Details

Bio-Ceramics with Clinical Applications


Bio-Ceramics with Clinical Applications


1. Aufl.

von: Maria Vallet-Regi

95,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.06.2014
ISBN/EAN: 9781118406724
Sprache: englisch
Anzahl Seiten: 488

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><br />This publication offers a unique approach that links the materials science of bioceramics to clinical needs and applications.<br /><br />Providing a structured account of this highly active area of research, the book reviews the clinical applications in bone tissue engineering, bone regeneration, joint replacement, drug-delivery systems and biomimetism, this book is an ideal resource for materials scientists and engineers, as well as for clinicians.<br /><br />From the contents:<br /><br />Part I Introduction<br /><br />1. Bioceramics<br />2. Biomimetics</p> <p>Part II Materials</p> <p>3. Calcium Phosphate Bioceramics<br />4. Silica-based Ceramics: Glasses<br />5. Silica-based Ceramics: Mesoporous Silica<br />6. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics<br />7. Carbon-based Materials in Biomedicine</p> <p>Part III Material Shaping</p> <p>8. Cements<br />9. Bioceramic Coatings for Medical Implants<br />10. Scaffold Designing</p> <p>Part IV Research on Future Ceramics</p> <p>11. Bone Biology and Regeneration<br />12. Ceramics for Drug Delivery<br />13. Ceramics for Gene Transfection<br />14. Ceramic Nanoparticles for Cancer Treatment</p>
List of Contributors xiii <p>Preface xv</p> <p><b>Part I Introduction 1</b></p> <p><b>1. Bioceramics 3</b><br /> <i>María Vallet-Regí</i></p> <p>1.1 Introduction 3</p> <p>1.2 Reactivity of the Bioceramics 4</p> <p>1.3 First, Second, and Third Generations of Bioceramics 6</p> <p>1.4 Multidisciplinary Field 7</p> <p>1.5 Solutions for Bone Repairing 8</p> <p>1.6 Biomedical Engineering 13</p> <p>Recommended Reading 15</p> <p><b>2. Biomimetics 17</b><br /> <i>María Vallet-Regí</i></p> <p>2.1 Biomimetics 17</p> <p>2.2 Formation of Hard Tissues 18</p> <p>2.3 Biominerals versus Biomaterials 19</p> <p>Recommended Reading 22</p> <p><b>Part II Materials 23</b></p> <p><b>3. Calcium Phosphate Bioceramics 25</b><br /> <i>Daniel Arcos</i></p> <p>3.1 History of Calcium Phosphate Biomaterials 25</p> <p>3.2 Generalities of Calcium Phosphates 26</p> <p>3.3 In vivo Response of Calcium Phosphate Bioceramics 28</p> <p>3.4 Calcium Hydroxyapatite-Based Bioceramics 30</p> <p>3.4.1 Stoichiometric Hydroxyapatite (HA) 31</p> <p>3.4.2 Calcium Deficient Hydroxyapatites (CDHA) 37</p> <p>3.4.3 Carbonated Hydroxyapatites (CHA) 39</p> <p>3.4.4 Silicon-Substituted Hydroxyapatite (Si-HA) 40</p> <p>3.4.5 Hydroxyapatites of Natural Origin 45</p> <p>3.5 Tricalcium Phosphate-Based Bioceramics 50</p> <p>3.5.1 -Tricalcium Phosphate (-TCP) 50</p> <p>3.5.2 -Tricalcium Phosphate (-TCP) 53</p> <p>3.6 Biphasic Calcium Phosphates (BCP) 55</p> <p>3.6.1 Chemical and Structural Properties 55</p> <p>3.6.2 Preparation Methods 56</p> <p>3.6.3 Clinical Applications 56</p> <p>3.7 Calcium Phosphate Nanoparticles 57</p> <p>3.7.1 General Properties and Scope of Calcium Phosphate Nanoparticles 57</p> <p>3.7.2 Preparation Methods of CaP Nanoparticles 58</p> <p>3.7.3 Clinical Applications 60</p> <p>3.8 Calcium Phosphate Advanced Biomaterials 60</p> <p>3.8.1 Scaffolds for in situ Bone Regeneration and Tissue Engineering 60</p> <p>3.8.2 Drug Delivery Systems 62</p> <p>References 65</p> <p><b>4. Silica-based Ceramics: Glasses 73</b><br /> <i>Antonio J. Salinas</i></p> <p>4.1 Introduction 73</p> <p>4.1.1 What Is a Glass? 73</p> <p>4.1.2 Properties of Glasses 75</p> <p>4.1.3 Structure of Glasses 75</p> <p>4.1.4 Synthesis of Glasses 76</p> <p>4.2 Glasses as Biomaterials 78</p> <p>4.2.1 First Bioactive Glasses (BGs): Melt-Prepared Glasses (MPGs) 79</p> <p>4.2.2 Other Bioactive MPGs 80</p> <p>4.2.3 Bioactivity Index and Network Connectivity 80</p> <p>4.2.4 Mechanism of Bioactivity 81</p> <p>4.3 Increasing the Bioactivity of Glasses: New Methods of Synthesis 82</p> <p>4.3.1 Sol–Gel Glasses (SGGs) 82</p> <p>4.3.2 Composition, Texture, and Bioactivity of SSGs 84</p> <p>4.3.3 Biocompatibility of SGGs 86</p> <p>4.3.4 SGGs as Bioactivity Accelerators in Biphasic Materials 86</p> <p>4.3.5 Template Glasses (TGs) Bioactive Glasses with Ordered Mesoporosity 88</p> <p>4.3.6 Atomic Length Scale in BGs: How the Local Structure Affects Bioactivity 91</p> <p>4.3.7 New Reformulation of Hench’s Mechanism for TGs 93</p> <p>4.3.8 Including Therapeutic Inorganic Ions in the Glass Composition 94</p> <p>4.4 Strengthening and Adding New Capabilities to Bioactive Glasses 95</p> <p>4.4.1 Glass Ceramics (GCs) 95</p> <p>4.4.2 Composites Containing Bioactive Glasses 97</p> <p>4.4.3 Sol–Gel Organic–Inorganic Hybrids (O-IHs) 98</p> <p>4.5 Non-silicate Glasses 99</p> <p>4.5.1 Phosphate Glasses 99</p> <p>4.5.2 Borate Glasses 100</p> <p>4.6 Clinical Applications of Glasses 101</p> <p>4.6.1 Bioactive Silica Glasses 101</p> <p>4.6.2 Inert Silica Glasses 106</p> <p>4.6.3 Phosphate Glasses 106</p> <p>4.6.4 Borate Glasses 107</p> <p>Recommended Reading 107</p> <p><b>5. Silica-based Ceramics: Mesoporous Silica 109</b><br /> <i>Montserrat Colilla</i></p> <p>5.1 Introduction 109</p> <p>5.2 Discovery of Ordered Mesoporous Silicas 110</p> <p>5.3 Synthesis of Ordered Mesoporous Silicas 111</p> <p>5.3.1 Hydrothermal Synthesis 112</p> <p>5.3.2 Evaporation-Induced Self-Assembly (EISA) Method 119</p> <p>5.4 Mechanisms of Mesostructure Formation 119</p> <p>5.5 Tuning the Structural Properties of Mesoporous Silicas 122</p> <p>5.5.1 Micellar Mesostructure 123</p> <p>5.5.2 Type of Mesoporous Structure 128</p> <p>5.5.3 Mesopore Size 131</p> <p>5.6 Structural Characterization of Mesoporous Silicas 132</p> <p>5.7 Synthesis of Spherical Mesoporous Silica Nanoparticles 135</p> <p>5.7.1 Aerosol-Assisted Synthesis 136</p> <p>5.7.2 Modified Stöber Method 137</p> <p>5.8 Organic Functionalization of Ordered Mesoporous Silicas 138</p> <p>5.8.1 Post-synthesis Functionalization (“Grafting”) 139</p> <p>5.8.2 Co-condensation (“One-Pot” Synthesis) 140</p> <p>5.8.3 Periodic Mesoporous Organosilicas 141</p> <p>References 141</p> <p><b>6. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics 153</b><br /> <i>Juan Peña López</i></p> <p>6.1 A Perspective on the Clinical Application of Alumina and Zirconia 153</p> <p>6.1.1 Alumina 155</p> <p>6.1.2 Zirconia 158</p> <p>6.2 Novel Strategies Based on Alumina and Zirconia Ceramics 160</p> <p>6.2.1 From Alumina Toughened Zirconia to Alumina Matrix Composite 160</p> <p>6.2.2 Introduction of Different Species in Zirconia 161</p> <p>6.2.3 Improvement of Surface Adhesion 162</p> <p>6.3 Non-oxidized Ceramics 163</p> <p>6.3.1 Silicon Nitride (Si3N4) 163</p> <p>6.3.2 Silicon Carbide (SiC) 164</p> <p>References 164</p> <p><b>7. Carbon-based Materials in Biomedicine 175</b><br /> <i>Mercedes Vila</i></p> <p>7.1 Introduction 175</p> <p>7.2 Carbon Allotropes 175</p> <p>7.2.1 Pyrolytic Carbon 176</p> <p>7.2.2 Carbon Fibers 177</p> <p>7.2.3 Fullerenes 177</p> <p>7.2.4 Carbon Nanotubes 179</p> <p>7.2.5 Graphene 181</p> <p>7.2.6 Diamond and Amorphous Carbon 184</p> <p>7.3 Carbon Compounds 186</p> <p>7.3.1 Silicon Carbide 186</p> <p>7.3.2 Boron Carbide 187</p> <p>7.3.3 Tungsten Carbide 188</p> <p>References 188</p> <p><b>Part III Material Shaping 193</b></p> <p><b>8. Cements 195</b><br /> <i>Oscar Castaño and Josep A. Planell</i></p> <p>Abbreviations 195</p> <p>Glossary 196</p> <p>8.1 Introduction 197</p> <p>8.1.1 Brief History 197</p> <p>8.1.2 Definition and Chemistry 199</p> <p>8.1.3 Description of the Different CaP Cements 200</p> <p>8.1.4 State of the Art 201</p> <p>8.2 Calcium Phosphate Cements 206</p> <p>8.2.1 Types 206</p> <p>8.2.2 Mechanisms 206</p> <p>8.2.3 Relevant Experimental Variables 207</p> <p>8.2.4 Material Characterization 211</p> <p>8.2.5 Reaction Evolution of Cements 220</p> <p>8.2.6 Additives and Strategies to Enhance Properties 222</p> <p>8.2.7 Biological Characterization and Bioactive Behavior 224</p> <p>8.3 Applications 229</p> <p>8.3.1 Bone Defect Repair 229</p> <p>8.3.2 Drug Delivery Systems 232</p> <p>8.4 Future Trends 232</p> <p>8.5 Conclusions 233</p> <p>References 234</p> <p><b>9. Bioceramic Coatings for Medical Implants 249</b><br /> <i>M. Victoria Cabañas</i></p> <p>9.1 Introduction 249</p> <p>9.2 Methods to Modify the Surface of an Implant 250</p> <p>9.2.1 Deposited Coatings 251</p> <p>9.2.2 Conversion Coatings 257</p> <p>9.3 Bioactive Ceramic Coatings 258</p> <p>9.3.1 Clinical Applications 259</p> <p>9.3.2 Calcium Phosphates-Based Coatings 260</p> <p>9.3.3 Silica-based Coatings: Glass and Glass-Ceramics 268</p> <p>9.3.4 Bioactive Ceramic Layer Formation on a Metallic Substrate 270</p> <p>9.4 Bioinert Ceramic Coatings 272</p> <p>9.4.1 Titanium Nitride and Zirconia Coatings 273</p> <p>9.4.2 Carbon-based Coatings 275</p> <p>References 279</p> <p><b>10. Scaffold Designing 291</b><br /> <i>Isabel Izquierdo-Barba</i></p> <p>10.1 Introduction 291</p> <p>10.2 Essential Requirements for Bone Tissue Engineering Scaffolds 293</p> <p>10.3 Scaffold Processing Techniques 296</p> <p>10.3.1 Foam Scaffolds 297</p> <p>10.3.2 Rapid Prototyping Scaffolds 301</p> <p>10.3.3 Electrospinning Scaffolds 305</p> <p>References 307</p> <p><b>Part IV Research on Future Ceramics 315</b></p> <p><b>11. Bone Biology and Regeneration 317</b><br /> <i>Soledad Pérez-Amodio and Elisabeth Engel</i></p> <p>11.1 Introduction 317</p> <p>11.2 The Skeleton 318</p> <p>11.3 Bone Remodeling 320</p> <p>11.4 Bone Cells 322</p> <p>11.4.1 Bone Lining Cells 322</p> <p>11.4.2 Osteoblasts 323</p> <p>11.4.3 Osteocytes 323</p> <p>11.4.4 Osteoclasts 324</p> <p>11.5 Bone Extracellular Matrix 327</p> <p>11.6 Bone Diseases 327</p> <p>11.6.1 Osteoporosis 328</p> <p>11.6.2 Paget’s Disease 329</p> <p>11.6.3 Osteomalacia 329</p> <p>11.6.4 Osteogenesis Imperfecta 329</p> <p>11.7 Bone Mechanics 329</p> <p>11.8 Bone Tissue Regeneration 333</p> <p>11.8.1 Calcium Phosphate and Silica-based Bioceramics 333</p> <p>11.8.2 Bioactive Glasses 334</p> <p>11.8.3 Calcium Phosphate Cements 335</p> <p>11.9 Conclusions 336</p> <p>References 336</p> <p><b>12. Ceramics for Drug Delivery 343</b><br /> <i>Miguel Manzano</i></p> <p>12.1 Introduction 343</p> <p>12.2 Drug Delivery 344</p> <p>12.3 Drug Delivery from Calcium Phosphates 346</p> <p>12.3.1 Drug Delivery from Hydroxyapatite 346</p> <p>12.3.2 Drug Delivery from Tricalcium Phosphates 348</p> <p>12.3.3 Drug Delivery from Calcium Phosphate Cements 348</p> <p>12.4 Drug Delivery from Silica-based Ceramics 351</p> <p>12.4.1 Drug Delivery from Glasses 351</p> <p>12.4.2 Drug Delivery from Mesoporous Silica 355</p> <p>12.5 Drug Delivery from Carbon Nanotubes 363</p> <p>12.6 Drug Delivery from Ceramic Coatings 365</p> <p>References 366</p> <p><b>13. Ceramics for Gene Transfection 383</b><br /> <i>Blanca González</i></p> <p>13.1 Gene Transfection 383</p> <p>13.2 Gene Transfection Based on Nonviral Vectors 386</p> <p>13.3 Ceramic Nanoparticles for Gene Transfection 388</p> <p>13.3.1 Calcium Phosphate Nanoparticles 391</p> <p>13.3.2 Mesoporous Silica Nanoparticles 393</p> <p>13.3.3 Carbon Allotropes (Fullerenes, CNTs, Graphene Oxide) 397</p> <p>13.3.4 Magnetic Iron Oxide Nanoparticles 403</p> <p>References 410</p> <p><b>14. Ceramic Nanoparticles for Cancer Treatment 421</b><br /> <i>Alejandro Baeza</i></p> <p>14.1 Delivery of Nanocarriers to Solid Tumors 421</p> <p>14.1.1 Special Issues of Tumor Vasculature: Enhanced Permeation and Retention Effect (EPR) 422</p> <p>14.1.2 Tumor Microenvironment 423</p> <p>14.2 Ceramic Nanoparticle Pharmacokinetics in Cancer Treatment 424</p> <p>14.2.1 Biodistribution and Excretion/Clearance Pathways 424</p> <p>14.2.2 Toxicity of the Ceramic Nanoparticles 426</p> <p>14.3 Cancer-targeted Therapy 428</p> <p>14.3.1 Endocytic Mechanism of Targeted Drug Delivery 428</p> <p>14.3.2 Specific Tumor Active Targeting 430</p> <p>14.3.3 Angiogenesis-associated Active Targeting 432</p> <p>14.4 Ceramic Nanoparticles for Cancer Treatment 434</p> <p>14.4.1 Mesoporous Silica Nanoparticles 434</p> <p>14.4.2 Calcium Phosphates Nanoparticles 440</p> <p>14.4.3 Carbon Allotropes 440</p> <p>14.4.4 Iron Oxide Nanoparticles and Hyperthermia 442</p> <p>14.5 Imaging and Theranostic Applications 443</p> <p>References 446</p> <p>Index 457</p>
<p><strong>Maria Vallet-Regi</strong> is full Professor of Inorganic Chemistry and Head of the Department of Inorganic and Bioinorganic Chemistry of the Faculty of Pharmacy at Universidad Complutense de Madrid, Spain. <p><strong>Professor Vallet-Regí</strong> has written over 500 articles and more than 20 books. She is the most cited Spanish scientist in the field of Materials Science in this last decade, according to ISI Web of Knowledge. She has presented her research around the world at over 300 international conferences Professor Vallet-Regí has received many awards including: the French-Spanish award of the year 2000 from the Societé Française de Chimie; the Inorganic Chemistry award 2008 from the Spanish Royal Society of Chemistry; the 2008 Spanish National Research Award "Leonardo Torres Quevedo" in the field of Engineering and Spanish Royal Society of Chemistry (RSEQ) research award 2011 (RSEQ medal).

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €