Details

Bio-Based Packaging


Bio-Based Packaging

Material, Environmental and Economic Aspects
Wiley Series in Renewable Resource 1. Aufl.

von: Salit Mohd Sapuan, Rushdan Ahmad Ilyas, Christian V. Stevens

179,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 09.04.2021
ISBN/EAN: 9781119381051
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Bio-Based Packaging</b> <p><b>Bio-Based Packaging</b><p><b>An authoritative and up-to-date review of sustainable packaging development and applications</b><p><i>Bio-Based Packaging</i> explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites.<p>In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book:<ul><li>Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact</li><li>Contains real-world case studies of bio-based packaging applications</li><li>Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging</li><li>Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products</li></ul><p><i>Bio-Based Packaging</i> is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields.<p>For more information on the Wiley Series in Renewable Resources, visit <b>www.wiley.com/go/rrs</b>
<p>List of Contributors xix</p> <p>Series Preface xxvii</p> <p>Preface xxix</p> <p><b>1 Starch-Based Packaging Materials 1<br /></b><i>Ying Chen, Kai Lu, Hongsheng Liu, and Long Yu</i></p> <p>1.1 Introduction 1</p> <p>1.2 Macrostructures and Phase Transitions of Starch 2</p> <p>1.2.1 Microstructures of Starch Granules 2</p> <p>1.2.2 Phase Transition During Thermal Processing 3</p> <p>1.3 Extrusion Processing for Starch 5</p> <p>1.3.1 Phase Transition During Extrusion 5</p> <p>1.3.2 Rheological Behaviors of Starch-Based Materials 6</p> <p>1.4 Improving Mechanical Properties by Reinforcement 7</p> <p>1.4.1 Reinforcement by Natural Fillers 7</p> <p>1.4.2 Starch-Based Nanocomposites 9</p> <p>1.4.3 Self-Reinforced Composites 11</p> <p>1.4.4 Blending with Other Natural Polymers 12</p> <p>1.4.5 Functionalized Composites 14</p> <p>1.5 Reducing Moisture Sensitivity by Coating 15</p> <p>1.6 Applications in Packaging 16</p> <p>1.7 Summary and Future Work 17</p> <p>Acknowledgments 19</p> <p>References 19</p> <p><b>2 Protein-Based Materials for Packaging Applications 27<br /></b><i>V. G. Martins, V. P. Romani, P. C. Martins, and D. Nogueira</i></p> <p>2.1 Introduction 27</p> <p>2.2 Proteins 28</p> <p>2.3 Protein Films for Food Packaging 29</p> <p>2.4 Film Production Processes 32</p> <p>2.5 Characterization of Films 34</p> <p>2.5.1 Mechanical Properties 34</p> <p>2.5.2 Barrier Properties 35</p> <p>2.5.3 Structural Properties 36</p> <p>2.5.4 Thermal and Optical Properties 37</p> <p>2.5.5 Biodegradability of Polymers 37</p> <p>2.6 Protein Films Application 38</p> <p>2.7 Challenges and Future Perspectives 41</p> <p>2.8 Conclusions 43</p> <p>References 43</p> <p><b>3 Protein-Based Biodegradable Polymer: From Sources to Innovative Sustainable Materials for Packaging Applications 51<br /></b><i>Huafeng Tian, Yunxuan Weng, Rakesh Kumar, Priya Rani, and Gaiping Guo</i></p> <p>3.1 Introduction 51</p> <p>3.2 Forms of Packaging Materials 52</p> <p>3.3 Commercially Available Proteinous Material for Packaging 52</p> <p>3.4 Preparation Methods for Protein-Based Materials for Different Packaging Applications 53</p> <p>3.5 Properties of Protein-Based Packaging Materials 54</p> <p>3.5.1 Mechanical Properties 54</p> <p>3.5.2 Moisture Resistance 56</p> <p>3.5.3 Barrier Properties 56</p> <p>3.5.4 Biodegradability 57</p> <p>3.5.5 Antimicrobial Properties 58</p> <p>3.6 Nanomaterials Incorporated Protein-Based Packaging Materials 58</p> <p>3.6.1 Protein/Inorganic Filler Nanocomposites 58</p> <p>3.6.2 Protein/Organic Filler Nanocomposites 60</p> <p>3.7 Protein-Based Blends as Packaging Materials 61</p> <p>3.7.1 Protein/Natural Polymer Blends 61</p> <p>3.7.2 Protein/Synthetic Biopolymeric Blends 62</p> <p>3.8 Conclusions 63</p> <p>References 63</p> <p><b>4 Chitin/Chitosan Based Films for Packaging Applications 69<br /></b><i>J.M. Moura, B.S. Farias, T.R.S. Cadaval, and L.A.A. Pinto</i></p> <p>4.1 Introduction 69</p> <p>4.2 Chitin and Chitosan 70</p> <p>4.3 Physicochemical and Biological Properties of Chitosan-Based Films 72</p> <p>4.3.1 Mechanical and Barrier Properties 72</p> <p>4.3.2 Antimicrobial Properties 78</p> <p>4.3.3 Antioxidant Characteristics 79</p> <p>4.4 Conclusion and Future Perspectives 80</p> <p>References 81</p> <p><b>5 Perspectives for Chitin/Chitosan Based Films as Active Packaging Systems on a Food Product 85<br /></b><i>Ewelina Jamróz, Piotr Kulawik, and Fatih Özogul</i></p> <p>5.1 Introduction 85</p> <p>5.2 The Effect of the Incorporation of Chitosan on the Properties of Films 86</p> <p>5.3 Blends of Chitosan and Other Biopolymers 88</p> <p>5.4 Characterization of Chitosan Films with Nanofillers 89</p> <p>5.5 Preparation of Chitosan Films with Active Compounds 92</p> <p>5.6 Chitosan-Based Films as Packaging Material Systems 93</p> <p>5.7 Conclusions 98</p> <p>References 99</p> <p><b>6 Pectin-Based Bionanocomposite Coating for Food Packaging Applications 105<br /></b><i>Dr. M. Vishnuvarthanan</i></p> <p>6.1 Introduction 105</p> <p>6.2 Polymers in Food Packaging 106</p> <p>6.3 Surface Modification of Polymers 106</p> <p>6.4 Antimicrobial Packaging 106</p> <p>6.5 Biopolymers 106</p> <p>6.6 Pectin 107</p> <p>6.7 Bionanocomposites 107</p> <p>6.8 Nanoclay 107</p> <p>6.9 Silver Nanoparticles 107</p> <p>6.10 Pectin-Based Bionanocomposite Coating 108</p> <p>6.10.1 Preparation and Coating of Pectin-Based Bionanocomposite 108</p> <p>6.10.2 Tensile Strength 109</p> <p>6.10.3 Oxygen Transmission Rate 110</p> <p>6.10.4 Water Vapor Transmission Rate 111</p> <p>6.10.5 Surface Color and Opacity 112</p> <p>6.10.6 Contact Angle Analysis 113</p> <p>6.10.7 Coating Adhesion Strength 114</p> <p>6.10.8 Antimicrobial Properties 115</p> <p>6.11 Conclusions 116</p> <p>References 116</p> <p><b>7 Nanocomposite: Potential Nanofiller for Food Packaging Applications 119<br /></b><i>Rafeeya Shams, Qurat ul eain Hyder Rizvi, Aamir Hussain Dar, Ishrat Majid, and Shafat Khan</i></p> <p>7.1 Introduction 119</p> <p>7.2 Nanofillers 120</p> <p>7.2.1 Nanoclays 121</p> <p>7.2.2 Silica (SiO<sub>2</sub>) 122</p> <p>7.2.3 Silver 122</p> <p>7.2.4 Gold 123</p> <p>7.2.5 Metal Oxide 123</p> <p>7.2.6 Zinc Oxide 123</p> <p>7.2.7 Titanium Dioxide 124</p> <p>7.2.8 Copper Oxide 124</p> <p>7.2.9 Chitosan Nanostructures 124</p> <p>7.2.10 Carbon Nanotubes 125</p> <p>7.3 Nanocomposites in Active Packaging 125</p> <p>7.4 Nanocomposites in Intelligent Packaging 126</p> <p>7.5 Nanomaterial Migration into the Food Matrix 126</p> <p>7.6 Commercial Aspects of Food Packaging 127</p> <p>7.7 Conclusion and Future Trends 127</p> <p>References 128</p> <p><b>8 Nanocellulose Reinforced Polypropylene and Polyethylene Composite for Packaging Application 133<br /></b><i>Mohd Nor Faiz Norrrahim, Tengku Arisyah Tengku Yasim-Anuar, S.M. Sapuan, R.A. Ilyas, Mohd Idham Hakimi, Syed Umar Faruq Syed Najmuddin, and Mohd Azwan Jenol</i></p> <p>8.1 Introduction 133</p> <p>8.2 Plastic Packaging 135</p> <p>8.3 Nanocellulose 136</p> <p>8.4 Polypropylene and Polyethylene Nanocellulose Composites 137</p> <p>8.5 Compatibility Between Nanocellulose with Polyethylene and Polypropylene Matrices 137</p> <p>8.6 Processing Method of PP- and PE-Nanocellulose Composites 139</p> <p>8.6.1 Solvent Casting 140</p> <p>8.6.2 Melt Compounding 140</p> <p>8.6.3 Injection and Compression Molding 141</p> <p>8.6.4 One-Pot 141</p> <p>8.7 Factors Influencing the Performance of the PP- and PE-Nanocellulose Composites 142</p> <p>8.7.1 Drying Effect of Nanocellulose 143</p> <p>8.7.2 Chemical Composition of Nanocellulose 143</p> <p>8.8 Characteristics of the PP- and PE- Nanocellulose Composites 143</p> <p>8.9 Conclusion and Future Recommendations 146</p> <p>References 146</p> <p><b>9 Green Food Packaging from Nanocellulose-Based Composite Materials 151<br /></b><i>Abdel Rehim M.H.</i></p> <p>9.1 Introduction 151</p> <p>9.2 Synthesis of Cellulose Nanostructures 152</p> <p>9.3 Modification of Nanocellulose 153</p> <p>9.4 Properties of Nanocellulose-Based Nanocomposites 154</p> <p>9.5 Active Packaging Material 156</p> <p>9.6 Nanocellulose in Smart Packaging 157</p> <p>9.7 Future Trends and Conclusions 158</p> <p>References 159</p> <p><b>10 Nanocellulose Polylactide-Based Composite Films for Packaging Applications 165<br /></b><i>Dogan Arslan, Emre Vatansever, and Mohammadreza Nofar</i></p> <p>10.1 Introduction 165</p> <p>10.2 Polylactide 167</p> <p>10.3 Nanocellulose Classification 168</p> <p>10.4 PLA/Nanocellulose Nanocomposites 171</p> <p>10.4.1 Processing 171</p> <p>10.4.2 Mechanical Properties 173</p> <p>10.4.3 Crystallization Behavior 179</p> <p>10.4.4 Barrier Properties 181</p> <p>10.4.5 Applications 184</p> <p>10.5 Conclusion and Future Perspectives 184</p> <p>References 185</p> <p><b>11 Nanocellulose Composite Films for Packaging Applications 193<br /></b><i>Latifah Jasmani, Sharmiza Adnan, Z.M.A. Ainun, S.M. Sapuan, and R.A. Ilyas</i></p> <p>11.1 Introduction 193</p> <p>11.2 Preparation of Nanocellulose 194</p> <p>11.2.1 Nanocrystalline Cellulose 195</p> <p>11.2.2 Nanofibrillated Cellulose 196</p> <p>11.2.3 Bacterial Cellulose 196</p> <p>11.3 Nanocellulose Barrier Property 196</p> <p>11.4 Nanocellulose in Films 197</p> <p>11.4.1 Extrusion of Nanocellulose Composite 197</p> <p>11.4.2 Casting of Nanocellulose Films 198</p> <p>11.4.3 Filtration of Nanocellulose Composite 199</p> <p>11.4.4 Coating 200</p> <p>11.5 Nanocellulose Film in Packaging 200</p> <p>11.5.1 Food and Beverage Industry 201</p> <p>11.5.2 Medicine and Pharmaceuticals 201</p> <p>11.6 Conclusion 202</p> <p>References 202</p> <p><b>12 Utilization of Rice Straw as a Raw Material for Food Packaging 205<br /></b><i>Rushdan Ibrahim, S.M Sapuan, R.A Ilyas, and M.S.N. Atikah</i></p> <p>12.1 Introduction 205</p> <p>12.2 Selling Rice Straw 206</p> <p>12.3 Selling Pulp 207</p> <p>12.4 Selling Pulp Molded Products 211</p> <p>12.5 Selling Paper 214</p> <p>12.6 Cost of Commercialization of Products from Rice Straw 218</p> <p>12.7 Conclusions 220</p> <p>References 222</p> <p><b>13 Sustainable Paper-Based Packaging 225<br /></b><i>Latifah Jasmani, Z.M.A. Ainun, Sharmiza Adnan, Rushdan Ibrahim, S.M. Sapuan, and R.A. Ilyas</i></p> <p>13.1 Introduction 225</p> <p>13.2 Types of Raw Material for Paper-Based Packaging 227</p> <p>13.2.1 Source of Fiber 227</p> <p>13.2.2 Types of Pulp 230</p> <p>13.2.2.1 Chemical Pulp 230</p> <p>13.2.2.2 Mechanical Pulp 231</p> <p>13.2.2.3 Recovered Paper 231</p> <p>13.2.2.4 Non-fiber Material 232</p> <p>13.3 Papermaking 232</p> <p>13.4 Types of Paper-Based Packaging 232</p> <p>13.4.1 Boxes 234</p> <p>13.4.1.1 Folding Cartons 234</p> <p>13.4.1.2 Rigid Boxes 234</p> <p>13.4.1.3 Corrugated Boxes 235</p> <p>13.4.1.4 Molded Pulp Containers 235</p> <p>13.4.2 Paper Sheet 235</p> <p>13.4.2.1 Greaseproof Paper 235</p> <p>13.4.2.2 Glassine Paper 236</p> <p>13.4.2.3 Vegetable Parchment 237</p> <p>13.4.2.4 Waxed Paper 238</p> <p>13.4.2.5 Decorative Paper 239</p> <p>13.4.3 Using Types of Paper-Based Packaging 239</p> <p>13.4.3.1 Food and Beverages Industries 239</p> <p>13.4.3.2 Transportation Industries 240</p> <p>13.5 Packaging Requirement for Paper-Based Packaging 242</p> <p>13.5.1 Physical and Mechanical Characteristics of Paper 242</p> <p>13.5.2 Other Requirements 242</p> <p>References 243</p> <p><b>14 Properties and Food Packaging Application of Poly-(Lactic) Acid 245<br /></b><i>N.H Sari, S. Suteja, S.M Sapuan, and R.A Ilyas</i></p> <p>14.1 Introduction: Background and Driving Forces 245</p> <p>14.2 Properties of PLA 246</p> <p>14.2.1 Melt and Transition Temperature 246</p> <p>14.2.2 Crystallinity 247</p> <p>14.3 Mechanical 250</p> <p>14.3.1 Physical 251</p> <p>14.3.2 Thermal Properties 253</p> <p>14.3.3 Optical 254</p> <p>14.3.4 Flame Retardancy 254</p> <p>14.3.5 Water Resistance 255</p> <p>14.3.6 Grease Permeability 256</p> <p>14.3.7 Water Vapor Permeability (WVP) 256</p> <p>14.3.8 Biodegradation Properties as a Packaging 256</p> <p>14.4 Food Packaging Application of PLA 257</p> <p>14.5 Conclusions 260</p> <p>References 260</p> <p><b>15 Poly(Lactic) Acid Modified Films for Packaging Applications 265<br /></b><i>Jissy Jacob, Sabu Thomas, and Sravanthi Loganathan</i></p> <p>15.1 Introduction 265</p> <p>15.2 Biopolymers 266</p> <p>15.2.1 Classification of Biopolymers 267</p> <p>15.2.2 Poly(Lactic) Acid (PLA) 267</p> <p>15.3 Modified PLA Films 267</p> <p>15.3.1 PLA/Clay Composites 267</p> <p>15.3.2 PLA/Carbonaceous Composites 270</p> <p>15.3.3 PLA/Bio Filler Composites 271</p> <p>15.3.4 PLA-Mesoporous Silica Composites 274</p> <p>15.4 Conclusions 275</p> <p>References 276</p> <p><b>16 Polyhydroxyalkanoates for Packaging Application 279<br /></b><i>Tengku Arisyah Tengku Yasim-Anuar, Mohd Nor Faiz Norrrahim, S.M. Sapuan, R.A. Ilyas, Mohd Azwan Jenol, Nur Amira Mamat Razali, Mohd Idham Hakimi, Nur Farisha Abd Rahim, and Syed Umar Faruq Syed Najmuddin</i></p> <p>16.1 Introduction 279</p> <p>16.2 Biopolymers 281</p> <p>16.3 Polyhydroxyalkanoates 282</p> <p>16.3.1 Characteristic of PHAs 282</p> <p>16.3.2 Biodegradability and Enzymatic Degradability of PHAs 284</p> <p>16.3.3 Application of PHAs 284</p> <p>16.4 Polyhydroxyalkanoate-Based Composites for Packaging Applications 286</p> <p>16.5 Chemical Recycling of PHAs 287</p> <p>16.5.1 Pyrolysis of PHAs 287</p> <p>16.5.2 Application of Crotonic Acid, 2-Pentenoic Acid, and its Derivatives 288</p> <p>16.6 Future Direction and Recommendations 289</p> <p>References 290</p> <p><b>17 Manufacturing of Biobased Packaging Materials 295<br /></b><i>Min Min Aung, Hiroshi Uyama, Marwah Rayung, Lu Lu Taung Mai, Moe Tin Khaing, S.M. Sapuan, and R.A. Ilyas</i></p> <p>17.1 Introduction 295</p> <p>17.2 Bio-Based Packaging Materials 296</p> <p>17.3 Food Packaging Materials 297</p> <p>17.3.1 Biomass Plastic in Food Packaging 298</p> <p>17.3.1.1 Eucommia Elastomer 300</p> <p>17.3.1.2 Biopolyurethane Using Vegetable Oils 302</p> <p>17.4 Properties of Bio-Based Packaging Materials 305</p> <p>17.4.1 Biodegradable Plastic 305</p> <p>17.4.2 Biodegradable Polyester Composite 309</p> <p>17.5 Manufacturing Food Applications 312</p> <p>17.6 Food Industry and Bio-Based Materials Demand 314</p> <p>17.7 Conclusions and Remarks 315</p> <p>Acknowledgments 316</p> <p>References 316</p> <p><b>18 Bioplastics: An Introduction to the Role of Eco-Friendly Alternative Plastics in Sustainable Packaging 319<br /></b><i>Usman Lawal and Ravi Babu Valapa</i></p> <p>18.1 Introduction 319</p> <p>18.2 Important Biopolymers for Food Packaging 321</p> <p>18.2.1 Starch 322</p> <p>18.2.2 Polylactic Acid (PLA) 322</p> <p>18.2.3 Cellulose 323</p> <p>18.2.4 Chitosan 323</p> <p>18.2.5 Polyhydroxyalkanoates (PHAs) 324</p> <p>18.3 Important Properties of Biopolymers for Food Packaging Applications 325</p> <p>18.3.1 Mechanical Properties of Biopolymers 325</p> <p>18.3.2 Barrier Property 325</p> <p>18.3.3 Antimicrobial Properties 327</p> <p>18.3.4 Optical Properties 328</p> <p>18.3.5 Combination with Plasticizers 328</p> <p>18.4 Biopolymers and the Future of Food Packaging 329</p> <p>18.5 Conclusions 330</p> <p>Acknowledgment 330</p> <p>References 330</p> <p><b>19 Bioplastics: The Future of Sustainable Biodegradable Food Packaging 335<br /></b><i>S. Ayu Rafiqah, A Khalina, Khairul Zaman, ISMA Tawakkal, A.S Harmaen, and N Mohd Nurrazi</i></p> <p>19.1 Introduction 335</p> <p>19.2 Types of Plastic for Food Packaging 336</p> <p>19.2.1 Biopolymer 337</p> <p>19.2.2 Biodegradable Polymer – Polybutylene Succinate 338</p> <p>19.2.3 Biodegradable Polymer – Polylactic Acid 340</p> <p>19.3 Food Packaging 341</p> <p>19.3.1 Starch-Based Bioplastic Packaging 343</p> <p>19.3.2 Oxygen Transmission Rate 344</p> <p>19.3.3 Water Vapor Transmission Rate (WVTR) 345</p> <p>19.4 Active Food Packaging 346</p> <p>19.4.1 Antimicrobial Food Packaging 347</p> <p>References 348</p> <p><b>20 Renewable Sources for Packaging Materials 353<br /></b><i>R.A Ilyas, S.M Sapuan, H.A Aisyah, Rushdan Ibrahim, M.S.N. Atikah, H.N. Salwa, Min Min Aung, S.O.A. SaifulAzry, L.N. Megashah, and Z.M.A. Ainun</i></p> <p>20.1 Introduction 354</p> <p>20.2 Packaging Materials from Bio-based Materials 355</p> <p>20.3 Development of Bio-based Packages 356</p> <p>20.3.1 Polycarbonates from Sugars and Carbon Dioxide 356</p> <p>20.3.2 Chitosan 359</p> <p>20.3.3 Plant Cell Wall Biopolymers 359</p> <p>20.3.4 Polyhydroxyalkanoate 359</p> <p>20.3.5 Polylactic Acid 359</p> <p>20.3.6 Starch 360</p> <p>20.3.7 Protein 360</p> <p>20.3.8 Chitin and Chitosan 360</p> <p>20.4 Decomposition of Biodegradable Plastics 361</p> <p>20.5 Renewable Energy Production Using Biobased Packaging Waste 363</p> <p>20.6 Cost of Bio-based Materials 363</p> <p>20.7 Life Cycle Assessment 364</p> <p>20.8 Social Consumption Behavior 364</p> <p>20.9 Conclusions 365</p> <p>Acknowledgment 365</p> <p>References 365</p> <p><b>21 Environmental Advantages and Challenges of Bio-Based Packaging Materials 371<br /></b><i>R.A Ilyas, S.M. Sapuan, Rushdan Ibrahim, M.S.N. Atikah, M.R.M. Asyraf, Mohd Nor Faiz Norrrahim, S.O.A. SaifulAzry, and Z.M.A. Ainun</i></p> <p>21.1 Introduction 372</p> <p>21.2 Advantages of Bio-Based Packaging Materials 373</p> <p>21.2.1 Reduction of Waste 373</p> <p>21.2.2 Reduction in Greenhouse Gas Emission 373</p> <p>21.2.3 Rapid Decomposition 373</p> <p>21.2.4 Sustainability 374</p> <p>21.2.5 New Marketing Opportunities and Export Industries 374</p> <p>21.3 Challenges of Bio-Based Packaging Materials 375</p> <p>21.3.1 Inappropriate Regulations 375</p> <p>21.3.2 Lack of Composting Facilities 375</p> <p>21.3.3 Manufacturing Costs 376</p> <p>21.4 Conclusions 377</p> <p>References 377</p> <p><b>22 Life Cycle Assessment of Bio-Based Packaging Products 381<br /></b><i>H.N. Salwa, S.M. Sapuan, M.T. Mastura, M.Y.M Zuhri, and R.A. Ilyas</i></p> <p>22.1 Packaging: Function and Materials 381</p> <p>22.1.1 Bio-Based Materials for Packaging Applications 383</p> <p>22.1.2 Packaging Product Life Cycle 385</p> <p>22.2 Life Cycle Assessment (LCA) 390</p> <p>22.2.1 Background of LCA 390</p> <p>22.2.2 LCA Approaches 391</p> <p>22.3 LCA Goal and Scope (Definition of a Functional Unit and System Boundary) 392</p> <p>22.3.1 Functional Unit (FU) 392</p> <p>22.3.2 System Boundary 393</p> <p>22.4 Life Cycle Inventory (LCI) 396</p> <p>22.5 Life Cycle Impact Assessment (LCIA) 398</p> <p>22.6 Life Cycle Results Interpretation 402</p> <p>22.7 Conclusions 407</p> <p>Acknowledgments 408</p> <p>References 408</p> <p><b>23 Reuse and Recycle of Biobased Packaging Products 413<br /></b><i>R.A. Ilyas, S.M. Sapuan, F.A. Sabaruddin, M.S.N. Atikah, Rushdan Ibrahim, M.R.M. Asyraf, M.R.M. Huzaifah, S.O.A. SaifulAzry, and Z.M.A. Ainun</i></p> <p>23.1 Introduction 413</p> <p>23.2 Waste Management Efficiency for Bioplastics 417</p> <p>23.3 Prevention and Reduction 418</p> <p>23.4 Reuse Bio-Based Products 418</p> <p>23.5 Packaging Material Recycling 418</p> <p>23.6 Mechanical Recycling Process 421</p> <p>23.7 Organic Recycling or Composting 421</p> <p>23.8 Impact of Aging and Recycling on the Quality of Plastic Materials 421</p> <p>23.9 Conclusions 422</p> <p>References 423</p> <p><b>24 Socioeconomic Impact of Bio-Based Packaging Bags 427<br /></b><i>M. Chandrasekar, T. Senthil Muthu Kumar, K. Senthilkumar, S.M. Sapuan, R.A. Ilyas, M.R. Ishak, R.M. Shahroze, and Suchart Siengchin</i></p> <p>24.1 Introduction 427</p> <p>24.2 Socioeconomic Factors Influencing the Bioplastic-Based Packaging Materials 428</p> <p>24.2.1 Interest from the Investors 428</p> <p>24.2.1.1 Market Projection on the Production of Bioplastic Materials 429</p> <p>24.2.2 Commercial Producers of Bio-Based Packaging Materials and Scope of Application 430</p> <p>24.2.3 Policy Making and Support from the Government 431</p> <p>24.2.4 Consumer Perception and Acceptance by Consumers (According to Countries) 432</p> <p>24.2.5 Challenges for Bioplastics in Packaging Applications 432</p> <p>24.2.5.1 Material Performance 432</p> <p>24.2.5.2 Recycling 432</p> <p>24.3 Future Scope 433</p> <p>24.4 Conclusion 434</p> <p>References 434</p> <p><b>25 The Assessment of Supply Chains, Business Strategies, and Markets in Biodegradable Food Packaging 437<br /></b><i>K. Norfaryanti, Z.M.A. Ainun, and S. Zaiton</i></p> <p>25.1 The Context of Bio-Packaging 437</p> <p>25.2 Types of Biodegradable Food Packaging and Its Characteristics 438</p> <p>25.2.1 Active Packaging 439</p> <p>25.2.2 Intelligent Packaging 439</p> <p>25.2.3 Biodegradable Packaging 440</p> <p>25.3 Biodegradable Food Packaging Supply/Value Chain 440</p> <p>25.4 Business Strategies and Market Assessment 442</p> <p>25.4.1 Strategy and Market Projection 443</p> <p>25.4.2 Biodegradable Food Packaging Trends 447</p> <p>25.5 Conclusion 448</p> <p>Acknowledgments 448</p> <p>References 448</p> <p><b>26 The Market for Bio-Based Packaging: Consumers’ Perceptions and Preferences Regarding Bio-Based Packaging 453<br /></b><i>Carsten Herbes</i></p> <p>26.1 Introduction: The Need for Bio-Based Packaging 453</p> <p>26.2 Bio-Based Packaging: An Overview 455</p> <p>26.3 Consumer Perception of Bio-Based Plastics 456</p> <p>26.4 Consumer Perception of Bio-Based Packaging 458</p> <p>26.5 Consumer Identification of Bio-Based Packaging 460</p> <p>26.6 Industry Perspectives 460</p> <p>26.7 Conclusion: Problems and Potential Solutions 460</p> <p>References 462</p> <p><b>27 Regulations for Food Packaging Materials 467<br /></b><i>R.A Ilyas, S.M Sapuan, L.N. Megashah, Rushdan. Ibrahim, M.S.N. Atikah, Z.M.A. Ainun, Min Min Aung, S.O.A. SaifulAzry, and C.H. Lee</i></p> <p>27.1 Introduction 468</p> <p>27.2 Asia 470</p> <p>27.2.1 Malaysia 470</p> <p>27.2.2 Japan 472</p> <p>27.2.3 China 473</p> <p>27.2.4 India 474</p> <p>27.3 Europe 475</p> <p>27.4 North America and South America 479</p> <p>27.4.1 History of Formal Food Packaging Regulation in the US 481</p> <p>27.4.2 US Food Packaging Regulations 482</p> <p>27.4.3 Environmental Impact of Materials Used in Food Packaging 483</p> <p>27.4.4 Rigid Plastic Containers 483</p> <p>27.4.5 Regulations 483</p> <p>27.4.6 The US Exposure Approach to FCM Legislation 485</p> <p>27.4.7 The Regulatory Enforcement Process in the United States 485</p> <p>27.4.8 A Practical Approach to the US Food Contact Materials Regulatory Regime 486</p> <p>27.5 Australia and Africa 487</p> <p>27.5.1 Regulations for Food Packaging Materials in Australia 487</p> <p>27.5.2 Reducing Environmental Harm in the Natural Environment 488</p> <p>27.6 Regulation for Food Packaging Materials in Africa 488</p> <p>27.6.1 Foods Based on Cereals and Wheat Production 488</p> <p>27.6.2 Beers 488</p> <p>27.6.3 Food Packaging; Reuse, Reduce, and Recycle 490</p> <p>27.7 Conclusion 491</p> <p>References 491</p> <p>Index 495 </p>
<p>Editors</p><p><b>S. M. Sapuan</b>, <i>Professor of Composite Materials, Universiti Putra Malaysia</i></p><p><b>R.A. Ilyas</b>, <i>Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia</i></p><p>Series Editor</p><p><b>Christian Stevens</b>, <i>Faculty of Bioscience Engineering, Ghent University, Belgium</i></p>
<p><b>Bio-Based Packaging</b></p><p><b>An authoritative and up-to-date review of sustainable packaging development and applications</b></p><p><i>Bio-Based Packaging</i> explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites.</p><p>In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book:</p><ul><li>Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact</li><li>Contains real-world case studies of bio-based packaging applications</li><li>Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging</li><li>Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products</li></ul><p><i>Bio-Based Packaging</i> is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields.</p><p>For more information on the Wiley Series in Renewable Resources, visit <b>www.wiley.com/go/rrs</b></p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €