Details

Applied Regression Modeling


Applied Regression Modeling

A Business Approach
1. Aufl.

von: Iain Pardoe

94,99 €

Verlag: Wiley-Interscience
Format: PDF
Veröffentl.: 20.01.2012
ISBN/EAN: 9780470052655
Sprache: englisch
Anzahl Seiten: 320

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculus Regression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression analysis to make informed decisions. Applied Regression Modeling: A Business Approach offers a practical, workable introduction to regression analysis for upper-level undergraduate business students, MBA students, and business managers, including auditors, financial analysts, retailers, economists, production managers, and professionals in manufacturing firms. The book's overall approach is strongly based on an abundant use of illustrations and graphics and uses major statistical software packages, including SPSS(r), Minitab(r), SAS(r), and R/S-PLUS(r). Detailed instructions for use of these packages, as well as for Microsoft Office Excel(r), are provided, although Excel does not have a built-in capability to carry out all the techniques discussed. Applied Regression Modeling: A Business Approach offers special user features, including: * A companion Web site with all the datasets used in the book, classroom presentation slides for instructors, additional problems and ideas for organizing class time around the material in the book, and supplementary instructions for popular statistical software packages. An Instructor's Solutions Manual is also available. * A generous selection of problems-many requiring computer work-in each chapter with fullyworked-out solutions * Two real-life dataset applications used repeatedly in examples throughout the book to familiarize the reader with these applications and the techniques they illustrate * A chapter containing two extended case studies to show the direct applicability of the material * A chapter on modeling extensions illustrating more advanced regression techniques through the use of real-life examples and covering topics not normally seen in a textbook of this nature * More than 100 figures to aid understanding of the material Applied Regression Modeling: A Business Approach fully prepares professionals and students to apply statistical methods in their decision-making, using primarily regression analysis and modeling. To help readers understand, analyze, and interpret business data and make informed decisions in uncertain settings, many of the examples and problems use real-life data with a business focus, such as production costs, sales figures, stock prices, economic indicators, and salaries. A calculus background is not required to understand and apply the methods in the book.
Preface. Acknowledgments. Introduction. 1. Foundations. 2. Simple linear regression. 3. Multiple liner regression. 4. Regression model building I. 5. Regression model building II. 6. Case studies. 7. Extensions. Appendix A: Computer software help. Appendix B: Critical Values for t-distributions. Appendix C: Notation and formulas. Appendix D: Mathematics refresher. Appendix E: Brief answers to selected problems. References. Glossary. Index.
IAIN PARDOE, PHD, is Assistant Professor in the Department of Decision Sciences in the Charles H. Lundquist College of Business at the University of Oregon. His areas of interest include Bayesian analysis, multilevel modeling, graphical methods, diagnostics and validation, choice modeling, and statistics education. He has published research in many leading statistical journals and has received multiple university-wide and association-related awards and honors.
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculus Regression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression analysis to make informed decisions. Applied Regression Modeling: A Business Approach offers a practical, workable introduction to regression analysis for upper-level undergraduate business students, MBA students, and business managers, including auditors, financial analysts, retailers, economists, production managers, and professionals in manufacturing firms. The book's overall approach is strongly based on an abundant use of illustrations and graphics and uses major statistical software packages, including SPSS®, Minitab®, SAS®, and R/S-PLUS®. Detailed instructions for use of these packages, as well as for Microsoft Office Excel®, are provided, although Excel does not have a built-in capability to carry out all the techniques discussed. Applied Regression Modeling: A Business Approach offers special user features, including: A companion Web site with all the datasets used in the book, classroom presentation slides for instructors, additional problems and ideas for organizing class time around the material in the book, and supplementary instructions for popular statistical software packages. An Instructor's Solutions Manual is also available. A generous selection of problems—many requiring computer work—in each chapter with fullyworked-out solutions Two real-life dataset applications used repeatedly in examples throughout the book to familiarize the reader with these applications and the techniques they illustrate A chapter containing two extended case studies to show the direct applicability of the material A chapter on modeling extensions illustrating more advanced regression techniques through the use of real-life examples and covering topics not normally seen in a textbook of this nature More than 100 figures to aid understanding of the material Applied Regression Modeling: A Business Approach fully prepares professionals and students to apply statistical methods in their decision-making, using primarily regression analysis and modeling. To help readers understand, analyze, and interpret business data and make informed decisions in uncertain settings, many of the examples and problems use real-life data with a business focus, such as production costs, sales figures, stock prices, economic indicators, and salaries. A calculus background is not required to understand and apply the methods in the book.

Diese Produkte könnten Sie auch interessieren:

Mathematical Statistics with Resampling and R
Mathematical Statistics with Resampling and R
von: Laura M. Chihara, Tim C. Hesterberg
EPUB ebook
125,99 €
Mathematical Statistics with Resampling and R
Mathematical Statistics with Resampling and R
von: Laura M. Chihara, Tim C. Hesterberg
PDF ebook
125,99 €
Nonlinear Time Series Analysis
Nonlinear Time Series Analysis
von: Ruey S. Tsay, Rong Chen
EPUB ebook
120,99 €