <p>29.3 Hypoxia, 553</p> <p>29.4 Co-Cultures, 555</p> <p>29.5 Transfection, 555</p> <p>29.6 Nanoparticles and Related Systems, 558</p> <p>29.7 Concluding Remarks, 559</p> <p>References, 559</p> <p><b>30 Testing Natural Biomaterials in Animal Models 562</b><br /><i>Ana Costa-Pinto, Tírcia C. Santos, Nuno M. Neves, and Rui L. Reis</i></p> <p>30.1 Laboratory Animals as Tools in Biomaterials Testing, 562</p> <p>30.2 Inflammation and Host Reaction, 564</p> <p>30.3 Animal Models for Tissue Engineering, 568</p> <p>30.4 Final Remarks, 574</p> <p>References, 575</p> <p>PART VI</p> <p><b>31 Delivery Systems Made of Natural-Origin Polymers for Tissue Engineering and Regenerative Medicine Applications 583</b><br /><i>Albino Martins, Helena Ferreira, Rui L. Reis, and Nuno M. Neves</i></p> <p>31.1 Introduction, 583</p> <p>31.2 Advantages and Disadvantages of Natural Polymers-Based Delivery Systems, 585</p> <p>31.3 Fundamentals of Drug Delivery, 586</p> <p>31.4 In Vitro and In Vivo Applications of Natural-Based Delivery Systems, 591</p> <p>31.5 Concluding Remarks, 601</p> <p>References, 602</p> <p><b>32 Translational Research into New Clinical Applications 612</b><br /><i>M. David Harmon and Sangamesh G. Kumbar</i></p> <p>32.1 Introduction, 612</p> <p>32.2 Cardiovascular System Applications, 613</p> <p>32.3 Integumentary System Applications, 616</p> <p>32.4 Musculoskeletal System Applications, 618</p> <p>32.5 Nervous System Applications, 619</p> <p>32.6 Respiratory System Applications, 621</p> <p>32.7 Gastrointestinal System Applications, 622</p> <p>32.8 From Idea to Product, 624</p> <p>Acknowledgements, 626</p> <p>References, 626</p> <p><b>33 Challenges and Opportunities of Natural Biomaterials for Advanced Devices and Therapies 629</b><br /><i>R.L. Reis and N.M. Neves</i></p> <p>33.1 Introduction, 629</p> <p>33.2 Challenges of Natural Biomaterials, 630</p> <p>33.3 Opportunities of Natural Biomaterials, 631</p> <p>33.4 Final Remarks, 631</p> <p>References, 632</p> <p><b>34 Adhesives Inspired by Marine Mussels 634</b><br /><i>Courtney L. Jenkins, Heather J. Meredith, and Jonathan J. Wilker</i></p> <p>34.1 Introduction, 634</p> <p>34.2 Requirements for a Bioadhesive, 635</p> <p>34.3 Marine Mussels, 636</p> <p>34.4 Bulk Adhesion Testing, 638</p> <p>34.5 Extracted Mussel Adhesive Proteins, 640</p> <p>34.6 Mimics of Mussel Adhesive, 641</p> <p>34.7 Conclusions, 645</p> <p>Acknowledgement, 645</p> <p>References, 645</p> <p><b>35 Final Comments and Remarks 649</b><br /><i>R.L. Reis and N.M. Neves</i></p> <p>INDEX 651</p>
<p><b>Nuno M. Neves</b> is Professor at the Department of Polymer Engineering of the University of Minho, Portugal, where he is Vice-Director of the 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics. Nuno M. Neves received his PhD degree in Polymer Science and Engineering from the University of Minho in collaboration with the University of Twente, The Netherlands. His main area of research is the development of biomaterials from natural origin polymers. His research group focuses mainly on tissue engineering and regenerative medicine strategies using stem cells and advanced drug delivery scaffolds and medical devices.</p> <p><b>Rui L. Reis</b> is Professor of Tissue Engineering, Regenerative Medicine, Biomaterials and Stem Cells at the Department of Polymer Engineering of the University of Minho, Portugal. He is the Vice-Rector for Research of the University of Minho, Director of the 3B’s Research Group and the Director of the Portuguese Government Associate Laboratory ICVS/3B’s. Rui L. Reis received his PhD degree in Polymer Engineering from the University of Minho in collaboration with Brunel University in London, UK. His main area of research is the development of biomaterials from natural origin polymers that his group proposes for a range of biomedical applications.</p>
<p>The book provides in-depth information on natural biomaterials and their applications for translational medicine, covering topics such as tissue engineering with collagens or gelatines and natural materials for protein purification and drug delivery.</p> <p>Edited by world-leading experts with contributions from top-notch international scientists, it collates the experience and cutting-edge knowledge on natural biomaterials from all over the world, making the book a must-have publication on the shelf of every biomaterials lab.</p>

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €