Details

Applied Organic Chemistry


Applied Organic Chemistry

Reaction Mechanisms and Experimental Procedures in Medicinal Chemistry
1. Aufl.

von: Surya K. De

313,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 07.12.2020
ISBN/EAN: 9783527828173
Sprache: englisch
Anzahl Seiten: 856

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An indispensable guide for all synthetic chemists who want to learn about the most relevant reactions and reagents employed to synthesize important heterocycles and drugs!</b></p> <p>The synthesis of natural products, bioactive compounds, pharmaceuticals, and drugs is of fundamental interest in modern organic chemistry. New reagents and reaction methods towards these molecules are being constantly developed. By understanding the mechanisms involved and scope and limitations of each reaction applied, organic chemists can further improve existing reaction protocols and develop novel efficient synthetic routes towards frequently used drugs, such as Aspirin or Penicillin.</p> <p><i>Applied Organic Chemistry</i> provides a summary of important (name) reactions and reagents applied in modern organic chemistry and drug synthesis. It covers rearrangement, condensation, olefination, metathesis, aromatic electrophilic substitutions, Pd-catalyzed C-C bond forming reactions, multi-component reactions, as well as oxidations and reductions. Each chapter is clearly structured, providing valuable information on reaction details, step-by-step mechanism, experimental procedures, applications, and (patent) references. By providing mechanistic information and representative experimental procedures, this book is an indispensable guide for researchers and professionals in organic chemistry, natural product synthesis, pharmaceutical, and medicinal chemistry, as well as post-graduates preparing themselves for a job in the pharmaceutical industry.</p> <ul> <li>Hot Topic: Reviews important classes of organic reactions (incl. name reactions) and reagents in medicinal chemistry.</li> <li>Useful: Provides information on reaction details, common reagents, and functional group transformations used to synthesize natural products, bioactive compounds, drugs, and pharmaceuticals, e.g. Aspirin, Penicillin.</li> <li>Unique: For every reaction the mechanism is explained step by step, and representative experimental procedures are given, unlike most books in this area.</li> <li>User-friendly: Chapters are clearly structured making it easy for the reader to compare different reactions.</li> </ul> <p><i>Applied Organic Chemistry</i> is an indispensable guide for researchers and professionals in organic chemistry, natural product synthesis, pharmaceutical, and medicinal chemistry, as well as post-graduates preparing themselves for a job in the pharmaceutical industry.</p>
<p><b>Volume 1</b></p> <p>Preface xxiii</p> <p>About the Author xxv</p> <p>About the Book xxvii</p> <p>Acknowledgments xxix</p> <p>List of Abbreviations xxxi</p> <p><b>1 Rearrangement Reactions </b><b>1</b></p> <p>Baeyer–Villiger Oxidation or Rearrangement 1</p> <p>Mechanism 2</p> <p>Application 2</p> <p>Experimental Procedure (from patent US 5142093A) 3</p> <p>Dakin Oxidation (Reaction) 3</p> <p>Mechanism 4</p> <p>Application 4</p> <p>Experimental Procedure (from patent EP0591799B) 4</p> <p>Bamberger Rearrangement 5</p> <p>Mechanism 5</p> <p>Experimental Procedure (from patent CN102001954B) 6</p> <p>Beckmann Rearrangement 6</p> <p>Mechanism 6</p> <p>Application 7</p> <p>Experimental Procedure (general) 7</p> <p>Preparation of Caprolactam (from patent US 3437655A) 7</p> <p>Benzilic Acid Rearrangement 8</p> <p>Mechanism 9</p> <p>Application 9</p> <p>Experimental Procedure (from patent US20100249451B) 9</p> <p>Baker–Venkataraman Rearrangement 9</p> <p>Mechanism 10</p> <p>Application 10</p> <p>Experimental Procedure (from patent CN105985306B) 10</p> <p>Claisen Rearrangement 11</p> <p>Mechanism 11</p> <p>Application 12</p> <p>Experimental Procedure (from patent WO2016004632A1) 13</p> <p>Eschenmoser–Claisen Rearrangement 13</p> <p>Mechanism 13</p> <p>Ireland–Claisen Rearrangement 14</p> <p>Mechanism 14</p> <p>Johnson–Claisen Rearrangement 15</p> <p>Mechanism 15</p> <p>Overman Rearrangement 15</p> <p>Mechanism 16</p> <p>Cope Rearrangement 16</p> <p>Mechanism 17</p> <p>Application 17</p> <p>Experimental Procedure (from patent US 4421934A) 17</p> <p>Curtius Rearrangement 17</p> <p>Mechanism 18</p> <p>Application 18</p> <p>Experimental Procedure (from patent EP2787002A1) 19</p> <p>Demjanov Rearrangement 19</p> <p>Mechanism 20</p> <p>Application 21</p> <p>Experimental Procedure (from Reference [14], copyright 2008, American Chemical Society) 21</p> <p>Tiffeneau–Demjanov Rearrangement 22</p> <p>Mechanism 22</p> <p>Application 23</p> <p>Experimental Procedure (from Reference [10], copyright,The Royal Society of Chemistry) 23</p> <p>Fries Rearrangement 23</p> <p>Mechanism 24</p> <p>Application 24</p> <p>Experimental Procedure (from patent US9440940B2) 25</p> <p>Favorskii Rearrangement 25</p> <p>Mechanism 25</p> <p>Application 26</p> <p>Experimental Procedure (from patent EP3248959A2) 26</p> <p>Fischer–Hepp Rearrangement 26</p> <p>Mechanism 27</p> <p>Experimental Procedure (general) 27</p> <p>Hofmann Rearrangement (Hofmann degradation of amide) 28</p> <p>Mechanism 28</p> <p>Application 29</p> <p>Experimental Procedure (from patent CN105153023B) 29</p> <p>Hofmann–Martius Rearrangement 29</p> <p>Mechanism 30</p> <p>Experimental Procedure (from patent DD295338A5) 30</p> <p>Lossen Rearrangement 31</p> <p>Mechanism 31</p> <p>Application 32</p> <p>Experimental Procedure (from patent EP2615082B1) 32</p> <p>Orton Rearrangement 32</p> <p>Mechanism 33</p> <p>Pinacol–Pinacolone Rearrangement 33</p> <p>Mechanism 34</p> <p>Application 34</p> <p>Experimental Procedure (general) 34</p> <p>Rupe Rearrangement/Meyer–Schuster Rearrangement 34</p> <p>Rupe Rearrangement 35</p> <p>Meyer–Schuster Rearrangement 35</p> <p>Mechanism 35</p> <p>Application 36</p> <p>Experimental Procedure (from patent US4088681A) 36</p> <p>Schmidt Rearrangement or Schmidt Reaction 36</p> <p>Mechanism 37</p> <p>Application 37</p> <p>Experimental Procedure (from patent WO2009026444A1) 38</p> <p>Wagner–Meerwein Rearrangement 38</p> <p>Mechanism 38</p> <p>Application 39</p> <p>Wolff Rearrangement 39</p> <p>Mechanism 39</p> <p>Alternatively 40</p> <p>Application 40</p> <p>Experimental Procedure (from patent US9175041B2) 9175041B2 40</p> <p>Arndt–Eistert Homologation or Synthesis 41</p> <p>Mechanism 41</p> <p>Application 42</p> <p>Experimental Procedure (from patent US9399645B2) 42</p> <p>Step 1 42</p> <p>Step 2 42</p> <p>Zinin Rearrangement or Benzidine and Semidine Rearrangements 42</p> <p>Mechanism 43</p> <p>Experimental Procedure (from patent US20090069602A1) 44</p> <p>References 45</p> <p>Baeyer-Villiger Oxidation or Rearrangement 45</p> <p>Dakin Oxidation or Reaction 47</p> <p>Bamberger Rearrangement 48</p> <p>Beckmann Rearrangement 48</p> <p>Benzilic Acid Rearrangement 50</p> <p>Baker–Venkataraman Rearrangement 51</p> <p>Claisen Rearrangement/Eschenmoser–Claisen Rearrangement/Ireland–Claisen Rearrangement/Johnson–Claisen Rearrangement/Overman Rearrangement 52</p> <p>Cope Rearrangement 53</p> <p>Curtius Rearrangement 54</p> <p>Demjanov Rearrangement 56</p> <p>Tiffeneau–Demjanov Rearrangement 56</p> <p>Fries Rearrangement 56</p> <p>Favorskii Rearrangement 58</p> <p>Fischer–Hepp Rearrangement 58</p> <p>Hofmann Rearrangement (Hofmann Degradation of Amide) 59</p> <p>Hofmann–Martius Rearrangement 60</p> <p>Lossen Rearrangement 60</p> <p>Orton Rearrangement 61</p> <p>Pinacol–Pinacolone Rearrangement 62</p> <p>Rupe Rearrangement/Meyer–Schuster Rearrangement 62</p> <p>Schmidt Rearrangement or Schmidt Reaction 63</p> <p>Wagner–Meerwein Rearrangement 64</p> <p>Wolff Rearrangement 65</p> <p>Arndt–Eistert Homologation or Synthesis 66</p> <p>Zinin Rearrangement or Benzidine and Semidine Rearrangements 67</p> <p><b>2 Condensation Reaction </b><b>69</b></p> <p>Aldol Condensation Reaction 69</p> <p>Application 70</p> <p>Experimental Procedure (general) 71</p> <p>Enantioselective Aldol Reaction (from patent US 6919456B2) 71</p> <p>Mukaiyama Aldol Reaction 72</p> <p>Mechanism 72</p> <p>Application 72</p> <p>Experimental Procedure (from patent DE102013011081A1) 73</p> <p>Evans Aldol Reaction 73</p> <p>Mechanism 74</p> <p>Application 74</p> <p>Experimental Procedure (from patent WO2013151161A1) 74</p> <p>Henry Reaction 75</p> <p>Mechanism 75</p> <p>Application 76</p> <p>Experimental Procedure (from patent US 6919456B2) 76</p> <p>Preparation of Chiral Catalyst 76</p> <p>Nitro-Aldol Reaction 76</p> <p>Benzoin Condensation 76</p> <p>Mechanism 77</p> <p>Application 77</p> <p>Experimental Procedure (from patent DE3019500C2) 78</p> <p>Claisen Condensation 78</p> <p>Mechanism 78</p> <p>Application 79</p> <p>Experimental Procedure (from patent US9884836B2) 79</p> <p>Darzens Glycidic Ester Condensation 80</p> <p>Mechanism 80</p> <p>Application 81</p> <p>Experimental Procedure (from patent JP2009512630A) 81</p> <p>Dieckmann Condensation 81</p> <p>Mechanism 82</p> <p>Application 82</p> <p>Experimental Procedure (from patent US 7132564 B2) 82</p> <p>Knoevenagel Condensation 83</p> <p>Mechanism 83</p> <p>Application 84</p> <p>Lumefantrine 84</p> <p>Experimental Procedure (from patent WO2010136360A2) 84</p> <p>Pechmann Condensation (synthesis of coumarin) (also called von Pechmann condensation) 85</p> <p>Mechanism 85</p> <p>Application 86</p> <p>Experimental Procedure (from patent US7202272B2) 86</p> <p>Perkin Condensation or Reaction 86</p> <p>Mechanism 87</p> <p>Application 88</p> <p>Experimental Procedure (from patent US4933001A) 88</p> <p>Stobbe Condensation 88</p> <p>Mechanism 89</p> <p>Application 89</p> <p>Experimental Procedure (from patent US20160137682A1) 90</p> <p>References 90</p> <p>Aldol Condensation Reaction 90</p> <p>Mukaiyama Aldol Reaction 93</p> <p>Evans Aldol Reaction 96</p> <p>Henry Reaction 98</p> <p>Benzoin Condensation 99</p> <p>Claisen Condensation 101</p> <p>Darzens Glycidic Ester Condensation 102</p> <p>Dieckmann Condensation 103</p> <p>Knoevenagel Condensation 105</p> <p>Pechmann Condensation 106</p> <p>Perkin Condensation or Reaction 107</p> <p>Stobbe Condensation 108</p> <p><b>3 Olefination, Metathesis, and Epoxidation Reactions </b><b>111</b></p> <p>Olefination 111</p> <p>Corey–Winter Olefin Synthesis 111</p> <p>Mechanism 112</p> <p>Application 112</p> <p>Experimental Procedure (from patent US5807866A) 112</p> <p>Horner–Wadsworth–Emmons Reaction 113</p> <p>Mechanism 113</p> <p>Application 113</p> <p>Experimental Procedure (from patent JPWO2015046403A1) 114</p> <p>Julia–Lythgoe Olefination 114</p> <p>Mechanism 115</p> <p>Modified Julia Olefination 115</p> <p>Mechanism 115</p> <p>Application 116</p> <p>Experimental Procedure (from patent CN103313983A) 116</p> <p>Julia–Kocienski Olefination 117</p> <p>Application 117</p> <p>Experimental Procedure (from patent WO2016125086A1) 118</p> <p>Kauffmann Olefination 118</p> <p>Mechanism 119</p> <p>Application 119</p> <p>Experimental Procedure (from patent WO2014183211A1) 119</p> <p>Peterson Olefination 119</p> <p>Mechanism 120</p> <p>Application 121</p> <p>Experimental Procedure (from patent WO2017149091A1) 121</p> <p>Petasis Olefination 122</p> <p>Mechanism 122</p> <p>Application 123</p> <p>Experimental Procedure (from patent US5087790A) 123</p> <p>Tebbe Olefination 123</p> <p>Mechanism 123</p> <p>Application 124</p> <p>Experimental Procedure (from patent US8809558B1) 124</p> <p>Wittig Reaction or Olefination 124</p> <p>Mechanism 125</p> <p>Application 126</p> <p>Experimental Procedure (from patent WO2006045010A2) 126</p> <p>Metathesis 127</p> <p>Olefin Metathesis 127</p> <p>Ring-Closing Metathesis 127</p> <p>Mechanism 128</p> <p>Experimental Procedure (from patent US20022018351A1) 128</p> <p>Cross Metathesis 128</p> <p>Ring-Opening Metathesis 128</p> <p>Ring-Opening Metathesis Polymerization (ROMP) 129</p> <p>Asymmetric Epoxidation 129</p> <p>Sharpless Asymmetric Epoxidation 129</p> <p>Mechanism 129</p> <p>Application 130</p> <p>Experimental Procedure (from patent DE102014107132A1) (For more experimental procedures see Chapter 15) 130</p> <p>Jacobsen–Katsuki Asymmetric Epoxidation 130</p> <p>Mechanism 131</p> <p>Application 131</p> <p>Experimental Procedure (from patent US7501535B2) 132</p> <p>Shi Asymmetric Epoxidation 132</p> <p>Mechanism 133</p> <p>Application 133</p> <p>Experimental Procedure (from patent EP1770095A1) 133</p> <p>Sharpless Asymmetric Dihydroxylation 134</p> <p>Mechanism 135</p> <p>Application 135</p> <p>Experimental Procedure (from patent US7472570B1) 136</p> <p>Sharpless Asymmetric Aminohydroxylation 136</p> <p>Mechanism 137</p> <p>Application 137</p> <p>Experimental Procedure (from patent US8987504B2) 137</p> <p>Woodward <i>cis</i>-Dihydroxylation 138</p> <p>Mechanism 138</p> <p>Application 139</p> <p>Experimental Procedure (from patent WO1997013780A1) 139</p> <p>Prévost <i>trans</i>-Dihydroxylation Reaction 140</p> <p>Mechanism 140</p> <p>Application 141</p> <p>References 141</p> <p>Corey–Winter Olefin Synthesis 141</p> <p>Horner–Wadsworth–Emmons Reaction 141</p> <p>Julia–Lythgoe Olefination 143</p> <p>Julia–Kocienski Olefination 144</p> <p>Kauffmann Olefination 146</p> <p>Peterson Olefination 146</p> <p>Petasis Olefination 148</p> <p>Tebbe Olefination 148</p> <p>Wittig Reaction or Olefination 149</p> <p>Metathesis 150</p> <p>Sharpless Asymmetric Epoxidation 150</p> <p>Jacobsen–Katsuki Asymmetric Epoxidation 152</p> <p>Shi Asymmetric Epoxidation 153</p> <p>Sharpless Asymmetric Dihydroxylation 155</p> <p>Sharpless Asymmetric Aminohydroxylation 156</p> <p>Woodward <i>cis</i>-Dihydroxylation 158</p> <p>Prévost <i>trans</i>-Dihydroxylation Reaction 158</p> <p><b>4 Miscellaneous Reactions </b><b>161</b></p> <p>Alder-Ene Reaction 161</p> <p>Mechanism 161</p> <p>Application 162</p> <p>Experimental Procedure (from patent WO2015149068A1) 162</p> <p>Appel Reaction 162</p> <p>Mechanism 163</p> <p>Application 163</p> <p>Experimental Procedure (from patent WO2015134973A1) 163</p> <p>Barton Decarboxylation 164</p> <p>Mechanism 164</p> <p>Application 165</p> <p>Experimental Procedure (from patent US6080563A) 165</p> <p>Barton Nitrite Photolysis (Barton nitrite ester reaction) 166</p> <p>Mechanism 166</p> <p>Application 167</p> <p>Experimental Procedure (from patent US3214427A) 167</p> <p>Brown Hydroboration 167</p> <p>Mechanism 168</p> <p>Application 168</p> <p>Experimental Procedure (from patent WO1995013284A1) 168</p> <p>Bucherer Reaction 169</p> <p>Mechanism 169</p> <p>Application 170</p> <p>Experimental Procedure (from Reference [7], copyright 2020, American Chemical Society) 170</p> <p>Chichibabin Reaction 170</p> <p>Mechanism 171</p> <p>Application 171</p> <p>Experimental Procedure Amination of 3-Picoline (from patent EP0098684B1) 171</p> <p>Chugaev Elimination Reaction 172</p> <p>Mechanism 173</p> <p>Application 173</p> <p>Experimental Procedure (from Reference [10], copyright 2008, American Chemical Society) 173</p> <p>Cannizzaro Reaction 173</p> <p>Mechanism 174</p> <p>Application 175</p> <p>Experimental Procedure (general) 175</p> <p>Cope Elimination Reaction 175</p> <p>Mechanism 175</p> <p>Application 176</p> <p>Experimental Procedure (from Reference [3], copyright, Organic Syntheses) 176</p> <p>Corey–Fuchs Reaction 176</p> <p>Mechanism 177</p> <p>Application 177</p> <p>Experimental Procedure (from patent JP2015500210A) 178</p> <p>Formation of Compound B 178</p> <p>Formation of Compound C 178</p> <p>Corey–Nicolaou Macrolactonization 178</p> <p>Mechanism 179</p> <p>Application 179</p> <p>Experimental Procedure (patent US20060004107A1) 179</p> <p>Danheiser Annulation 180</p> <p>Mechanism 181</p> <p>Danheiser Benzannulation 181</p> <p>Mechanism 182</p> <p>Application 182</p> <p>Experimental Procedure (from Reference [22], Copyright 2013, American Chemical Society) 182</p> <p>Diels–Alder Reaction 183</p> <p>Normal Electron Demand Diels–Alder Reaction 183</p> <p>Inverse electron Demand Diels–Alder Reaction 183</p> <p>Hetero–Diels–Alder Reaction 183</p> <p>Mechanism 184</p> <p>Application 184</p> <p>Experimental Procedure (from patent CA 2361682A1) 184</p> <p>Dutt–Wormall Reaction 185</p> <p>Mechanism 185</p> <p>Étard Reaction 185</p> <p>Mechanism 186</p> <p>Application 186</p> <p>Experimental Procedure (US8957255B2) 186</p> <p>Finkelstein Reaction 187</p> <p>Mechanism 187</p> <p>Application 188</p> <p>Experimental Procedure (from patent WO2019134765A1) 188</p> <p>Fischer–Speier Esterification 188</p> <p>Mechanism 188</p> <p>Experimental Procedure (general) 189</p> <p>Mukaiyama Esterification 189</p> <p>Mechanism 190</p> <p>Application 190</p> <p>Experimental Procedure (from patent US4206310A) 190</p> <p>Yamaguchi Esterification 191</p> <p>Mechanism 191</p> <p>Application 192</p> <p>Experimental Procedure (from patent WO 2019033219A1) 192</p> <p>Grignard Reaction 193</p> <p>Mechanism 193</p> <p>Application 194</p> <p>Experimental Procedure (general) 194</p> <p>Experimental Procedure (from patent WO1994028886A1) 195</p> <p>Gabriel Synthesis 195</p> <p>Mechanism 196</p> <p>Application 196</p> <p>Experimental Procedure (from patent US9540358B2) 197</p> <p>Hell–Volhard–Zelinsky Reaction 197</p> <p>Mechanism 198</p> <p>Application 198</p> <p>Experimental Procedure (from patent WO199101199A1) 199</p> <p>Hofmann Elimination or Exhaustive Methylation 199</p> <p>Mechanism 199</p> <p>Application 200</p> <p>Hosomi–Sakurai Reaction 200</p> <p>Mechanism 201</p> <p>Application 201</p> <p>Experimental Procedure (from patent WO2019093776A1) 201</p> <p>Huisgen Cycloaddition Reaction 202</p> <p>Click Chemistry 202</p> <p>Mechanism 203</p> <p>Experimental Procedure (from patent WO2008124703A2) 203</p> <p>Hunsdiecker Reaction 203</p> <p>Mechanism 204</p> <p>Application 204</p> <p>Experimental Procedure (from patent WO2017060906A1) 204</p> <p>Keck Asymmetric Allylation 204</p> <p>Mechanism 205</p> <p>Application 205</p> <p>Experimental Procedure (from patent US6603023B2) 205</p> <p>Thionation Reaction (Lawesson’s Reagent) 206</p> <p>Mechanism 207</p> <p>Application 207</p> <p>Experimental Procedure (general) 207</p> <p>Michael Addition or Reaction 208</p> <p>Mechanism 208</p> <p>Application 209</p> <p>Experimental Procedure (Aza-Michael Addition) (from patent CN102348693B) 209</p> <p>Mitsunobu Reaction 209</p> <p>Mechanism 210</p> <p>Application 211</p> <p>Experimental Procedure (from patent US20170145017A1) 211</p> <p>Morita–Baylis–Hillman Reaction (Baylis–Hillman Reaction) 211</p> <p>Mechanism 212</p> <p>Application 213</p> <p>Experimental Procedure (from patent US20060094739A1) 213</p> <p>Nozaki–Hiyama–Kishi Reaction 213</p> <p>Mechanism 214</p> <p>Application 214</p> <p>Experimental Procedure (from patent US20190337964A1) 214</p> <p>Paterno–Büchi Reaction 215</p> <p>Mechanism 215</p> <p>Application 215</p> <p>Experimental Procedure (from Reference [29], copyright 2019, American Chemical Society) 216</p> <p>Pauson–Khand Reaction 216</p> <p>Mechanism 217</p> <p>Application 217</p> <p>Experimental Procedure (from patent WO2003080552A2) 217</p> <p>Reformatsky Reaction 218</p> <p>Mechanism 218</p> <p>Application 219</p> <p>Experimental Procedure (from patent US6924386B2) 219</p> <p>Ritter Reaction 220</p> <p>Mechanism 220</p> <p>Application 221</p> <p>Experimental Procedure (from patent WO1996036629A1) 221</p> <p>Robinson Annulation 221</p> <p>Mechanism 222</p> <p>Application 222</p> <p>Experimental Procedure (from patent WO2018226102A1) 223</p> <p>Sandmeyer Reaction 223</p> <p>Mechanism 224</p> <p>Application 224</p> <p>Experimental Procedure (from patent WO20100234652A1) 224</p> <p>Schotten–Baumann Reaction 225</p> <p>Mechanism 225</p> <p>Amide Formation 225</p> <p>Ester Formation 225</p> <p>Application 226</p> <p>Simmons–Smith Reaction 226</p> <p>Mechanism 227</p> <p>Application 227</p> <p>Experimental Procedure (from patent US7019172B2) 228</p> <p>Stork Enamine Synthesis 228</p> <p>Mechanism 229</p> <p>Application 230</p> <p>Experimental Procedure (from patent US2773099A) 230</p> <p>Tishchenko Reaction 230</p> <p>Mechanism 231</p> <p>Application 231</p> <p>Experimental Procedure (from Reference [38], copyright 2012, American Chemical Society) 231</p> <p>Ullmann Coupling or Biaryl Synthesis 232</p> <p>Mechanism 232</p> <p>Application 233</p> <p>Ullmann Biaryl Ether and Biaryl Amine Synthesis/Ullman Condensation 233</p> <p>Ullmann Biaryl Ether Synthesis 233</p> <p>Goldberg Reaction (biaryl amines) 233</p> <p>Ullmann-Type Reaction/Ullmann Condensation 234</p> <p>Mechanism 234</p> <p>Application 234</p> <p>Experimental Procedure (from Patent WO1999018057A1) 234</p> <p>Weinreb Ketone Synthesis 235</p> <p>Mechanism 236</p> <p>Application 237</p> <p>Experimental Procedure (from patent US9399645B2) 237</p> <p>Step 1 237</p> <p>Step 2 237</p> <p>Williamson Ether Synthesis 238</p> <p>Mechanism 238</p> <p>Application 238</p> <p>Experimental Procedure (from patent WO1994028886A1) 239</p> <p>Wurtz Coupling or Reaction 239</p> <p>Mechanism 239</p> <p>Application 240</p> <p>Wurtz–Fittig Reaction 240</p> <p>Mechanism 240</p> <p>References 240</p> <p>Alder-Ene Reaction 240</p> <p>Appel Reaction 242</p> <p>Barton Decarboxylation 242</p> <p>Barton Nitrite Photolysis (Barton Nitrite Ester Reaction) 244</p> <p>Brown Hydroboration 244</p> <p>Bucherer Reaction 246</p> <p>Chichibabin Reaction 246</p> <p>Chugaev Elimination Reaction 247</p> <p>Cannizzaro Reaction 247</p> <p>Cope Elimination Reaction 249</p> <p>Corey–Fuchs Reaction 250</p> <p>Corey–Nicolaou Macrolactonization 250</p> <p>Danheiser Annulation/Danheiser Benzannulation 251</p> <p>Diels–Alder Reaction 252</p> <p>Dutt–Wormall Reaction 253</p> <p>Étard Reaction 253</p> <p>Finkelstein Reaction 254</p> <p>Fischer–Speier Esterification 255</p> <p>Mukaiyama Esterification 255</p> <p>Yamaguchi Esterification 256</p> <p>Grignard Reaction 257</p> <p>Gabriel Synthesis 258</p> <p>Hell–Volhard–Zelinsky Reaction 259</p> <p>Hofmann Elimination or Exhaustive Methylation 259</p> <p>Hosomi–Sakurai Reaction 260</p> <p>Huisgen Cycloaddition Reaction/Click Chemistry 262</p> <p>Hunsdiecker Reaction 262</p> <p>Keck Asymmetric Allylation 263</p> <p>Thionation Reaction (Lawesson’s Reagent) 264</p> <p>Michael Addition or Reaction 265</p> <p>Mitsunobu Reaction 266</p> <p>Morita–Baylis–Hillman Reaction (Baylis–Hillman Reaction) 268</p> <p>Nozaki–Hiyama–Kishi Reaction 270</p> <p>Paterno–Büchi Reaction 271</p> <p>Pauson–Khand Reaction 272</p> <p>Reformatsky Reaction 274</p> <p>Ritter Reaction 276</p> <p>Robinson Annulation 277</p> <p>Sandmeyer Reaction 279</p> <p>Schotten–Baumann Reaction 280</p> <p>Simmons–Smith Reaction 281</p> <p>Stork Enamine Synthesis 282</p> <p>Tishchenko Reaction 283</p> <p>Ullmann Coupling or Biaryl Synthesis 285</p> <p>Ullmann Biaryl Ether and Biaryl Amine Synthesis/Ullman Condensation 286</p> <p>Weinreb Ketone Synthesis 287</p> <p>Williamson Ether Synthesis 289</p> <p>Wurtz Coupling or Reaction 290</p> <p>Wurtz–Fittig Reaction 290</p> <p><b>5 Aromatic Electrophilic Substitution Reactions </b><b>293</b></p> <p>Bardhan–Sengupta Synthesis 293</p> <p>Mechanism 293</p> <p>Bogert–Cook Reaction or Synthesis of Phenanthrene 294</p> <p>Mechanism 294</p> <p>Friedel–Crafts Reaction 295</p> <p>Friedel–Crafts acylation 295</p> <p>Friedel–Crafts alkylation 295</p> <p>Mechanism 296</p> <p>Mechanism for Friedel–Crafts Alkylation 297</p> <p>Application 297</p> <p>Experimental Procedure (from patent US4814508A) 298</p> <p>Gattermann Aldehyde Synthesis 298</p> <p>Mechanism 299</p> <p>Experimental Procedure (from patent US2067237A) 299</p> <p>Gattermann–Koch Aldehyde Synthesis 300</p> <p>Mechanism 300</p> <p>Experimental Procedure (from patent WO2002020447A1) 301</p> <p>Haworth Reaction 301</p> <p>Mechanism 303</p> <p>Experimental Procedure (from patent CN106977377A) 304</p> <p>Houben–Hoesch Reaction 304</p> <p>Mechanism 305</p> <p>Application 306</p> <p>Experimental Procedure (from patent EP0431871A2) 306</p> <p>Kolbe–Schmitt Reaction 306</p> <p>Mechanism 307</p> <p>Application 307</p> <p>Experimental Procedure (from patent US7582787B2) 307</p> <p>Reimer–Tiemann Reaction 308</p> <p>Mechanism 308</p> <p>Application 310</p> <p>Experimental Procedure (from patent US4324922A) 310</p> <p>Vilsmeier–Haack Reaction 311</p> <p>Mechanism 312</p> <p>Application 313</p> <p>Experimental Procedure (from patent US5599966A) 313</p> <p>References 313</p> <p>Bardhan–Sengupta Synthesis 313</p> <p>Bogert–Cook Reaction or Synthesis of Phenanthrene 314</p> <p>Friedel–Crafts Reaction 314</p> <p>Gattermann Aldehyde Synthesis 317</p> <p>Gattermann–Koch Aldehyde Synthesis 317</p> <p>Haworth Reaction 318</p> <p>Houben–Hoesch Reaction 318</p> <p>Kolbe–Schmitt Reaction 319</p> <p>Reimer–Tiemann Reaction 319</p> <p>Vilsmeier–Haack Reaction 320</p> <p><b>6 Pd-Catalyzed C—C Bond-Forming Reactions </b><b>323</b></p> <p>Suzuki Coupling Reaction 323</p> <p>Mechanism 324</p> <p>Application 325</p> <p>Experimental Procedure (General) 325</p> <p>Heck Coupling Reaction (Mizoroki–Heck Reaction) 325</p> <p>Mechanism 326</p> <p>Application 327</p> <p>Experimental Procedure (from patent WO2008138938A2) 327</p> <p>Negishi Coupling Reaction 328</p> <p>Mechanism 328</p> <p>Application 329</p> <p>Experimental Procedure (from patent WO2010026121) 329</p> <p>Stille Coupling Reaction (Migita–Kosugi–Stille Coupling Reaction) 330</p> <p>Mechanism 330</p> <p>Application 330</p> <p>Experimental Procedure (from patent WO2008012440A2) 331</p> <p>Sonogashira Coupling Reaction 331</p> <p>Mechanism 332</p> <p>Application 332</p> <p>Experimental Procedure (General) 333</p> <p>Kumada Cross-Coupling 333</p> <p>Mechanism 334</p> <p>Application 335</p> <p>Experimental Procedure (from patent WO2015144799) 335</p> <p>Hiyama Coupling Reaction 335</p> <p>Mechanism 336</p> <p>Application 336</p> <p>Experimental Procedure (from patent US20022018351A1) 336</p> <p>Liebeskind–Srogl Coupling Reaction 337</p> <p>Mechanism 337</p> <p>Application 338</p> <p>Experimental Procedure (from patent WO2008030840A2) 338</p> <p>Fukuyama Coupling Reaction 338</p> <p>Mechanism 339</p> <p>Application 339</p> <p>Experimental Procedure (from patent US20150336915A1) 339</p> <p>Buchwald–Hartwig Coupling Reaction (Buchwald–Hartwig Amination) 340</p> <p>Mechanism 340</p> <p>Buchwald–Hartwig Amination 340</p> <p>Application 341</p> <p>Experimental Procedure (from patent US7442800B2) 341</p> <p>Tsuji–Trost Allylation 341</p> <p>Mechanism 342</p> <p>Application 343</p> <p>Experimental Procedure (from patent US20190270700A1) 343</p> <p>References 343</p> <p>Suzuki Coupling Reaction 343</p> <p>Heck Coupling Reaction (Mizoroki–Heck Reaction) 345</p> <p>Negishi Coupling Reaction 347</p> <p>Stille Coupling Reaction (Migita–Kosugi–Stille Coupling Reaction) 349</p> <p>Sonogashira Coupling Reaction 351</p> <p>Kumada Cross-Coupling 353</p> <p>Hiyama Coupling Reaction 355</p> <p>Liebeskind–Srogl Coupling Reaction 356</p> <p>Fukuyama Coupling Reaction 357</p> <p>Buchwald–Hartwig Coupling Reaction (Buchwald–Hartwig Amination) 358</p> <p>Tsuji–Trost Allylation 360</p> <p><b>7 Multicomponent Reaction </b><b>363</b></p> <p>Biginelli Reaction (3-Component Reaction [3-CR]) 363</p> <p>One of Plausible Mechanisms 364</p> <p>Application 364</p> <p>Experimental Procedure (from patent US810606062B1) 364</p> <p>Gewald Reaction (3-Component Reaction [3-CR]) 365</p> <p>Mechanism 365</p> <p>Application 366</p> <p>Experimental Procedure (from patent US20100081823A1) 366</p> <p>Hantzsch Pyridine Synthesis 366</p> <p>Mechanism 367</p> <p>Application 368</p> <p>Experimental Procedure (from patent US8106062B1) 368</p> <p>Mannich Reaction 369</p> <p>Mechanism 369</p> <p>Application 370</p> <p>Experimental Procedure (from patent WO2007011910A2) 370</p> <p>Passerini Reaction (3-Component Reaction [3-CR]) 370</p> <p>Mechanisms 371</p> <p>Ionic Mechanism 371</p> <p>Concerted Mechanism 372</p> <p>Lactone Formation [3] 372</p> <p>Application 372</p> <p>Experimental Procedure (from patent WO1995002566A1) 373</p> <p>Strecker Amino Acid Synthesis 373</p> <p>Mechanism 374</p> <p>Part 1: Formation of α-Aminonitrile 374</p> <p>Part 2: Hydrolysis of the Nitrile 374</p> <p>Application 375</p> <p>Experimental Procedure (from patent US5169973A) 375</p> <p>Ugi Reaction (4-Component Reaction [4-CR]) 375</p> <p>Plausible ReactionMechanism 376</p> <p>Application 377</p> <p>Experimental Procedure (from patent US20150087600A1<b>) </b>377</p> <p>Asinger Reaction (4-Component Reaction [A-4CR]) 378</p> <p>Application 378</p> <p>References 379</p> <p>Biginelli Reaction 379</p> <p>Gewald Reaction 380</p> <p>Hantzsch Pyridine Synthesis 381</p> <p>Mannich Reaction 382</p> <p>Passerini Reaction 384</p> <p>Strecker Amino Acid Synthesis 385</p> <p>Ugi Reaction 386</p> <p>Asinger Reaction 388</p> <p><b>Volume 2</b></p> <p>Preface xxi</p> <p>About the Author xxiii</p> <p>About the Book xxv</p> <p>Acknowledgments xxvii</p> <p>List of Abbreviations xxix</p> <p>8 Oxidations and Reductions 389</p> <p>9 Nomenclature and Application of Heterocyclic Compounds 449</p> <p>10 Synthesis of Some Heterocyclic Compounds Using Named Reactions 469</p> <p>11 Protection and Deprotection of Common Functional Groups 507</p> <p>12 Amino Acids and Peptides 519</p> <p>13 Functional Group Transformation 543</p> <p>14 Synthesis of Some Drug Molecules 565</p> <p>15 Common Laboratory Methods 573</p> <p>16 Common Reagents in Organic Synthesis 603</p> <p>Appendix A List of Medicines (Partial) and Nutrients 671</p> <p>Index 737</p>
<p><b><i>Surya K. De</i></b> <i>is the director at Supra Sciences, prior to this role, he was a principal scientist at Plex Pharmaceuticals and Collidion Inc. in San Diego, California (USA). He obtained his Ph.D. in Organic Chemistry from Jadavpur University, Kolkata (India). His research interests focus on the development of new synthetic methodology in organic synthesis (e.g. multi-step reactions), catalyst development, drug design and discovery, as well as medicinal chemistry. He has authored more than 100 peer reviewed international journal contributions, fifteen patents, and one book. He is an Editorial board member of Current Organic Synthesis, Letters in Organic Chemistry, Current Catalysis, Anti-Cancer Agents in Medicinal Chemistry. He has been an elected fellow of the Royal Society of Chemistry (UK) and an Alternate Councilor in the American Chemical Society (San Diego section).</i>
<p><b>An indispensable guide for all synthetic chemists who want to learn about the most relevant reactions and reagents employed to synthesize important heterocycles and drugs!</b> <p>The synthesis of natural products, bioactive compounds, pharmaceuticals, and drugs is of fundamental interest in modern organic chemistry. New reagents and reaction methods towards these molecules are being constantly developed. By understanding the mechanisms involved and scope and limitations of each reaction applied, organic chemists can further improve existing reaction protocols and develop novel efficient synthetic routes towards frequently used drugs, such as Aspirin or Penicillin. <p><i>Applied Organic Chemistry</i> provides a summary of important (name) reactions and reagents applied in modern organic chemistry and drug synthesis. It covers rearrangement, condensation, olefination, metathesis, aromatic electrophilic substitutions, Pd-catalyzed C-C bond forming reactions, multi-component reactions, as well as oxidations and reductions. Each chapter is clearly structured, providing valuable information on reaction details, step-by-step mechanism, experimental procedures, applications, and (patent) references. By providing mechanistic information and representative experimental procedures, this book is an indispensable guide for researchers and professionals in organic chemistry, natural product synthesis, pharmaceutical, and medicinal chemistry, as well as post-graduates preparing themselves for a job in the pharmaceutical industry. <ul> <li>Hot Topic: Reviews important classes of organic reactions (incl. name reactions) and reagents in medicinal chemistry.</li> <li>Useful: Provides information on reaction details, common reagents, and functional group transformations used to synthesize natural products, bioactive compounds, drugs, and pharmaceuticals, e.g. Aspirin, Penicillin.</li> <li>Unique: For every reaction the mechanism is explained step by step, and representative experimental procedures are given, unlike most books in this area.</li> <li>User-friendly: Chapters are clearly structured making it easy for the reader to compare different reactions.</li> </ul> <p><i>Applied Organic Chemistry</i> is an indispensable guide for researchers and professionals in organic chemistry, natural product synthesis, pharmaceutical, and medicinal chemistry, as well as post-graduates preparing themselves for a job in the pharmaceutical industry.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €