Details

Biofertilizers


Biofertilizers

Study and Impact
1. Aufl.

von: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Mashallah Rezakazemi

190,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 02.08.2021
ISBN/EAN: 9781119724988
Sprache: englisch
Anzahl Seiten: 688

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients' solubility leading a raise in its fertility, stimulates crop growth and healthy food safety.</p> <p>This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.</p>
<p>Preface xxi</p> <p><b>1 Biofertilizer Utilization in Forestry 1<br /></b><i>Wendy Ying Ying Liu and Ranjetta Poobathy</i></p> <p>1.1 Introduction 2</p> <p>1.2 Mechanisms of Actions of Biofertilizers 3</p> <p>1.2.1 Facilitation of N Acquisition 3</p> <p>1.2.1.1 Mutualistic N<sub>2</sub> Fixation 4</p> <p>1.2.1.2 Non-Symbiotic N<sub>2</sub> Fixation 5</p> <p>1.2.2 Facilitation of P Acquisition 5</p> <p>1.2.2.1 Phosphate Solubilizing Microorganisms 6</p> <p>1.2.2.2 Mycorrhizas 7</p> <p>1.2.3 Potassium Solubilization 8</p> <p>1.2.4 Production of Siderophores 9</p> <p>1.2.5 Modulation of Phytohormones 10</p> <p>1.2.6 Phytoprotection 12</p> <p>1.3 Factors Influencing the Outcome of Forestry-Related Biofertilizer Applications 13</p> <p>1.4 Applications of Biofertilizers in Forestry 16</p> <p>1.5 Conclusion and Future Prospects 18</p> <p>References 20</p> <p><b>2 Impact of Biofertilizers on Horticultural Crops 39<br /></b><i>Clement Kiing Fook Wong and Chui-Yao Teh</i></p> <p>2.1 Introduction 40</p> <p>2.2 Microbial Strains Used in Biofertilizers 41</p> <p>2.3 Impact of Biofertilizer Application on Horticultural Crops 41</p> <p>2.3.1 Increased Yield and Quality of Crops 41</p> <p>2.3.1.1 Vegetable Crops 44</p> <p>2.3.1.2 Fruit Crops 46</p> <p>2.3.1.3 Ornamental Plants 48</p> <p>2.3.2 Enhanced Nutritional Content of Produce 49</p> <p>2.3.2.1 Mineral-Biofortified Crops 49</p> <p>2.3.2.2 Enhanced Secondary Metabolites 50</p> <p>2.3.2.3 Improved Vitamin Content 51</p> <p>2.3.3 Improved Tolerance Against Biotic Stress 52</p> <p>2.3.3.1 Fungal and Bacterial Pathogens 52</p> <p>2.3.3.2 Viral Pathogens 56</p> <p>2.3.3.3 Insect Pests 58</p> <p>2.3.3.4 Nematodes 61</p> <p>2.3.3.5 Weeds 64</p> <p>2.3.4 Improved Tolerance Against Abiotic Stress 65</p> <p>2.3.4.1 Drought 66</p> <p>2.3.4.2 Salinity 68</p> <p>2.3.4.3 Heavy Metal 70</p> <p>2.3.4.4 Cold Stress 71</p> <p>2.3.4.5 Heat Stress 73</p> <p>2.3.5 Improved Vegetative Propagation Efficiency 73</p> <p>2.3.5.1 Propagation by Cuttings 73</p> <p>2.3.5.2 Grafting 74</p> <p>2.4 Future Perspectives and Challenges Ahead 75</p> <p>2.5 Conclusion 79</p> <p>References 79</p> <p><b>3 N<sub>2</sub> Fixation in Biofertilizers 105<br /></b><i>Rekha Sharma, Sapna Nehra and Dinesh Kumar</i></p> <p>3.1 Introduction 106</p> <p>3.2 Biofertilizers 108</p> <p>3.2.1 Origin 108</p> <p>3.3 Biofertilizer: Transporter Constituents 108</p> <p>3.4 Mechanism of Actions of Biofertilizers 109</p> <p>3.5 Biochemistry of Manufacture of Biofertilizer 109</p> <p>3.6 Benefits of Biofertilizer Over Biochemical Fertilizers 110</p> <p>3.7 Variances Among Organic and Biofertilizer 111</p> <p>3.8 Types of Biofertilizers 111</p> <p>3.9 Microorganisms Utilized to Make Biofertilizer 111</p> <p>3.10 Microorganism in Nitrogen Fixation 113</p> <p>3.10.1 Biofertilizers: Symbiotic N-Fixers 113</p> <p>3.10.2 Biofertilizers: Free Living N-Fixers 114</p> <p>3.10.3 Biofertilizers: Associative Symbiotic N-Fixers 114</p> <p>3.11 Phosphorus Solubilizing Microbes 115</p> <p>3.12 Conclusion and Future Prospect 115</p> <p>Acknowledgments 116</p> <p>Abbreviations 116</p> <p>References 117</p> <p><b>4 Organic Farming by Biofertilizers 121<br /></b><i>Anuradha and Jagvir Singh</i></p> <p>4.1 Introduction 122</p> <p>4.2 Biofertilizers 123</p> <p>4.2.1 Benefits of Biofertilizers 126</p> <p>4.2.2 Method of Biofertilizer Application 126</p> <p>4.2.2.1 Seed Treatment 126</p> <p>4.2.2.2 Seedling Treatment 127</p> <p>4.2.2.3 Setts and Tuta Treatment 127</p> <p>4.2.2.4 Soil Treatment 127</p> <p>4.2.3 Precautions During Application of Biofertilizers 127</p> <p>4.3 Classification of Biofertilizers 128</p> <p>4.3.1 Nitrogen Fixer Bacteria 128</p> <p>4.3.1.1 Commercial Applications 129</p> <p>4.3.2 Cyanobacteria as Biofertilizers 130</p> <p>4.3.2.1 Commercial Applications 130</p> <p>4.3.2.2 Factors Affecting Cyanobacteria Biofertilizer 131</p> <p>4.3.3 Mycorrhiza as Biofertilizers 131</p> <p>4.3.3.1 Ectotrophic Mycorrhiza 132</p> <p>4.3.3.2 Endotrophic Mycorrhiza 132</p> <p>4.3.3.3 Changes in Mineral Compounds 133</p> <p>4.3.3.4 Manure Value and Its Importance 133</p> <p>4.3.4 Azolla as Biofertilizer 134</p> <p>4.3.5 Vermicompost 135</p> <p>4.3.5.1 Method of Vermicompost 135</p> <p>4.4 Organic Farming 136</p> <p>4.4.1 Objectives of Organic Farming 136</p> <p>4.4.2 Benefits of Organic Farming 136</p> <p>4.4.3 Benefit for Environment 137</p> <p>4.4.4 Methods of Organic Farming 137</p> <p>4.4.5 Techniques for Organic Farming 137</p> <p>4.4.5.1 Crop Diversity 138</p> <p>4.4.5.2 Soil Management 138</p> <p>4.4.5.3 Weed Management 138</p> <p>4.5 Traditional Agriculture vs. Organic and Inorganic Farming 139</p> <p>4.5.1 Problems Created by Traditional Farming 139</p> <p>4.6 Reasons for Doing Organic Farming 140</p> <p>4.6.1 To Save Soil Health 140</p> <p>4.6.2 To Preserve Nutrients 141</p> <p>4.6.3 To Reduce the Cost of Agriculture 141</p> <p>4.6.4 To Prevent Hazardous Elements in Animal Products 141</p> <p>4.6.5 To Protect the Environment 141</p> <p>4.6.6 Natural and Good Taste 142</p> <p>4.7 Advantage of Organic Farming 142</p> <p>4.7.1 Good Nutrition 142</p> <p>4.7.2 Good Health 142</p> <p>4.7.3 Freedom From Poison 142</p> <p>4.7.4 Less Money 143</p> <p>4.7.5 Great Taste 143</p> <p>4.7.6 Environmental Safety 143</p> <p>4.8 Disadvantages of Organic Farming 143</p> <p>4.8.1 Lack of Information 143</p> <p>4.8.2 Lack of Outline 143</p> <p>4.8.3 Making More Money in the Beginning 144</p> <p>4.9 Conclusion 144</p> <p>Acknowledgement 144</p> <p>References 144</p> <p><b>5 Phosphorus Solubilizing Microorganisms 151<br /></b><i>Rafig Gurbanov, Berkay Kalkanci, Hazel Karadag and Gizem Samgane</i></p> <p>5.1 Phosphorus Pollution 152</p> <p>5.2 Phosphate Solubilization 153</p> <p>5.3 Microbial Mechanisms of Phosphate Solubilization 155</p> <p>5.3.1 Organic Phosphate Solubilization 156</p> <p>5.3.2 Inorganic Phosphate Solubilization 156</p> <p>5.4 Phosphate-Solubilizing Bacteria 158</p> <p>5.5 Phosphate-Solubilizing Fungi 160</p> <p>5.5.1 Phosphate-Solubilizing Fungi as Plant Growth Promoters 162</p> <p>5.5.2 The Methods of using Phosphate-Solubilizing Fungi in Agriculture 164</p> <p>5.6 Bacteria-Fungi Consortium for Phosphate Solubilization 165</p> <p>5.7 Conclusions 167</p> <p>References 167</p> <p><b>6 Exophytical and Endophytical Interactions of Plants and Microbial Activities 183<br /></b><i>A. Mbotho, D. Selikane, J.S. Sefadi and M.J. Mochane</i></p> <p>6.1 Introduction 184</p> <p>6.2 Beneficial Interactions 185</p> <p>6.2.1 Arbuscular Mycorrhizal Fungi 186</p> <p>6.2.2 Plant Growth-Promoting Microorganisms 189</p> <p>6.2.3 Rhizobia 193</p> <p>6.2.4 Endophytes 194</p> <p>6.3 Pathogenic (Harmful) Interactions 194</p> <p>6.3.1 Oomycetes 195</p> <p>6.3.2 Fungi 198</p> <p>6.3.3 Bacteria 199</p> <p>6.3.4 Viruses 200</p> <p>6.4 Conclusion 203</p> <p>References 204</p> <p><b>7 Biofertilizer Formulations 211<br /></b><i>Sana Saif, Zeeshan Abid, Muhammad Faheem Ashiq, Muhammad Altaf and Raja Shahid Ashraf</i></p> <p>List of Abbreviations 212</p> <p>7.1 Introduction 212</p> <p>7.1.1 Evolution of Biofertilizers 212</p> <p>7.1.2 Biofertilizers: A Sustainable Approach 213</p> <p>7.2 Biofertilizer Formulations 215</p> <p>7.2.1 Selection of Strain 215</p> <p>7.2.1.1 Microbial Strains 215</p> <p>7.3 Types of Formulations 227</p> <p>7.3.1 Carrier-Based/Powder Formulations 230</p> <p>7.3.1.1 Selection of Carrier Material 230</p> <p>7.3.1.2 Sterilization of Carrier 235</p> <p>7.3.2 Granular Formulations 236</p> <p>7.3.3 Liquid Formulations 236</p> <p>7.3.3.1 Inoculant Preparation 237</p> <p>7.3.3.2 Common Additives 238</p> <p>7.3.4 Cell Immobilization 239</p> <p>7.3.4.1 Polymer Entrapped Formulations 239</p> <p>7.3.4.2 Advantages and Constrains 243</p> <p>7.3.5 Fluid Bed-Dried Formulation 243</p> <p>7.3.6 Mycorrhizal Formulations 244</p> <p>7.4 Stickers 246</p> <p>7.5 Additives 246</p> <p>7.6 Packaging 246</p> <p>7.7 Conclusion 247</p> <p>References 247</p> <p><b>8 Scoping the Use of Transgenic Microorganisms as Potential Biofertilizers for Sustainable Agriculture and Environmental Safety 257<br /></b><i>Vasavi Rama Karri and Nirmala Nalluri</i></p> <p>8.1 Introduction 258</p> <p>8.2 Role of Nitrogen in Plant Growth and Development 260</p> <p>8.2.1 Microorganisms Involved in Nitrogen Fixation 260</p> <p>8.3 Importance of Phosphorus 261</p> <p>8.3.1 Microbes Involved in Phosphate Solubilization 262</p> <p>8.3.2 Reducing the pH of Soil 262</p> <p>8.3.3 Mineralization 263</p> <p>8.3.4 Chelation 263</p> <p>8.3.5 Promotion of Plant Growth by PSMs 263</p> <p>8.3.6 Approach of Using PSMs as Biofertilizer and the Future Perspective 264</p> <p>8.4 Significance of Potassium (K) 265</p> <p>8.4.1 Microorganisms Involved in Potassium Hydrolyzation 265</p> <p>8.4.2 Effect of KSB on Plant Growth and Yield 266</p> <p>8.4.3 Abilities and Objections of K Solubilizing Bacteria 266</p> <p>8.5 Biofertilizers Used in Agriculture 267</p> <p>8.5.1 Mycorrhiza 268</p> <p>8.5.2 Plant Growth-Promoting Rhizobacteria (PGPR) 268</p> <p>8.6 Role of Biotechnology in Agricultural Sector 268</p> <p>8.6.1 Development of Potent Microbial Strains Through Genetic Engineering Approach to Produce  Efficient Biofertilizers 269</p> <p>8.6.2 Genetically Altered Transgenic <i>Azotobacter vinelandii </i>as an Effective Diazotrophs Biofertilizer 270</p> <p>8.6.3 Phytostimuators and Biofertilizers 271</p> <p>8.6.4 <i>Azospirillum </i>272</p> <p>8.6.5 Generation of Genetically Modified Transgenic <i>Azospirillum </i>Strains With Enhanced Levels of Phytoharmone Secretion 274</p> <p>8.6.6 Development of <i>Rhizobium </i>Strains With Increased Competitiveness by Genetic Modification 275</p> <p>8.6.7 Effect of GM <i>Rhizobial strains </i>on Arbuscular Mycorrhizal (AM) Fungi 278</p> <p>8.6.8 Release of Genetically Manipulated <i>Rhizobium </i>for Field Trails 279</p> <p>8.7 Conclusion 280</p> <p>Acknowledgements 281</p> <p>References 281</p> <p><b>9 Biofertilizer Utilization in Agricultural Sector 293<br /></b><i>Osikemekha Anthony Anani, Charles Oluwaseun Adetunji, Osayomwanbo Osarenotor and Inamuddin</i></p> <p>9.1 Introduction 294</p> <p>9.2 Application of Biofertilizer as Bioaugmentation Agent for Bioremediation of Heavily Polluted Soil 295</p> <p>9.3 Advantages of Biofertilizer in Comparison With Synthetic Fertilizer 296</p> <p>9.4 Specific Examples of a Biofertilizer for Crop Improvement in Agricultural Sector 298</p> <p>9.5 Management of Biotic and Abiotic Stress 301</p> <p>9.6 Combinatory Effect of Biofertilizer With Other Substance and Their Effect on Crops 303</p> <p>9.7 Conclusion and Recommendation to Knowledge 305</p> <p>References 306</p> <p><b>10 Azospirillum: A Salient Source for Sustainable Agriculture 309<br /></b><i>Rimjim Gogoi, Sukanya Baruah and Jiban Saikia</i></p> <p>10.1 Introduction 309</p> <p>10.1.1 The Genus Azospirillum 311</p> <p>10.1.2 Properties of <i>Azospirillum </i>spp. 312</p> <p>10.1.2.1 Chemotaxis 312</p> <p>10.1.2.2 Aerotaxis 313</p> <p>10.1.2.3 Formation of Cysts and Aggregates or Flocs 313</p> <p>10.1.2.4 Survivability in Rhizosphere and Bulk Soil 314</p> <p>10.1.2.5 Competition With Other Soil Microorganisms 316</p> <p>10.1.2.6 Association With Plant Roots 316</p> <p>10.2 Azospirillum and Induction of Stimulatory Effects for Promoting Plant Growth 318</p> <p>10.3 Applications in Various Fields 320</p> <p>10.4 Current Status 324</p> <p>10.5 Challenges in Large-Scale Commercial Applications of Azospirillum Inoculants 327</p> <p>10.6 Programs Employed for Enhanced Applications of Azospirillum Inoculants 328</p> <p>10.7 Conclusion and Future Prospects 329</p> <p>References 330</p> <p><b>11 Actinomycetes: Implications and Prospects in Sustainable Agriculture 335<br /></b><i>V. Shanthi</i></p> <p>11.1 Introduction 336</p> <p>11.2 Role in Maintaining Soil Fertility 338</p> <p>11.2.1 Nitrogen Fixation 338</p> <p>11.2.2 Phosphate Solubilization 340</p> <p>11.2.3 Potassium Solubilization 342</p> <p>11.3 Role in Maintaining Soil Ecology 342</p> <p>11.4 Role as Biocontrol Agents 345</p> <p>11.4.1 Production of Antibiotics 346</p> <p>11.4.2 Production of Siderophores 348</p> <p>11.4.3 Production of Hydrogen Cyanide 349</p> <p>11.4.4 Production of Lytic Enzymes 349</p> <p>11.5 Role as Plant Stress Busters 351</p> <p>11.5.1 Resistance From Heavy Metal Toxicity 352</p> <p>11.5.2 Resistance Against Drought/Water Deficit 354</p> <p>11.5.3 Resistance Toward Salinity 355</p> <p>11.6 Conclusion 355</p> <p>11.7 Future Perspectives 356</p> <p>References 357</p> <p><b>12 Influence of Growth Pattern of Cyanobacterial Species on Biofertilizer Production 371<br /></b><i>Jasti Tejaswi, Kaligotla Venkata Subrahmanya Anirudh, Lalitha Rishika Majeti, Viswanatha Chaitanya Kolluru and Rajesh K. Srivastava</i></p> <p>12.1 Introduction 371</p> <p>12.2 Habit and Habitat of Cyanobacteria 373</p> <p>12.3 Morphology and Mode of Reproduction 373</p> <p>12.4 Role of a Fertilizer in Plant Growth 375</p> <p>12.4.1 Synthetic Fertilizers 376</p> <p>12.4.2 Organic Fertilizers 377</p> <p>12.4.3 Biofertilizer 377</p> <p>12.5 Cyanobacteria as Biofertilizer 379</p> <p>12.6 Production of Cyanobacteria 381</p> <p>12.7 Methods for <i>In Vitro </i>Culture of Cyanobacteria 382</p> <p>12.7.1 Macro- and Microelements 382</p> <p>12.7.2 Temperature 383</p> <p>12.7.3 Light and Cell Density 383</p> <p>12.7.4 Media 383</p> <p>12.8 Methods for Gene Transfer into Cyanobacteria 384</p> <p>12.8.1 DNA-Mediated Transformation 385</p> <p>12.8.2 Electroporation 385</p> <p>12.8.3 Conjugation 386</p> <p>12.8.4 Biolistic Method 386</p> <p>12.9 Conclusion and Future Prospects 386</p> <p>12.10 Abbreviations 387</p> <p>References 388</p> <p><b>13 Biofertilizers Application in Agriculture: A Viable Option to Chemical Fertilizers 393<br /></b><i>Rajesh K. Srivastava</i></p> <p>13.1 Introduction 394</p> <p>13.2 Chemical Fertilizer 397</p> <p>13.2.1 Customized Fertilizers 400</p> <p>13.2.2 Fortified Fertilizer 400</p> <p>13.3 Biofertilizers 400</p> <p>13.3.1 Biocompost 403</p> <p>13.3.2 Trichocard 404</p> <p>13.3.3 Trichocard Production 405</p> <p>13.3.4 <i>Azotobacter </i>405</p> <p>13.3.5 Phosphorus 406</p> <p>13.3.6 Vermicompost 406</p> <p>13.4 Conclusion 408</p> <p>13.5 Abbreviations 408</p> <p>References 408</p> <p><b>14 Quality Control of Biofertilizers 413<br /></b><i>Swati Agarwal, Sonu Kumari and Suphiya Khan</i></p> <p>14.1 Introduction 413</p> <p>14.2 Biofertilizer Requirement and Supply 414</p> <p>14.3 Process of Biofertilizer Quality Control 416</p> <p>14.4 Requirement of Quality Control 417</p> <p>14.5 Standards for Biofertilizers Quality Control 419</p> <p>14.6 Methods for Quality Testing 421</p> <p>14.6.1 Microbiological Methods 422</p> <p>14.6.2 Serological Methods 422</p> <p>14.6.3 Molecular Methods 423</p> <p>14.7 Conclusion 423</p> <p>Acknowledgement 423</p> <p>References 424</p> <p><b>15 Biofertilizers: Characteristic Features and Applications 429<br /></b><i>Tanushree Chakraborty and Nasim Akhtar</i></p> <p>15.1 Introduction 430</p> <p>15.2 Types of Biofertilizers 430</p> <p>15.3 Characteristic Features and Applications of Biofertilizers 431</p> <p>15.3.1 Cyanobacteria Biofertilizer 431</p> <p>15.3.2 Actinomycetes 435</p> <p>15.3.3 <i>Rhizobium leguminosarum </i>bv. Trifolii 436</p> <p>15.3.4 Arbuscular Mycorrhizal Fungi (AMF) 436</p> <p>15.3.5 <i>Bacillus thuringiensis </i>437</p> <p>15.3.6 Microalgae 438</p> <p>15.4 Phosphate Solubilizing Bacteria (PSB) and Fungus (PSF) 438</p> <p>15.4.1 <i>Azotobacter </i>439</p> <p>15.4.2 <i>Azospirillum </i>440</p> <p>15.4.3 <i>Paenibacillus </i>440</p> <p>15.4.4 Phyllosphere Associated <i>Methylobacterium </i>441</p> <p>15.4.5 MO Plus Biofertilizer 441</p> <p>15.5 Effect of Biofertilizer on Various Plants (Experimental Design) 442</p> <p>15.5.1 <i>Azotobacter </i>spp. (AZT) and <i>Azospirillum </i>spp. (AZP) on <i>Eucalyptus grandis </i>442</p> <p>15.5.2 <i>Bradyrhizobium </i>Strains and <i>Streptomyces griseoflavus </i>on Some Leguminous, Cereal, and Vegetable Crops 443</p> <p>15.5.3 <i>Rhizobium </i>and Rhizobacteria on <i>Trifolium repens </i>444</p> <p>15.5.4 Arbuscular Mycorrhizal and Phosphate Solubilizing Fungi on Coffee Plants 445</p> <p>15.5.5 <i>Glutamicibacter halophytocola </i>KLBMP 5180</p> <p>on Tomato Seedlings 446</p> <p>15.6 Screening of Microbes for Biofertilizer 447</p> <p>15.6.1 Screening for Phosphate Solubilization 447</p> <p>15.6.2 Screening for Potassium Solubilizing 447</p> <p>15.6.3 Screening for Nitrogen-Fixing 448</p> <p>15.6.4 Screening for Zinc Solubilization 448</p> <p>15.6.5 Screening for Ammonia Production 448</p> <p>15.6.6 Screening for Hydrogen Cyanide (HCN) Production 448</p> <p>15.6.7 Screening for Siderophores 448</p> <p>15.6.8 Screening for Auxin Production 449</p> <p>15.6.9 Screening for Gibberellic Acid Production 449</p> <p>15.6.10 Screening for Production of Chitinase 449</p> <p>15.7 Limitations of Biofertilizers 449</p> <p>15.8 Success of Biofertilizer 450</p> <p>15.9 Debottlenecking 453</p> <p>15.10 Optimization of Biofertilizer 456</p> <p>15.10.1 Optimization of Phosphate Solubilization 456</p> <p>15.11 Concomitant of Biofertilizer 458</p> <p>15.12 New Approach 458</p> <p>15.13 Conclusion and Future Prospects 459</p> <p>References 460</p> <p><b>16 Fabrication Approaches for Biofertilizers 491<br /></b><i>Andrew N. Amenaghawon, Chinedu L. Anyalewechi and Heri Septya Kusuma</i></p> <p>16.1 Introduction 492</p> <p>16.2 Biofertilizers 492</p> <p>16.3 Types of Biofertilizers 493</p> <p>16.3.1 Nitrogen-Fixing Biofertilizers 493</p> <p>16.3.1.1 Rhizobium 494</p> <p>16.3.1.2 Azospirillum 494</p> <p>16.3.1.3 Azotobacter 495</p> <p>16.3.2 Phosphorus-Solubilizing Biofertilizers 495</p> <p>16.3.3 Phosphate-Mobilizing Biofertilizer (Mycorrhizae) 496</p> <p>16.3.4 Potassium Biofertilizer 497</p> <p>16.3.5 Growth-Promoting Biofertilizers 497</p> <p>16.3.6 Blue-Green Algae (Cyanobacteria) 498</p> <p>16.4 Preparation Approaches for Biofertilizers 499</p> <p>16.4.1 Inoculant Formulation 499</p> <p>16.4.2 Carriers for Biofertilizer Preparation 500</p> <p>16.4.2.1 Sterilized Carriers 500</p> <p>16.4.3 Carrier Form 501</p> <p>16.5 Methods of Biofertilizer Formulation 501</p> <p>16.5.1 Solid-Based Carrier Bioformulation 501</p> <p>16.5.1.1 Peat Formulations 502</p> <p>16.5.2 Liquid Inoculants Formulation 503</p> <p>16.5.3 Polymer-Based Formulation 504</p> <p>16.5.3.1 Alginate Formulations 504</p> <p>16.5.4 Fluidized Bed Dried Formulation 504</p> <p>16.5.5 Particles From Gas Saturated Solutions (PGSS) Method 505</p> <p>16.5.6 Bionanoformulations 505</p> <p>16.6 Application Modes for Biofertilizers 506</p> <p>16.6.1 Seed Treatment 506</p> <p>16.6.2 Seedling Root Dipping 506</p> <p>16.6.3 Soil Application 507</p> <p>16.7 Factors Affecting the Preparation of Biofertilizers 507</p> <p>16.8 Beneficial Effects of Biofertilizers 508</p> <p>16.9 Challenges and Limitations of Biofertilizers 509</p> <p>16.10 Future Prospects 509</p> <p>16.11 Conclusion 510</p> <p>References 511</p> <p><b>17 Biofertilizers From Waste 517<br /></b><i>Rafaela Basso Sartori, Ihana Aguiar Severo, Álisson Santos de Oliveira, Paola Lasta, Leila Queiroz Zepka and Eduardo Jacob-Lopes</i></p> <p>17.1 Introduction 518</p> <p>17.2 Waste Sources 519</p> <p>17.3 Technologies for Waste Treatment 521</p> <p>17.3.1 Conventional Technologies 521</p> <p>17.3.2 Emerging Technologies 522</p> <p>17.3.2.1 Nutrients Recovery From Wastes by Microalgae 523</p> <p>17.3.2.2 Overall Process Operations 526</p> <p>17.4 Main Applications of Microalgae Biofertilizers 528</p> <p>17.4.1 Fertility and Soil Quality 528</p> <p>17.4.1.1 Nitrogen Fixation 528</p> <p>17.4.1.2 Carbon Sequestration 529</p> <p>17.4.1.3 Soil Organic Matter, Improvement, and Recovery 530</p> <p>17.4.2 Promotion of Plant Growth, Disease, and Pest Control 531</p> <p>17.4.2.1 Plant Colonization and Hormone Production 531</p> <p>17.4.2.2 Disease and Pest Control 532</p> <p>17.5 Conclusion and Recommendations 532</p> <p>References 533</p> <p><b>18 Biofertilizers Industry Profiles in Market 541<br /></b><i>Kashish Gupta</i></p> <p>18.1 Biofertilizers and Biofertilizer Technology 541</p> <p>18.1.1 Benefits of Different Biofertilizers 542</p> <p>18.2 Limitations in Usage of Biofertilizers 543</p> <p>18.3 Biofertilizer Market Segments 544</p> <p>18.4 Biofertilizers Market Drivers in India 546</p> <p>18.5 Present Scenario of Biofertilizer Market 547</p> <p>18.6 Key Players of Biofertilizers in Indian Market 549</p> <p>18.7 Problems in Promotion of Biofertilizer 550</p> <p>18.8 Popular Marketed Biofertilizers in Indian Market 553</p> <p>18.9 Recent Trends in Biofertilizer: Liquid Biofertilizer 554</p> <p>18.9.1 Specialties of Liquid Biofertilizer 554</p> <p>18.10 Conclusion and Future Scope 555</p> <p>References 556</p> <p><b>19 Case Study on Biofertilizer Utilization in African Continents 561<br /></b><i>Osikemekha Anthony Anani and Charles Oluwaseun Adetunji</i></p> <p>19.1 Introduction 562</p> <p>19.2 Specific Examples of Biofertilizer for Crop Improvement, Environmental Bioremediation, and Their Advantages and Challenges in Africa 563</p> <p>19.3 Conclusion and Future Recommendations 570</p> <p>References 570</p> <p><b>20 Biofertilizers: Prospects and Challenges for Future 575<br /></b><i>Tanushree Chakraborty and Nasim Akhtar</i></p> <p>20.1 Introduction 576</p> <p>20.2 Definition 579</p> <p>20.2.1 Helper Bacteria 579</p> <p>20.2.2 The Point of Difference 580</p> <p>20.3 Advances in Biofertilizer 580</p> <p>20.4 Preparation of Biofertilizer 581</p> <p>20.5 The Carrier Materials 581</p> <p>20.6 Production System of Biofertilizer 582</p> <p>20.7 Mechanism of Growth-Promoting Activity of Biofertilizers 583</p> <p>20.8 Advantages and Limitations 584</p> <p>20.9 Future Aspects 584</p> <p>20.10 Conclusion 585</p> <p>References 586</p> <p><b>21 Biofertilizers: Past, Present, and Future 591<br /></b><i>Mukta Sharma and Manoj Sharma</i></p> <p>21.1 Introduction 592</p> <p>21.2 Biofertilizer: A Brief History 593</p> <p>21.3 Biofertilizer Classification 594</p> <p>21.4 Different Paradigms of Biofertilizers 596</p> <p>21.4.1 Impregnation of Fertilizers and Fertilizer Use Efficiency 596</p> <p>21.4.2 Inoculants of Mixtures of Microorganisms 597</p> <p>21.4.3 Different Formulations of Inoculants 597</p> <p>21.4.4 Inoculant Carrier 598</p> <p>21.4.5 Biofertilizer Carriers and Liquid Formulations 599</p> <p>21.4.6 Controlled Release Techniques: Encapsulation, Lyophilization, and Drying 600</p> <p>21.5 Biofertilizers: Current Status 601</p> <p>21.6 Biofertilizers: Future Paradigm 601</p> <p>21.7 Conclusion 602</p> <p>References 603</p> <p><b>22 Algal Biofertilizer 607<br /></b><i>Muhammad Mudassir Iqbal, Gulzar Muhammad, Muhammad Shahbaz Aslam, Muhammad Ajaz Hussain, Zahid Shafiq and Haseeba Razzaq</i></p> <p>22.1 Introduction 608</p> <p>22.2 Algae and Algal Biofertilizers 609</p> <p>22.2.1 Algae is a Polyphyletic Functional Group 609</p> <p>22.2.2 Multifaceted Role of Algal Biofertilizer in Sustainable Cultivation 610</p> <p>22.2.3 Biostimulants From Algae 612</p> <p>22.3 Techniques of Application of Algal Biofertilizer 613</p> <p>22.3.1 Algal Extracts as Biofertilizer 613</p> <p>22.3.2 Addition of Algal Strains and Algal Biofertilizer to Soil 619</p> <p>22.4 Cultivation of Algae and Production of Algal Biofertilizer 625</p> <p>22.5 Conclusion 630</p> <p>References 630</p> <p>Index 637</p>
<p><b>Inamuddin, PhD,</b> is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers.</p> <p><b>Mohd Imran Ahamed, PhD,</b> is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning. <p><b>Rajender Boddula, PhD,</b> is currently working for the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters. <p><b>Mashallah Rezakazemi, PhD,</b> received his doctorate from the University of Tehran (UT) in 2015. In his first appointment, he served as associate professor in the Faculty of Chemical and Materials Engineering at Shahrood University of Technology. He has co-authored in more than 140 highly cited journal publications, conference articles and book chapters. He has received numerous major awards and grants from various funding agencies in recognition of his research. Notable among these are Khwarizmi Youth Award from the Iranian Research Organization for Science and Technology (IROST), and the Outstanding Young Researcher Award in Chemical Engineering from the Academy of Sciences of Iran. He was named a top 1% most Highly Cited Researcher by Web of Science (ESI).
<p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this new volume provides in-depth knowledge about the history, fundamentals, and latest advances in biofertilizers, including the latest reviews, challenges, and future perspectives.</b></p> <p>Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi), living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, and organic matter. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients’ solubility. This leads to increased fertility and stimulates crop growth and food safety. <p>This book provides in-depth knowledge about history and fundamentals to advances in biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers’ physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology. <p>This outstanding new volume: <ul><li>Includes new concepts, case studies, and patents, making this a unique volume among existing resources</li> <li>Introduces cutting-edge technology based on biofertilizers</li> <li>Describes environmentally accepted biofertilizer technologies and applications</li> <li>Reviews biofertilizers as a sustainable renewable source, and documents global fertilizer development</li></ul> <p><b>Audience:</b> Mechanical engineers, process engineers, chemical engineers, agrochemists, chemists, environmental engineers, and other engineers and operators working with biofertilizers across many engineering disciplines

Diese Produkte könnten Sie auch interessieren:

Cheese For Dummies
Cheese For Dummies
von: Culture Magazine, Laurel Miller, Thalassa Skinner, Ming Tsai
PDF ebook
14,99 €
Dense Phase Carbon Dioxide
Dense Phase Carbon Dioxide
von: Murat O. Balaban, Giovanna Ferrentino
EPUB ebook
193,99 €
Aquaculture Production Systems
Aquaculture Production Systems
von: James H. Tidwell
PDF ebook
98,99 €