Details

Applied Superconductivity


Applied Superconductivity

Handbook on Devices and Applications
Encyclopedia of Applied Physics 1. Aufl.

von: Paul Seidel

485,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 29.01.2015
ISBN/EAN: 9783527670659
Sprache: englisch
Anzahl Seiten: 1336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the details of many applications, is an essential reference for physicists and engineers in academic research as well as in industry. <br /><br />Readers looking for a comprehensive overview on basic effects related to superconductivity and superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors with respect to their application. Technology, preparation and characterization are covered for bulk, single crystals, thins fi lms as well as electronic devices, wires and tapes. <br /><br />The main benefit of this work lies in its broad coverage of significant applications in magnets, power engineering, electronics, sensors and quantum metrology. The reader will find information on superconducting magnets for diverse applications like particle physics, fusion research, medicine, and biomagnetism as well as materials processing. SQUIDs and their usage in medicine or geophysics are<br />thoroughly covered, as are superconducting radiation and particle detectors, aspects on superconductor digital electronics, leading readers to quantum computing and new devices.</p>
<p>Conductorart by Claus Grupen (drawing) XX</p> <p>Preface XXI</p> <p>List of Contributors XXIII</p> <p>1 Fundamentals 1</p> <p>1.1 Superconductivity 1</p> <p>1.1.1 Basic Properties and Parameters of Superconductors 1<br />Reinhold Kleiner</p> <p>References 25</p> <p>1.1.2 Review on Superconducting Materials 26<br />Roland Hott, Reinhold Kleiner, ThomasWolf, and Gertrud Zwicknagl</p> <p>References 44</p> <p>1.2 Main Related Effects 49</p> <p>1.2.1 Proximity Effect 49<br />Mikhail Belogolovskii</p> <p>1.2.2 Tunneling and Superconductivity 66<br />Steven T. Ruggiero</p> <p>References 74</p> <p>1.2.3 Flux Pinning 76<br />Stuart C.Wimbush</p> <p>References 90</p> <p>1.2.4 AC Losses and Numerical Modeling of Superconductors 93<br />Francesco Grilli and Frederic Sirois</p> <p>References 102</p> <p>2 Superconducting Materials 105</p> <p>2.1 Low-Temperature Superconductors 105</p> <p>2.1.1 Metals, Alloys, and Intermetallic Compounds 105<br />Helmut Krauth and Klaus Schlenga</p> <p>Acknowledgments 127</p> <p>References 128</p> <p>2.1.2 Magnesium Diboride 129<br />Davide Nardelli, Ilaria Pallecchi, and Matteo Tropeano</p> <p>References 148</p> <p>2.2 High-Temperature Superconductors 152</p> <p>2.2.1 Cuprate High-Temperature Superconductors 152<br />Roland Hott and ThomasWolf</p> <p>References 163</p> <p>2.2.2 Iron-Based Superconductors: Materials Aspects for Applications 166<br />Ilaria Pallecchi and Marina Putti</p> <p>References 188</p> <p>3 Technology, Preparation, and Characterization 193</p> <p>3.1 Bulk Materials 193</p> <p>3.1.1 Preparation of Bulk and Textured Superconductors 193<br />Frank N.Werfel</p> <p>References 219</p> <p>3.1.2 Single crystal growth of the high temperature superconducting cuprates 222<br />Andreas Erb</p> <p>3.1.3 Properties of Bulk Materials 231<br />Günter Fuchs, Gernot Krabbes, andWolf-Rüdiger Canders</p> <p>References 245</p> <p>3.2 Thin Films and Multilayers 247</p> <p>3.2.1 Thin Film Deposition 247<br />Roger Wördenweber</p> <p>Acknowledgment 277</p> <p>References 277</p> <p>3.3 Josephson Junctions and Circuits 281</p> <p>3.3.1 LTS Josephson Junctions and Circuits 281<br />Hans-Georg Meyer, Ludwig Fritzsch, Solveig Anders, Matthias Schmelz, Jürgen Kunert, and Gregor Oelsner</p> <p>References 298</p> <p>3.3.2 HTS Josephson Junctions 306<br />Keiichi Tanabe</p> <p>References 324</p> <p>3.4 Wires and Tapes 328</p> <p>3.4.1 Powder-in-Tube SuperconductingWires: Fabrication, Properties, Applications, and Challenges 328<br />Tengming Shen, Jianyi Jiang, and Eric Hellstrom</p> <p>Acknowledgments 348</p> <p>References 348</p> <p>3.4.2 YBCO-Coated Conductors 355<br />Mariappan Parans Paranthaman, Tolga Aytug, Liliana Stan, Quanxi Jia, and Claudia Cantoni</p> <p>Acknowledgments 364</p> <p>References 364</p> <p>3.5 Cooling 366</p> <p>3.5.1 Fluid Cooling 366<br />Luca Bottura and Cesar Luongo</p> <p>References 381</p> <p>3.5.2 Cryocoolers 383<br />Gunter Kaiser and Gunar Schroeder</p> <p>References 392</p> <p>3.5.3 “Cryogen-Free” Cooling 393<br />Gunter Kaiser and Andreas Kade</p> <p>References 401</p> <p>4 Superconducting Magnets 403</p> <p>4.1 Bulk Superconducting Magnets for Bearings and Levitation 403<br />John R. Hull</p> <p>4.1.1 Introduction 403</p> <p>4.1.2 Understanding Levitation with Bulk Superconductors 405</p> <p>4.1.3 Rotational Loss 407</p> <p>4.1.4 A Rotor Dynamic Issue 411</p> <p>4.1.5 Practical Bearing Considerations 412</p> <p>4.1.6 Applications 415</p> <p>References 416</p> <p>4.2 Fundamentals of Superconducting Magnets 418<br />Martin N.Wilson</p> <p>4.2.1 Windings to Produce Different Field Shapes 418</p> <p>4.2.2 Current Supply 420</p> <p>4.2.3 Load Lines, Degradation, and Training 422</p> <p>4.2.4 Cryogenic Stabilization 423</p> <p>4.2.5 Mechanical Disturbances and Minimum Quench Energy 426</p> <p>4.2.6 Screening Currents and the Critical State Model 429</p> <p>4.2.7 Magnetization and Flux Jumping 431</p> <p>4.2.8 FilamentaryWires and Cables 434</p> <p>4.2.9 AC Losses 440</p> <p>4.2.10 Quenching and Protection 442</p> <p>References 447</p> <p>4.3 Magnets for Particle Accelerators and Colliders 448<br />Luca Bottura and Lucio Rossi</p> <p>4.3.1 Introduction 448</p> <p>4.3.2 Accelerators, Colliders, and Role of Superconducting Magnets 448</p> <p>4.3.3 Magnetic Design 455</p> <p>4.3.4 Mechanical Design 467</p> <p>4.3.5 Margins, Stability, Training, and Protection 471</p> <p>4.3.6 Field Quality 478</p> <p>4.3.7 Fast-Cycled Synchrotrons 482</p> <p>Acknowledgments 484</p> <p>References 484</p> <p>4.4 Superconducting Detector Magnets for Particle Physics 487<br />Michael A. Green</p> <p>4.4.1 The Development of Detector Solenoids 487</p> <p>4.4.2 LHC Detector Magnets for the ATLAS, CMS, and ALICE Experiments 489</p> <p>4.4.3 The Future of Detector Magnets for Particle Physics 496</p> <p>4.4.4 The Defining Parameters forThin Solenoids 498</p> <p>4.4.5 Thin Detector Solenoid Design Criteria 500</p> <p>4.4.6 Magnet Power Supply and Coil Quench Protection 505</p> <p>4.4.7 Design Criteria for the Ends of a Detector Solenoid 509</p> <p>4.4.8 Cryogenic Cooling of a Detector Magnet 512</p> <p>References 518</p> <p>4.5 Magnets for NMR and MRI 523<br />Yukikazu Iwasa and Seungyong Hahn</p> <p>4.5.1 Introduction to NMR and MRI Magnets 523</p> <p>4.5.2 Specific Design Issues for NMR and MRI Magnets 526</p> <p>4.5.3 Status (2013) of NMR and MRI Magnets 534</p> <p>4.5.4 HTS Applications to NMR and MRI Magnets 539</p> <p>4.5.5 Conclusions 540</p> <p>References 541</p> <p>4.6 Superconducting Magnets for Fusion 544<br />Jean-Luc Duchateau</p> <p>4.6.1 Introduction to Fusion and Superconductivity 544</p> <p>4.6.2 ITER 546</p> <p>4.6.3 Cable in Conduit Conductors (CICC) 552</p> <p>4.6.4 Quench Protection and Quench Detection in Fusion Magnets 557</p> <p>4.6.5 Prospective about Future Fusion Reactors: DEMO 565</p> <p>4.6.6 Conclusion 567</p> <p>References 568</p> <p>4.7 High-Temperature Superconducting (HTS) Magnets 569<br />Swarn Singh Kalsi</p> <p>4.7.1 Introduction 569</p> <p>4.7.2 High-Field Magnets 569</p> <p>4.7.3 Low-Field Magnets 573</p> <p>4.7.4 Outlook 580</p> <p>References 580</p> <p>4.8 Magnetic Levitation and Transportation 583<br />John R. Hull</p> <p>4.8.1 Introduction 583</p> <p>4.8.2 Magnetic Levitation: Principles and Methods 583</p> <p>4.8.3 Maglev Ground Transport 592</p> <p>4.8.4 Clean-Room Application 597</p> <p>4.8.5 Air and Space Launch 598</p> <p>References 599</p> <p>Contents to Volume 2</p> <p>SQUIDart by Claus Grupen (drawing) XX</p> <p>Preface XXIII</p> <p>List of Contributors XXV</p> <p>5 Power Applications 603</p> <p>5.1 Superconducting Cables 603<br />Werner Prusseit, Robert Bach, and Joachim Bock</p> <p>5.2 Practical Design of High-Temperature Superconducting Current Leads 616<br />Jonathan A. Demko</p> <p>5.3 Fault Current Limiters 631<br />Swarn Singh Kalsi</p> <p>5.4 Transformers 645<br />Antonio Morandi</p> <p>5.5 Energy Storage (SMES and Flywheels) 660<br />Antonio Morandi</p> <p>5.6 Rotating Machines 674<br />Swarn Singh Kalsi</p> <p>5.7 SmartGrids: Motivations, Stakes, and Perspectives/Opportunities for Superconductivity 693<br />Nouredine Hadjsaid, Pascal Tixador, Jean-Claude Sabonnadiere, Camille Gandioli, and Marie-Cécile Alvarez-Hérault</p> <p>6 Superconductive Passive Devices 723</p> <p>6.1 Superconducting Microwave Components 723<br />Neeraj Khare</p> <p>6.2 Cavities for Accelerators 734<br />Sergey A. Belomestnykh and Hasan S. Padamsee</p> <p>6.3 Superconducting Pickup Coils 762<br />Audrius Brazdeikis and JarekWosik</p> <p>6.4 Magnetic Shields 780<br />James R. Claycomb</p> <p>7 Applications in Quantum Metrology 807</p> <p>7.1 Quantum Standards for Voltage 807<br />Johannes Kohlmann</p> <p>7.2 Single Cooper Pair Circuits and Quantum Metrology 828<br />Alexander B. Zorin</p> <p>8 Superconducting Radiation and Particle Detectors 843</p> <p>8.1 Radiation and Particle Detectors 843<br />Claus Grupen</p> <p>8.2 Superconducting Hot Electron Bolometers and Transition Edge Sensors 860<br />Giovanni P. Pepe, Roberto Cristiano, and Flavio Gatti</p> <p>8.3 SIS Mixers 881<br />Doris Maier</p> <p>8.4 Superconducting Photon Detectors 902<br />Michael Siegel and Dagmar Henrich</p> <p>8.5 Applications at Terahertz Frequency 930<br />Masayoshi Tonouchi</p> <p>8.6 Detector Readout 940<br />Thomas Ortlepp</p> <p>9 Superconducting Quantum Interference (SQUIDs) 949</p> <p>9.1 Introduction 949<br />Robert L. Fagaly</p> <p>9.2 Types of SQUIDs 952<br />Robert L. Fagaly</p> <p>9.3 Magnetic Field Sensing with SQUID Devices 967</p> <p>9.3.1 SQUIDs in Laboratory Applications 967<br />Robert L. Fagaly</p> <p>9.3.2 SQUIDs in Nondestructive Evaluation 977<br />Hans-Joachim Krause,Michael Mück, and Saburo Tanaka</p> <p>9.3.3 SQUIDs in Biomagnetism 992<br />Hannes Nowak</p> <p>9.3.4 Geophysical Exploration 1020<br />Ronny Stolz</p> <p>9.3.5 Scanning SQUID Microscopy 1042<br />John Kirtley</p> <p>9.4 SQUID Thermometers 1066<br />Thomas Schurig and Jörn Beyer</p> <p>9.5 Radio Frequency Amplifiers Based on DC SQUIDs 1081<br />Michael Mück and Robert McDermott</p> <p>9.6 SQUID-Based Cryogenic Current Comparators 1096<br />Wolfgang Vodel, Rene Geithner, and Paul Seidel</p> <p>10 Superconductor Digital Electronics 1111</p> <p>10.1 Logic Circuits 1111<br />John X. Przybysz and Donald L.Miller</p> <p>10.2 Superconducting Mixed-Signal Circuits 1125<br />Hannes Toepfer</p> <p>10.3 Digital Processing 1135<br />Oleg Mukhanov</p> <p>10.4 Quantum Computing 1163<br />Jürgen Lisenfeld</p> <p>10.5 Advanced Superconducting Circuits and Devices 1176<br />MartinWeides and Hannes Rotzinger</p> <p>10.6 Digital SQUIDs 1194<br />Pascal Febvre</p> <p>11 Other Applications 1207</p> <p>11.1 Josephson Arrays as Radiation Sources (incl. Josephson Laser) 1207<br />HuabingWang</p> <p>11.2 Tunable Microwave Devices 1226<br />Neeraj Khare</p> <p>12 Summary and Outlook 1233<br />Herbert C. Freyhardt</p> <p>Index 1243</p>
Edited by <b>Paul Seidel</b>, Professor of Applied Physics at the University of Jena and head of the department of Low Temperature Physics. His main fields of research are thin film deposition and growth, patterning, multilayers, tunneling, Josephson effects, and cryoelectronics. His strong engagement with the community is documented by serving as scientific board member of many international conferences and symposia. Paul Seidel has published more than 200 articles in international journals and contributed to more than 80 books. He is teaching both experimental and theoretical physics and offers special lectures in solid state and low temperature physics.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €