Details

Biocatalysis for Practitioners


Biocatalysis for Practitioners

Techniques, Reactions and Applications
1. Aufl.

von: Gonzalo de Gonzalo, Iván Lavandera

115,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 13.04.2021
ISBN/EAN: 9783527824458
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This reference book originates from the interdisciplinary research cooperation between academia and industry. In three distinct parts, latest results from basic research on stable enzymes are explained and brought into context with possible industrial applications. Downstream processing technology as well as biocatalytic and biotechnological production processes from global players display the enormous potential of biocatalysts. Application of "extreme" reaction conditions (i.e. unconventional, such as high temperature, pressure, and pH value) - biocatalysts are normally used within a well defined process window - leads to novel synthetic effects. Both novel enzyme systems and the synthetic routes in which they can be applied are made accessible to the reader. In addition, the complementary innovative process technology under unconventional conditions is highlighted by latest examples from biotech industry.
<p>Foreword xvii</p> <p><b>Part I Enzyme Techniques 1</b></p> <p><b>1 Techniques for Enzyme Purification 3<br /></b><i>Adrie H. Westphal and Willem J. H. van Berkel</i></p> <p>1.1 Introduction 3</p> <p>1.2 Traditional Enzyme Purification 4</p> <p>1.2.1 Ion Exchange Chromatography 7</p> <p>1.2.2 Gel Filtration 9</p> <p>1.2.3 Bio-affinity Chromatography 11</p> <p>1.2.4 Hydrophobic Interaction Chromatography 14</p> <p>1.2.5 Hydroxyapatite Chromatography 15</p> <p>1.3 Example of a Traditional Enzyme Purification Protocol 17</p> <p>1.4 Purification of Recombinant Enzymes 18</p> <p>1.4.1 Immobilized Metal Affinity Chromatography 18</p> <p>1.4.2 Affinity Chromatography with Protein Tags 20</p> <p>1.5 Column Materials 22</p> <p>1.6 Conclusions 24</p> <p> References 25</p> <p><b>2 Enzyme Modification 33<br /></b><i>Antonino Biundo, Patricia Saénz-Méndez, and Tamas Görbe</i></p> <p>2.1 Introduction 33</p> <p>2.2 Practical Approach: Experimental Information, Analytical Methods, Tips and Tricks, and Examples 34</p> <p>2.2.1 Directed Evolution 34</p> <p>2.2.1.1 (Ultra)High-Throughput Screening and Selection 35</p> <p>2.2.1.2 Applications of Directed Evolution Methodology 36</p> <p>2.2.2 Semi-rational Design 37</p> <p>2.2.2.1 Applications of Semi-rational Design Methodology 38</p> <p>2.2.3<i> De Novo</i> Enzyme Design 39</p> <p>2.2.3.1 Applications of <i>De Novo</i> Enzyme Design Methodology 40</p> <p>2.2.4 Rational Enzyme Design 40</p> <p>2.2.4.1 Applications of Rational Design Methodology 41</p> <p>2.3 Expectations and Perspectives 49</p> <p>2.4 Concluding Remarks 50</p> <p>References 51</p> <p><b>3 Immobilization Techniques for the Preparation of Supported Biocatalysts: Making Better Biocatalysts Through Protein Immobilization 63<br /></b><i>Javier Rocha-Martín, Lorena Betancor, and Fernando López-Gallego</i></p> <p>3.1 Introduction 63</p> <p>3.2 General Aspects to Optimize Enzyme Immobilization Protocols 64</p> <p>3.2.1 Carrier Nature 64</p> <p>3.2.2 Immobilization Chemistry 64</p> <p>3.2.3 Protein Orientation 64</p> <p>3.2.4 Multivalence of the Protein Attachment 65</p> <p>3.2.5 Chemical and Geometrical Congruence 65</p> <p>3.2.6 Enzyme Spatial Organization 65</p> <p>3.3 Type of Carriers for Immobilized Proteins 66</p> <p>3.3.1 Types of Materials 66</p> <p>3.3.1.1 Organic Materials 66</p> <p>3.3.1.2 Inorganic Materials 66</p> <p>3.3.2 Geometry 67</p> <p>3.3.2.1 Beads 67</p> <p>3.3.2.2 Monoliths 67</p> <p>3.3.2.3 Membranes 67</p> <p>3.3.3 Dimensions 67</p> <p>3.3.4 Commercially Available Porous Carriers for Enzyme Immobilization 68</p> <p>3.4 Immobilization Methods and Manners 68</p> <p>3.5 Evaluation of the Enzyme Immobilization Process 70</p> <p>3.5.1 Considerations Before Immobilization 71</p> <p>3.5.1.1 Preparation of the Enzymatic Solution to Be Immobilized 71</p> <p>3.5.1.2 Stability of the Soluble Enzyme Under Immobilization Conditions 71</p> <p>3.5.2 Parameters Required to Define an Immobilization Process 71</p> <p>3.5.2.1 Immobilization Yield 72</p> <p>3.5.2.2 Expressed Activity or Apparent Activity 72</p> <p>3.5.2.3 Specific Activity of the Immobilized Biocatalyst 73</p> <p>3.6 Applied Examples of Immobilized Enzymes 73</p> <p>3.6.1 Characterization of the Immobilized Biocatalyst 74</p> <p>3.6.1.1 Determination of the Catalytic Activity of the Final Immobilized Biocatalyst and Maximum Protein Loading Capacity 74</p> <p>3.6.1.2 Apparent Kinetic Parameters of the Immobilized Enzyme 76</p> <p>3.6.1.3 Biocatalyst Stability 77</p> <p>3.6.1.3.1 The Half-life Time of Biocatalysts 78</p> <p>3.7 Challenges and Opportunities in Enzyme Immobilization 79</p> <p>3.8 Conclusions 81</p> <p>List of Abbreviations 82</p> <p>References 82</p> <p><b>4 Compartmentalization in Biocatalysis 89<br /></b><i>Robert Kourist and Javier González-Sabín</i></p> <p>4.1 Introduction 89</p> <p>4.2 Cell as a Compartment 93</p> <p>4.3 Compartmentalization Using Protein Assemblies 95</p> <p>4.4 Compartmentalization Using Emulsion and Micellar Systems 96</p> <p>4.5 Compartmentalization Using Encapsulation 100</p> <p>4.6 Compartmentalization Using Tea Bags and Thimbles 103</p> <p>4.7 Separation of Reaction Steps Using Continuous Flow 105</p> <p>4.8 Conclusions and Prospects 107</p> <p>References 108</p> <p><b>Part II Enzymes Handling and Applications 113</b></p> <p><b>5 Promiscuous Activity of Hydrolases 115<br /></b><i>Erika V. M. Orozco and André L. M. Porto</i></p> <p>5.1 Introduction 115</p> <p>5.2 Catalytic Promiscuity 116</p> <p>5.3 Hydrolases 117</p> <p>5.3.1 Applications of Hydrolases to Organic Synthesis 118</p> <p>5.3.2 Lipases and Their Hydrolysis Mechanism 122</p> <p>5.3.3 Catalytic Promiscuity of Hydrolases 122</p> <p>5.3.4 Promiscuous Aldol Reaction Catalyzed by Hydrolases 130</p> <p>5.3.5 Aldol Reaction Between 4-Cyanobenzaldehyde and Cyclohexanone Catalyzed by Porcine Pancreatic Lipase (PPL-II) and <i>Rhizopus niveus Lipase</i> (RNL) 135</p> <p>5.4 Conclusions 136</p> <p>References 137</p> <p><b>6 Enzymes Applied to the Synthesis of Amines 143<br /></b><i>Francesco G. Mutti and Tanja Knaus</i></p> <p>6.1 Introduction 143</p> <p>6.2 Hydrolases 145</p> <p>6.2.1 Practical Approaches with Hydrolases 145</p> <p>6.2.1.1 Kinetic Resolution 145</p> <p>6.2.1.2 Dynamic Kinetic Resolution 146</p> <p>6.2.2 Practical Examples with Hydrolases 148</p> <p>6.2.2.1 Kinetic Resolution of Racemic α-Methylbenzylamine Through the Methoxyacetylation Catalyzed by a Lipase 148</p> <p>6.2.2.2 Dynamic Kinetic Resolution for the Synthesis of Norsertraline 149</p> <p>6.3 Amine Oxidases 149</p> <p>6.3.1 Practical Approaches with Amine Oxidases 150</p> <p>6.3.1.1 Kinetic Resolution and Deracemization 150</p> <p>6.3.2 Practical Examples with Amine Oxidases 151</p> <p>6.3.2.1 One-pot, One-enzyme Oxidative Pictet–Spengler Approach Combined with Deracemization 151</p> <p>6.3.2.2 Desymmetrization of meso-compounds 152</p> <p>6.4 Transaminases (or Aminotransferases) 152</p> <p>6.4.1 Practical Approaches with Transaminases 153</p> <p>6.4.2 Practical Examples with Transaminases 153</p> <p>6.4.2.1 Kinetic Resolution and Deracemization 153</p> <p>6.4.2.2 Asymmetric Synthesis from Prochiral Ketone 155</p> <p>6.5 Amine Dehydrogenases, Imine Reductases, and Reductive Aminases 155</p> <p>6.5.1 Practical Approaches with Amine Dehydrogenases, Imine Reductases, and Reductive Aminases 156</p> <p>6.5.2 Practical Examples with Amine Dehydrogenases, Imine Reductases, and Reductive Aminases 160</p> <p>6.5.2.1 IRed-Catalyzed Reductive Amination of an Aldehyde Combined with KR of a Racemic Amine 160</p> <p>6.5.2.2 Asymmetric Reductive Amination Catalyzed by AmDH 162</p> <p>6.6 Ammonia Lyases 162</p> <p>6.6.1 Practical Approaches with Ammonia Lyases 163</p> <p>6.6.1.1 Aspartase, 3-Methylaspartate Ammonia Lyase, and Related Enzymes 163</p> <p>6.6.1.2 Aromatic Amino Acid Ammonia Lyases and Mutases 165</p> <p>6.6.2 Practical Examples with Ammonia Lyases 166</p> <p>6.6.2.1 Chemoenzymatic Synthesis of (<i>S</i>)-2-Indolinecarboxylic Acid 166</p> <p>6.6.2.2 Synthesis of L-Aspartate from Fumarate 166</p> <p>6.6.2.3 Enzymatic and Chemoenzymatic Synthesis of Toxin A and Aspergillomarasmine A and B 166</p> <p>6.7 Pictet–Spenglerases 167</p> <p>6.7.1 Practical Approaches with Pictet–Spenglerases 167</p> <p>6.7.2 Practical Examples with Pictet–Spenglerases 169</p> <p>6.7.2.1 Biocatalytic Synthesis of (<i>R</i>)-Harmicine 169</p> <p>6.7.2.2 Biocatalytic Synthesis of (<i>S</i>)-Trolline and Analogs 169</p> <p>6.8 Engineered Cytochrome P450s (Cytochrome “P411”) 169</p> <p>6.8.1 Practical Approaches with Engineered Cytochrome P450s 170</p> <p>6.9 Protocols for Selected Reactions 171</p> <p>6.9.1 Hydrolases 171</p> <p>6.9.1.1 Kinetic Resolution <i>rac</i>-Methylbenzylamine (<i>rac-</i>1) 171</p> <p>6.9.1.2 Dynamic Kinetic Resolution of Norsertraline Intermediate (<i>rac-</i>3) 171</p> <p>6.9.2 Monoamine Oxidases 172</p> <p>6.9.2.1 Chemoenzymatic Deracemization of Harmicine (<i>rac</i>-8) 172</p> <p>6.9.3 ω-Transaminases 172</p> <p>6.9.3.1 Deracemization of Mexiletine (<i>rac</i>-9, Kinetic Resolution, Followed by Formal Reductive Amination) 172</p> <p>6.9.4 Imine Reductases and Amine Dehydrogenases 172</p> <p>6.9.4.1 Reductive Amination of Aldehyde (11) with Kinetic Resolution of Amine Nucleophile (<i>rac</i>-<i>trans</i>-12) 172</p> <p>6.9.4.2 Asymmetric Reductive Amination of Acetophenone (14) Using Amine Dehydrogenase 173</p> <p>6.9.5 Ammonia Lyases 173</p> <p>6.9.5.1 Asymmetric Ammonia Addition to 2′-Chlorocinnamic Acid (17) 173</p> <p>6.9.6 Pictet–Spenglerases 173</p> <p>6.9.6.1 Asymmetric Pictet–Spengler Reaction with Strictosidine Synthase 173</p> <p>6.9.7 Engineered Cytochrome P450s 174</p> <p>6.9.7.1 Intermolecular Alkane C–H Amination Using Cytochrome P411 174</p> <p>6.10 Conclusions 174</p> <p>Acknowledgments 175</p> <p>References 175</p> <p><b>7 Applications of Oxidoreductases in Synthesis: A Roadmap to Access ValueAdded Products 181<br /></b><i>Mélanie Hall</i></p> <p>7.1 Introduction 181</p> <p>7.2 Reductive Processes 184</p> <p>7.2.1 Reduction of C═O Bonds 184</p> <p>7.2.1.1 Selection of Alcohol Dehydrogenase (ADH) for Stereoselective Reduction Reactions 185</p> <p>7.2.1.1.1 Absolute Configuration of the Product 185</p> <p>7.2.1.1.2 Substrate Type 186</p> <p>7.2.1.1.3 Thermostability 187</p> <p>7.2.1.1.4 Cofactor Preference 187</p> <p>7.2.1.1.5 Kits 187</p> <p>7.2.1.2 Practical Approach 187</p> <p>7.2.1.2.1 Montelukast 188</p> <p>7.2.1.2.2 Atorvastatin 189</p> <p>7.2.1.2.3 Dynamic Kinetic Resolutions 189</p> <p>7.2.1.2.4 Disproportionation 190</p> <p>7.2.1.2.5 Redox Isomerization 190</p> <p>7.2.2 Reduction of C═C Bonds 191</p> <p>7.2.2.1 Mechanism 191</p> <p>7.2.2.2 Enzymes and Substrates 193</p> <p>7.2.2.2.1 Enzymes 193</p> <p>7.2.2.2.2 Substrates 193</p> <p>7.2.2.3 Practical Approach 196</p> <p>7.2.2.3.1 Stereocontrol 196</p> <p>7.2.2.3.2 (Dynamic) Kinetic Resolution 197</p> <p>7.3 Oxidative Processes 198</p> <p>7.3.1 Oxygenations 198</p> <p>7.3.1.1 Baeyer–Villiger Oxidations 198</p> <p>7.3.1.1.1 Regiopreference 200</p> <p>7.3.1.1.2 Stereoselectivity 201</p> <p>7.3.1.1.3 Practical Approach 203</p> <p>7.3.1.2 Epoxidation of Alkenes 204</p> <p>7.3.2 Heteroatom Oxidation 206</p> <p>7.3.2.1 Reaction 206</p> <p>7.3.2.2 Substrates 207</p> <p>7.3.3 Peroxygenases: One Catalyst – Many Reactions 207</p> <p>7.4 Protocols for Selected Reactions Employing Oxidoreductases 209</p> <p>7.4.1 Alcohol Dehydrogenase (ADH): Disproportionation of <i>rac</i>-2-Phenylpropanal 209</p> <p>7.4.1.1 Biotransformation 209</p> <p>7.4.1.2 Product Recovery and Purification 210</p> <p>7.4.2 Ene-reductase/Old Yellow Enzyme (OYE): Dynamic Kinetic Resolution of a γ-substituted Lactone 210</p> <p>7.4.2.1 Biotransformation 210</p> <p>7.4.2.2 Product Recovery and Purification 210</p> <p>7.4.3 Baeyer–Villiger Monooxygenase (BVMO): Kinetic Resolution of a Racemic Ketone 210</p> <p>7.4.3.1 Biotransformation 211</p> <p>7.4.3.2 Product Recovery and Purification 211</p> <p>7.4.4 Baeyer–Villiger Monooxygenase (BVMO): Asymmetric Sulfoxidation 211</p> <p>7.4.4.1 Biotransformation 211</p> <p>7.4.4.2 Product Recovery and Purification 211</p> <p>7.5 Conclusions 211</p> <p>Acknowledgments 212</p> <p>References 212</p> <p><b>8 Glycosyltransferase Cascades Made Fit For the Biocatalytic Production of Natural Product Glycosides 225<br /></b><i>Bernd Nidetzky</i></p> <p>8.1 Introduction: Glycosylated Natural Products and Leloir Glycosyltransferases 225</p> <p>8.2 Glycosylated Flavonoids and Nothofagin 227</p> <p>8.3 Glycosyltransferase Cascades for Biocatalytic Synthesis of Nothofagin 229</p> <p>8.4 Enzyme Expression 230</p> <p>8.5 Solvent Engineering for Substrate Solubilization 232</p> <p>8.6 Nothofagin Production at 100 g Scale 233</p> <p>8.7 Concluding Remarks 237</p> <p>References 237</p> <p><b>Part III Ways to Improve Enzymatic Transformations 245</b></p> <p><b>9 Application of Nonaqueous Media in Biocatalysis 247<br /></b><i>Afifa A. Koesoema and Tomoko Matsuda</i></p> <p>9.1 Introduction 247</p> <p>9.2 Advantages and Disadvantages of Reactions in Nonaqueous Media 248</p> <p>9.3 Nonaqueous Media Used for Biocatalysis 248</p> <p>9.4 Enzymatic Activity and Inactivation in Nonaqueous Media 251</p> <p>9.4.1 Enzymatic Activity in Nonaqueous Media 251</p> <p>9.4.2 Factors Causing Inactivation of Enzymes in Nonaqueous Media 252</p> <p>9.5 Practical Approaches to Stabilize Enzymes in Nonaqueous Media 252</p> <p>9.5.1 Utilization of Nonaqueous Media-Tolerant Enzymes or Host Cells 252</p> <p>9.5.2 Enzyme Immobilization 253</p> <p>9.5.3 Modification of the Enzyme Preparation 254</p> <p>9.5.4 Protein Engineering 255</p> <p>9.6 Examples of Biocatalyzed Reactions in Solvent-Free Systems 256</p> <p>9.7 Examples of Reactions in Micro-aqueous Systems 258</p> <p>9.8 Examples of Reactions in Bio-Based Liquids 260</p> <p>9.8.1 2-Methyltetrahydrofuran (MeTHF) 260</p> <p>9.8.2 Cyclopentyl Methyl Ether (CPME) 261</p> <p>9.8.3 Potential Application of other Bio-based Liquids 262</p> <p>9.9 Examples of Reactions in Liquid CO<sub>+</sub> 262</p> <p>9.10 Examples of Reactions in CO<sub>2</sub>-Expanded Bio-based Liquids 264</p> <p>9.11 Examples of Reactions in Natural Deep Eutectic Solvents 265</p> <p>9.12 Conclusions and Future Perspectives 267</p> <p>References 267</p> <p><b>10 Nonconventional Cofactor Regeneration Systems 275<br /></b><i>Jiafu Shi, Yizhou Wu, Zhongyi Jiang, Yiying Sun, Qian Huo, Weiran Li, Yang Zhao, and Yuqing Cheng</i></p> <p>10.1 Introduction 275</p> <p>10.2 Basics of Photocatalytic NADH Regeneration 279</p> <p>10.2.1 Processes and Mechanism Associated with Photocatalytic NADH Regeneration 279</p> <p>10.2.2 Aspects of Measuring Photocatalytic NADH Regeneration 281</p> <p>10.3 Advancements in Photocatalytic NADH Regeneration 282</p> <p>10.3.1 Nature Photosensitizers 282</p> <p>10.3.2 Organic Molecular Photosensitizers 282</p> <p>10.3.3 Inorganic Semiconductors 285</p> <p>10.3.4 Organic Semiconductors 288</p> <p>10.4 Expectations 290</p> <p>10.5 Conclusions and Prospects 292</p> <p>10.5.1 Conclusions 292</p> <p>10.5.2 Prospects 292</p> <p> List of Abbreviations 292</p> <p> References 293</p> <p><b>11 Biocatalysis Under Continuous Flow Conditions 297<br /></b><i>Bruna Goes Palma, Marcelo A. do Nascimento, Raquel A. C. Leão, Omar G. Pandoli, and Rodrigo O. M. A. de Souza</i></p> <p>11.1 Introduction 297</p> <p>11.2 Practical Approach for Biocatalysis Under Continuous Flow Conditions 299</p> <p>11.2.1 Esterification 299</p> <p>11.2.1.1 Experimental Procedure 301</p> <p>11.2.2 Transesterification 302</p> <p>11.2.2.1 Experimental Procedure 303</p> <p>11.2.3 Kinetic Resolutions 303</p> <p>11.2.3.1 Kinetic Resolution of Amines Employing Lipases 304</p> <p>11.2.3.1.1 Experimental Procedure 304</p> <p>11.2.3.2 Kinetic Resolutions Employing ω-Transaminases 305</p> <p>11.2.3.2.1 Experimental Procedure 305</p> <p>11.2.3.3 Kinetic Resolution of Alcohols Using Lipases 307</p> <p>11.2.3.3.1 Experimental Procedure 307</p> <p>11.2.4 Dynamic Kinetic Resolutions 308</p> <p>11.2.4.1 Experimental Procedure 309</p> <p>11.2.5 Asymmetric Synthesis 309</p> <p>11.2.5.1 Experimental Procedure 311</p> <p>11.2.5.1.1 Protein Immobilization 311</p> <p>11.2.5.1.2 Ion Exchange of NADPH on Ag-DEAE 311</p> <p>11.2.5.1.3 General Procedure for the Continuous Asymmetric Reduction 311</p> <p>11.3 Conclusions and Perspective 311</p> <p>References 312</p> <p><b>Part IV Recent Trends in Enzyme-Catalyzed Reactions 317</b></p> <p><b>12 Photobiocatalysis 319<br /></b><i>Martín G. López-Vidal, Guillermo Gamboa, Gabriela Oksdath-Mansilla, and Fabricio R. Bisogno</i></p> <p>12.1 Introduction 319</p> <p>12.2 Oxidative Processes 321</p> <p>12.2.1 Baeyer–Villiger Oxidation 321</p> <p>12.2.2 Alkane Hydroxylation 322</p> <p>12.2.3 O-Dealkylation 326</p> <p>12.2.4 Decarboxylation 327</p> <p>12.2.4.1 Alkene Production 327</p> <p>12.2.4.2 Alkane Production 328</p> <p>12.2.5 Epoxidation 330</p> <p>12.3 Reductive Processes 332</p> <p>12.3.1 Carbonyl Reduction 332</p> <p>12.3.2 Olefin Reduction 336</p> <p>12.3.3 Imine Reduction 342</p> <p>12.3.4 Reductive Amination 344</p> <p>12.3.5 Dehalogenation 345</p> <p>12.3.6 Deacetoxylation 347</p> <p>12.4 Combination of Photooxidation and Enzymatic Transformation 348</p> <p>12.5 Summary and Outlook 352</p> <p>Abbreviations 352</p> <p>References 354</p> <p><b>13 Practical Multienzymatic Transformations: Combining Enzymes for the Onepot Synthesis of Organic Molecules in a Straightforward Manner 361<br /></b><i>Jesús Albarrán-Velo, Sergio González-Granda, Marina López-Agudo, and Vicente Gotor-Fernández</i></p> <p>13.1 Introduction 361</p> <p>13.2 Non-stereoselective Bienzymatic Transformations 363</p> <p>13.2.1 Amine Synthesis 363</p> <p>13.2.2 Bienzymatic Linear Cascades Toward the Production of Other Organic Compounds 365</p> <p>13.3 Stereoselective Bienzymatic Transformations 367</p> <p>13.3.1 Stereoselective Amine Synthesis Through Concurrent Processes 368</p> <p>13.3.1.1 Amination of Alcohols 368</p> <p>13.3.1.2 Deracemization of Amines 371</p> <p>13.3.1.3 Amino Alcohol Synthesis 372</p> <p>13.3.1.4 Other Bienzymatic Stereoselective Synthesis of Amines 374</p> <p>13.3.2 Stereoselective Bienzymatic Cascades Toward the Production of Other Organic Compounds 377</p> <p>13.3.2.1 Synthesis of Organic Compounds Other Than Amino Acids 377</p> <p>13.3.2.2 Amino Acid Synthesis 383</p> <p>13.4 Multienzymatic Transformations: Increasing Synthetic Complexity 386</p> <p>13.5 Summary and Outlook 395</p> <p>References 395</p> <p><b>14 Chemoenzymatic Sequential One-Pot Protocols 403<br /></b><i>Harald Gröger</i></p> <p>14.1 Introduction: Theoretical Information and Conceptual Overview 403</p> <p>14.2 State of the Art in Sequential Chemoenzymatic One-Pot Synthesis: Selected Examples and Historical Overview About Selected Contributions 406</p> <p>14.2.1 Sequential Chemoenzymatic One-Pot Synthesis Combining a Metal-Catalyzed Reaction with a Biotransformation 406</p> <p>14.2.2 Sequential Chemoenzymatic One-Pot Synthesis Combining an Organocatalytic Reaction with a Biotransformation 411</p> <p>14.2.3 Sequential Chemoenzymatic One-Pot Synthesis Combining a Reaction Catalyzed by a Heterogeneous Chemocatalyst with a Biotransformation 416</p> <p>14.2.4 Sequential Chemoenzymatic One-Pot Synthesis Combining a Reaction Catalyzed by a Heterogeneous Biocatalyst with a Chemocatalytic Transformation 417</p> <p>14.2.5 Sequential Chemoenzymatic One-Pot Synthesis Combining More than Two Reactions 418</p> <p>14.3 Practical Aspects of the Development of Sequential Chemoenzymatic One-Pot Syntheses 420</p> <p>14.4 Conclusions and Outlook 423</p> <p>References 424</p> <p><b>Part V Industrial Biocatalysis 427</b></p> <p><b>15 Industrial Processes Using Biocatalysts 429<br /></b><i>Florian Kleinbeck, Marek Mahut, and Thierry Schlama</i></p> <p>15.1 Introduction 429</p> <p>15.2 Biocatalysis in the Pharmaceutical Industry 430</p> <p>15.2.1 Pregabalin 431</p> <p>15.2.2 Vernakalant 432</p> <p>15.2.3 Sitagliptin 433</p> <p>15.2.4 Esomeprazole 435</p> <p>15.2.5 Montelukast 436</p> <p>15.2.6 Boceprevir 439</p> <p>15.3 Aspects to Consider for Development of a Biocatalytic Process on Commercial Scale – A Case Study 442</p> <p>15.3.1 Identification of a Suitable Enzyme 443</p> <p>15.3.2 Process Development 443</p> <p>15.3.3 Control Strategy and Regulatory Considerations 445</p> <p>15.3.3.1 Impurities 446</p> <p>15.3.3.2 Types of Biocatalysts 450</p> <p>15.3.3.3 Type of Expression System 451</p> <p>15.3.3.4 Route of Administration 451</p> <p>15.3.3.5 Position of the Biocatalytic Step in the Synthesis and Downstream Transformations 451</p> <p>15.3.3.6 Summary of the Case Study 452</p> <p>15.3.4 Health, Process Safety and Environmental Aspects 453</p> <p>15.3.4.1 Health 453</p> <p>15.3.4.2 Process Safety 453</p> <p>15.3.4.3 Environmental Aspects 454</p> <p>15.3.5 Equipment Utilization and Throughput Time 455</p> <p>15.3.6 Equipment Cleaning 455</p> <p>15.3.7 Enzyme Release Testing 456</p> <p>15.3.8 Transport and Storage 457</p> <p>15.4 Conclusions, Expectations, and Prospects 458</p> <p>Acknowledgments 460</p> <p>List of Abbreviations 460</p> <p>References 461</p> <p><b>16 Enzymatic Commercial Sources 467<br /></b><i>Gonzalo de Gonzalo and Iván Lavandera</i></p> <p>16.1 Introduction 467</p> <p>16.2 European Companies 468</p> <p>16.2.1 AB Enzymes 468</p> <p>16.2.2 Almac 468</p> <p>16.2.3 Biocatalysts 469</p> <p>16.2.4 c-Lecta GmbH 469</p> <p>16.2.5 Enzymicals 470</p> <p>16.2.6 Evoxx Technologies GmbH 470</p> <p>16.2.7 GECCO 471</p> <p>16.2.8 Inofea AG 472</p> <p>16.2.9 Johnson-Matthey 472</p> <p>16.2.10 Metgen Oy 473</p> <p>16.2.11 Novozymes 474</p> <p>16.2.12 Prozomix 474</p> <p>16.2.13 Royal DSM 475</p> <p>16.3 American Companies 475</p> <p>16.3.1 Codexis Inc. 475</p> <p>16.3.2 Dupont Nutrition and Biosciences 476</p> <p>16.3.3 IBEX Technologies 476</p> <p>16.3.4 MP Biomedical 477</p> <p>16.3.5 Sigma-Aldrich 477</p> <p>16.3.6 Strem Chemicals, Inc. 478</p> <p>16.3.7 Worthington Biochemical Corp 479</p> <p>16.4 Asian Enzyme Suppliers 480</p> <p>16.4.1 Advanced Enzymes Technologies, Ltd. 480</p> <p>16.4.2 Amano Enzyme Co., Ltd. 480</p> <p>16.4.3 Aumgene Biosciences 481</p> <p>16.4.4 EnzymeWorks 481</p> <p>16.4.5 Meito Sangyo Co., Ltd. 481</p> <p>16.4.6 Oriental Yeast Co., Ltd. 482</p> <p>16.4.7 Takabio 482</p> <p>16.4.8 Toyobo Co., Ltd. 482</p> <p>16.5 Outlook 483</p> <p>References 484</p> <p>Index 487</p> <p> </p>
<p><b>Gonzalo de Gonzalo</b> is Associate Professor at the Departamento de Química at the University of Seville, Spain. He obtained his Degree and his Ph. D. in chemistry at the University of Oviedo (Spain). He spent his postdoctoral stage at Consiglio Nazionale delle Ricerche (Milan, Italy), moving back to University of Oviedo with a Juan de la Cierva Fellowship. In 2010, he spent one year at the University of Groningen working tin the research of novel oxidative enzymes. He worked two years for the pharmaceutical company Antibióticos S.A.U. (León, Spain), moving to Seville in 2014. His research is focused on asymmetric synthesis by using different approaches, including biocatalytic and organocatalytic procedures, as well as the development of concurrent chemo- and biocatalytic reactions. He has published over 70 scientific publications and has recently been coeditor of the book "Biocatalysis: an Industrial Perspective".</p> <p><b>Iván Lavandera</b> completed his Ph. D. studies in Chemistry in 2003 with Prof. Vicente Gotor and Prof. Miguel Ferrero. He continued in Prof. Gotor's group as a researcher until 2005, and then he moved to the University of Graz as a postdoctoral researcher under the supervision of Prof. Wolfgang Kroutil. He returned to Oviedo in 2008, where he became first as a Clarín and then as a Ramón y Cajal post-doctoral researcher. Since 2015, he is Associate Professor at the Organic and Inorganic Department at the University of Oviedo, where he got the habilitation in 2017. He has been co-author of two patents and more than 90 publications. His research interests are focused on Biocatalysis, especially the use of oxidoreductases and transferases to achieve green processes and to develop new synthetic routes combining bio- and chemocatalysis in a concurrent manner.</p>
<p>This book presents a practical overview about all aspects related to the use of enzymes as catalysts in organic reactions. Beside theoretical information about the different fields related to biocatalysis (enzyme preparation, purification, modification and application in chemical synthesis) a lot of highly useful practical information like experimental information, analytical methods and different tips and tricks in the use of enzymes are included, too. For beginners and experts alike, the different aspects of biocatalysis are approached from a practical point of view, with the aim of helping the researcher to solve new problems that can appear in their work.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
126,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
126,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €