Details

Batteries


Batteries

Present and Future Energy Storage Challenges
Encyclopedia of Electrochemistry 1. Aufl.

von: Stefano Passerini, Dominic Bresser, Arianna Moretti, Alberto Varzi

331,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 24.07.2020
ISBN/EAN: 9783527827305
Sprache: englisch
Anzahl Seiten: 960

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Part of the <i>Encyclopedia of Electrochemistry</i>, this comprehensive, two-volume handbook offers an up-to-date and in-depth review of the battery technologies in use today. It also includes information on the most likely candidates that hold the potential for further enhanced energy and power densities. It contains contributions from a renowned panel of international experts in the field.</p> <p>Batteries are extremely commonplace in modern day life. They provide electrochemically stored energy in the form of electricity to automobiles, aircrafts, electronic devices and to smart power grids. Comprehensive in scope, 'Batteries' covers information on well-established battery technologies such as charge-carrier-based lead acid and lithium ion batteries. The contributors also explore current developments on new technologies such as lithium-sulfur and -oxygen, sodium ion, and full organic batteries.</p> <p>Written for electrochemists, physical chemists, and materials scientists, 'Batteries' is an accessible compendium that offers a thorough review of the most relevant current battery technologies and explores the technology in the years to come.</p>
<p>About the Editors xxiii</p> <p>List of Contributors xxvii</p> <p>Preface xxxiii</p> <p><b>Section I Introduction </b><i>1</i></p> <p><b>1 The Role of Batteries for the Successful Transition to </b><b>Renewable Energy Sources </b><i>3<br /></i><i>Dominic Bresser, Arianna Moretti, Alberto Varzi, and Stefano Passerini</i></p> <p>1 The Need for Transitioning to Renewable Energy Sources <i>3</i></p> <p>2 Energy Storage as Key Enabler <i>5</i></p> <p>3 The Variety of Battery Chemistries and Technologies <i>9</i></p> <p><b>2 Fundamental Principles of Battery Electrochemistry </b><i>13<br /></i><i>Francesco Nobili and Roberto Marassi</i></p> <p>1 Introduction <i>13</i></p> <p>2 Main Battery Components <i>16</i></p> <p>3 Voltage, Capacity, and Energy <i>19</i></p> <p>4 Current and Power <i>29</i></p> <p>5 Practical Operating Parameters <i>35</i></p> <p>6 Main Classes of Batteries and Alternative Electrochemical Power Sources <i>37</i></p> <p><b>Section II Presently Employed Battery Technologies </b><i>49</i></p> <p><b>3 Lead-Acid – Still the Battery Technology with the Largest </b><b>Sales </b><i>51<br /></i><i>Johannes Buengeler and Bernhard Riegel</i></p> <p>1 Introduction and History <i>51</i></p> <p>2 Fundamentals of the Lead-Acid Accumulator <i>52</i></p> <p>3 Behavior of the Lead-Acid Accumulator During Current Flow <i>62</i></p> <p>4 AgingMechanisms <i>67</i></p> <p>5 Acid Stratification <i>73</i></p> <p>6 BatteryDesign <i>76</i></p> <p>7 Discharge Characteristic <i>80</i></p> <p>8 Charging Algorithms <i>82</i></p> <p>9 TemperatureEffects <i>86</i></p> <p>10 New Development Trends for Advanced Lead-Acid Batteries <i>89</i></p> <p><b>4 Ni/Cd and Ni-MH – The Transition to "Charge Carrier"-Based </b><b>Batteries </b><i>95<br /></i><i>HuiWang andMin Zhu</i></p> <p>1 Introduction to Ni/Cd and Ni-MH Batteries <i>95</i></p> <p>2 Basic Structure of Ni-MH Battery <i>97</i></p> <p>3 Electrochemistry of Ni-MH Battery <i>98</i></p> <p>4 Positive Electrode Materials of Ni-MH Batteries <i>100</i></p> <p>5 Negative Electrode Materials of Ni-MH Batteries <i>104</i></p> <p>6 State-of-the-Art of Ni-MH Battery <i>116</i></p> <p>7 Summary <i>125</i></p> <p><b>5 Brief Survey on the Historical Development of LIBs </b><i>131<br /></i><i>Kazunori Ozawa</i></p> <p>1 Introduction <i>131</i></p> <p>2 Aqueous Electrolyte System <i>131</i></p> <p>3 Nonaqueous Electrolyte System <i>132</i></p> <p>4 Insertion/Extraction of Lithium Ion <i>135</i></p> <p>5 Success of Sony <i>135</i></p> <p>6 Conclusion <i>147</i></p> <p><b>6 Present LIB Chemistries </b><i>149</i></p> <p>1 General Introduction <i>149<br /></i><i>Zempachi Ogumi</i></p> <p>2 Positive Electrodes <i>150<br /></i><i>Hajime Arai</i></p> <p>3 Negative Electrodes <i>159<br /></i><i>Takeshi Abe</i></p> <p>4 Electrolytes <i>167<br /></i><i>Masayuki Morita</i></p> <p><b>7 Anticipated Progress in the Near- to Mid-Term Future of </b><b>LIBs </b><i>185<br /></i><i>Seung-TaekMyung, Jongsoon Kim, and Yang-Kook Sun</i></p> <p>1 Cathode <i>185</i></p> <p>2 Anode <i>192</i></p> <p>3 Electrolyte <i>199</i></p> <p>4 Separator <i>204</i></p> <p>5 Outlook <i>206</i></p> <p><b>8 Safety Considerations with Lithium-Ion Batteries </b><i>217<br /></i><i>Jürgen Garche and Klaus Brandt</i></p> <p>1 Introduction <i>217</i></p> <p>2 Material Influence on Risks <i>218</i></p> <p>3 RiskClasses <i>224</i></p> <p>4 Triggering of Risks <i>228</i></p> <p>5 Handling of Risk Events <i>234</i></p> <p>6 Summary and Outlook <i>238</i></p> <p><b>9 Recycling of Lithium-Ion Batteries </b><i>243<br /></i><i>Marit Mohr, MarcelWeil, Jens Peters, and ZhangqiWang</i></p> <p>1 Introduction <i>243</i></p> <p>2 Recycling Technologies/Processes <i>246</i></p> <p>3 Assessment of Battery Recycling Processes <i>259</i></p> <p>4 Challenges and Potentials <i>265</i></p> <p>5 Conclusion <i>270</i></p> <p><b>10 Vanadium Redox Flow Batteries </b><i>277<br /></i><i>Ruiyong Chen, Zhifeng Huang, Rolf Hempelmann, Dirk Henkensmeier, and </i><i>Sangwon Kim</i></p> <p>1 Introduction <i>277</i></p> <p>2 Vanadium Electrolytes <i>278</i></p> <p>3 Membranes and Transport of Species <i>288</i></p> <p>4 Electrode Materials <i>296</i></p> <p>5 Conclusions <i>301</i></p> <p><b>11 Redox Flow – Zn–Br </b><i>311<br /></i><i>Hee-Tak Kim, Ju-Hyuk Lee, Dae Sik Kim, and Jung Hoon Yang</i></p> <p>1 Overview of Zn–Br Batteries <i>311</i></p> <p>2 Battery Components <i>315</i></p> <p>3 BatteryDesign <i>334</i></p> <p>4 BatteryManagement <i>338</i></p> <p>5 Summary <i>340</i></p> <p><b>12 The Sodium/Nickel Chloride Battery </b><i>349<br /></i><i>Marco Ottaviani, Alberto Turconi, and Diego Basso</i></p> <p>1 General Characteristics <i>349</i></p> <p>2 Description of the Electrochemical Systems <i>350</i></p> <p>3 Cell Design and Performance Characteristics <i>353</i></p> <p>4 Battery Design and Performance Characteristics <i>360</i></p> <p>5 Series Production Technology <i>364</i></p> <p>6 Market Overview and Application <i>365</i></p> <p>7 Transport of Cells and Batteries <i>366</i></p> <p><b>13 High-Temperature Battery Technologies: Na-S </b><i>371<br /></i><i>Verónica Palomares, Karina B. Hueso,Michel Armand, and Teófilo Rojo</i></p> <p>1 Introduction <i>371</i></p> <p>2 High-Temperature Sodium–Sulfur Systems <i>373</i></p> <p>3 Intermediate-Temperature Sodium–Sulfur Systems <i>386</i></p> <p>4 Low-Temperature Sodium–Sulfur Systems <i>387</i></p> <p>5 Sodium–Sulfur Technology Implementation in Industry <i>393</i></p> <p>6 Conclusions <i>396</i></p> <p><b>14 Solid-State Batteries with Polymer Electrolytes </b><i>407<br /></i><i>Cristina Iojoiu and Elie Paillard</i></p> <p>1 Introduction <i>407</i></p> <p>2 Lithium-Ion Batteries and “Soft” Gel Electrolytes <i>410</i></p> <p>3 Lithium Metal Batteries and SPEs <i>412</i></p> <p>4 Perspectives <i>424</i></p> <p>5 Conclusions <i>436</i></p> <p><b>Section III Potential Candidates for the Future Energy </b><b>Storage </b><i>457</i></p> <p><b>15 Solid-State Batteries with Inorganic Electrolytes </b><i>459<br /></i><i>Naoki Suzuki, TakuWatanabe, Satoshi Fujiki, and Yuichi Aihara</i></p> <p>1 Introduction <i>459</i></p> <p>2 All-Solid-State Li Primary Batteries <i>470</i></p> <p>3 All-Solid-State Secondary Battery <i>472</i></p> <p>4 Outlook <i>508</i></p> <p><b>16 Li/S </b><i>521<br /></i><i>Sheng-Heng Chung and Arumugam Manthiram</i></p> <p>1 Introduction <i>521</i></p> <p>2 IntrinsicMaterials Issues <i>528</i></p> <p>3 Extrinsic Technical Issues <i>536</i></p> <p>4 Conclusion <i>546</i></p> <p><b>17 Lithium–Oxygen Batteries </b><i>557<br /></i><i>Yann K. Petit, Eléonore Mourad, and Stefan A. Freunberger</i></p> <p>1 Introduction <i>557</i></p> <p>2 Attainable PerformanceMetrics ofMetal–O2 Cells <i>558</i></p> <p>3 Reaction Mechanism of the Li–O2 Cathode <i>561</i></p> <p>4 Parasitic Chemistry in Metal–O2 Cathodes <i>568</i></p> <p>5 TheElectrodes <i>578</i></p> <p>6 Moving the Li–O2 Cathode Chemistry into Solution <i>581</i></p> <p>7 Electrolytes and Their Stability <i>585</i></p> <p>8 Conclusions <i>586</i></p> <p><b>18 Nonlithium Aprotic Metal/Oxygen Batteries Using Na, K, Mg, or </b><b>Ca as Metal Anode </b><i>599<br /></i><i>Daniel Schröder, Jürgen Janek, and Philipp Adelhelm</i></p> <p>1 Introduction <i>599</i></p> <p>2 Basic Principles and Performance Metrics <i>600</i></p> <p>3 Redox Reactions in the Various Metal/Oxygen Batteries <i>605</i></p> <p>4 Summary and Prospects <i>619</i></p> <p><b>19 Na-Ion Batteries </b><i>629<br /></i><i>Kei Kubota and Shinichi Komaba</i></p> <p>1 Introduction <i>629</i></p> <p>2 Active Materials, Electrolyte, and Binders for a Negative Electrode <i>632</i></p> <p>3 Positive Electrode Materials <i>651</i></p> <p>4 Summary and Perspective <i>671</i></p> <p><b>20 Multivalent Charge Carriers </b><i>693<br /></i><i>Jan Bitenc, Alexandre Ponrouch, Robert Dominko, Patrik Johansson, </i><i>and M. Rosa Palacin</i></p> <p>1 Introduction <i>693</i></p> <p>2 Magnesium-Based Batteries <i>698</i></p> <p>3 Calcium-Based Batteries <i>706</i></p> <p>4 Aluminum-Based Batteries <i>710</i></p> <p>5 Technological Prospects <i>715</i></p> <p>6 Conclusion <i>718</i></p> <p><b>21 Aqueous Zinc Batteries </b><i>729<br /></i><i>Simon Clark, Niklas Borchers, Zenonas Jusys, R. Jürgen Behm, </i><i>and Birger Horstmann</i></p> <p>1 Introduction <i>729</i></p> <p>2 History <i>730</i></p> <p>3 Zinc as an Electrode Material <i>733</i></p> <p>4 Alkaline Zn–MnO2 Batteries <i>737</i></p> <p>5 Zinc-IonBatteries <i>740</i></p> <p>6 Zinc-AirBatteries <i>748</i></p> <p>7 Conclusion <i>765</i></p> <p><b>22 Full-Organic Batteries </b><i>783<br /></i><i>Lionel Picard and Thibaut Gutel</i></p> <p>1 Why Full-Organic Batteries? <i>783</i></p> <p>2 Advantages and Challenges Around Organic Materials <i>784</i></p> <p>3 The Different Configurations of Full-Organic Batteries <i>789</i></p> <p>4 The Main Electroactive Functions andTheir Mechanisms <i>790</i></p> <p>5 Strategies Against Solubilization of the Active Organic Materials <i>807</i></p> <p>6 Strategies for Improving Electronic Conductivity <i>834</i></p> <p>7 Full-Organic Batteries <i>837</i></p> <p>8 Concluding Remarks <i>845</i></p> <p>References <i>846</i></p> <p><b>Index </b><i>857</i></p>
Stefano Passerini is Professor at the Karlsruhe Institute of Technology (KIT) and Deputy Director of the Helmholtz Institute Ulm (HIU, Germany) since January 1, 2014. Formerly Professor at the University of Muenster (Germany), he co-founded the MEET battery research center (Muenster, Germany). His research activities are focused on electrochemical energy storage in batteries and supercapacitors. He is co-author of more than 480 scientific papers (h-index of 66), a few book chapters and several international patents. In 2012, he has been awarded the Research Award of the Electrochemical Society Battery Division. Since 2015 he has been appointed as Editor-in-Chief of the Journal of Power Sources.<br> <br> Dominic Bresser is presently establishing a young investigator research group at the Helmholtz Institute Ulm (HIU) and Karlsruhe Institute of Technology (KIT), Germany. The focus of the group?s activities is on the investigation and development of alternative lithium-ion anode materials. Simultaneously, he is working with Prof. Stefano Passerini on aqueous electrode processing technologies for high-energy lithium-ion cathodes and pursuing his habilitation at the University of Ulm. Prior to his present activities, he held a two-years postdoctoral position and Enhanced Eurotalents Fellowship at the CEA in Grenoble, France, where he was studying nanostructured single-ion conductors and poly(ionic liquid)s as electrolyte systems. Beforehand, he carried out his PhD in the group of Stefano Passerini at the University of Muenster, Germany, studying nanostructured active materials for lithium- and sodium-based batteries. He is Co-Author of more than 50 peer-reviewed international publications (h-index of 21) as well as three book chapters and several international patent applications.<br> <br> Arianna Moretti is a senior scientist at the Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Karlsruhe Institute of Technology (KIT), Germany. Her research activities focus on Li-metal and Li-ion batteries and include the development of electrolytes and electroactive materials, electrode processing, cell aging and post-mortem studies. In 2009, she graduated in Chemistry at the University of Camerino, Italy, with a dissertation on catalysts for proton exchange membrane fuel cells. In 2013, she accomplished her PhD studies working in the electrochemistry group of Prof. Marassi on olivine-type cathode material. Afterward she joined as Post-doc the group of Prof. Passerini at WWU Münster and MEET (Münster Electrochemical Energy Technology) conducting the research on ionic liquids and vanadium oxides. She is co-author of more than 20 peer-reviewed publications with an h-index of 10.<br> <br> Alberto Varzi is a senior scientist at the Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, with a research focus on electrochemical energy storage devices such as lithium-ion, lithium-sulfur batteries and supercapacitors. He studied Chemistry of Materials at the University of Bologna, Italy and graduated in 2008 working with Prof. Mastragostino on catalysts and membranes for direct methanol fuel cells. He continued his education in Germany and received his PhD in 2013 from the University of Ulm, working with Dr. Margret Wohlfahrt-Mehrens on carbon nanotubes for lithium-ion battery applications. Postdoctoral research he did with Prof. Passerini at WWU Münster and MEET (Münster Electrochemical Energy Technology), dealing with the development of environmentally friendly materials for high power devices. He co-authored more than 27 peer-reviewed papers, 2 patents, and received close to 1200 citations, with an h-index of 12 and i-10-index of 15.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €