Details

Analytical Techniques in Forensic Science


Analytical Techniques in Forensic Science


1. Aufl.

von: Rosalind Wolstenholme, Sue Jickells, Shari Forbes

120,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 27.10.2020
ISBN/EAN: 9781119033813
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>An in-depth text that explores the interface between analytical chemistry and trace evidence</b></p> <p><i>Analytical Techniques in Forensic Science</i> is a comprehensive guide written in accessible terms that examines the interface between analytical chemistry and trace evidence in forensic science. With contributions from noted experts on the topic, the text features a detailed introduction analysis in forensic science and then subsequent chapters explore the laboratory techniques grouped by shared operating principles. For each technique, the authors incorporate specific theory, application to forensic analytics, interpretation, forensic specific developments, and illustrative case studies.</p> <p>Forensic techniques covered include UV-Vis and vibrational spectroscopy, mass spectrometry and gas and liquid chromatography. The applications reviewed include evidence types such as fibers, paint, drugs and explosives. The authors highlight data collection, subsequent analysis, what information has been obtained and what this means in the context of a case. The text shows how analytical chemistry and trace evidence can problem solve the nature of much of forensic analysis. This important text:</p> <ul> <li>Puts the focus on trace evidence and analytical science</li> <li>Contains case studies that illustrate theory in practice</li> <li>Includes contributions from experts on the topics of instrumentation, theory, and case examples</li> <li>Explores novel and future applications for analytical techniques</li> </ul> <p>Written for undergraduate and graduate students in forensic chemistry and forensic practitioners and researchers, <i>Analytical Techniques in Forensic Science</i> offers a text that bridges the gap between introductory textbooks and professional level literature.</p>
<p>List of Contributors xvii</p> <p>Preface xix</p> <p>Acknowledgements xxi</p> <p><b>Part I Preparing for Analysis 1</b></p> <p><b>1 Introduction to Forensic Science 3<br /></b><i>Sue Jickells, Rosalind Wolstenholme and Shari Forbes</i></p> <p>1.1 Forensic Science 3</p> <p>1.2 The Forensic Process 6</p> <p>1.2.1 Forensic Principles and the Crime Scene 6</p> <p>1.2.2 Preparatory Issues in Laboratory Analysis 11</p> <p>1.2.3 Interpretation of Forensic Evidence 13</p> <p>1.2.3.1 The Expert Witness and Interpretation 14</p> <p>1.2.3.2 Evidential Value 15</p> <p>1.2.3.3 Statistical Interpretation 18</p> <p>1.2.3.4 Bayesian Statistics 20</p> <p>1.3 Judicial Systems 22</p> <p>1.3.1 Criminal vs. Civil Law 22</p> <p>1.3.2 Adversarial vs. Inquisitorial System 24</p> <p>1.3.3 Rules of Evidence 25</p> <p>1.3.3.1 Admissibility of Evidence 25</p> <p>1.3.4 Types of Evidence 26</p> <p>1.3.5 Opinion and Expert Testimony 28</p> <p>1.3.5.1 Admissibility of Scientific and Technical Evidence 28</p> <p>1.4 The Role of Analytical Chemistry in Forensic Science 30</p> <p>1.4.1 Techniques Used for Chemical Analysis 31</p> <p>References 32</p> <p><b>2 Analytical Methodology and Experimental Design 35<br /></b><i>Florian Wulfert and Rosalind Wolstenholme</i></p> <p>2.1 Scientific Method 35</p> <p>2.2 What DoWe Mean by Analysis? 36</p> <p>2.3 The Stages of Analysis 36</p> <p>2.3.1 Quantification 37</p> <p>2.3.1.1 External Standards 37</p> <p>2.3.1.2 Internal Standards 38</p> <p>2.3.1.3 Standard Addition 38</p> <p>2.4 Analysis Development 39</p> <p>2.4.1 Error Estimation 39</p> <p>2.4.2 Quality Assurance and Quality Control 40</p> <p>2.4.3 Method Development and Experimental Designs 41</p> <p>2.4.4 Selecting Critical Variables with Factorial Designs 42</p> <p>2.4.4.1 Categorical Variables 43</p> <p>2.4.4.2 Reduced Designs 44</p> <p>2.4.4.3 Final Practical Experimental Considerations 44</p> <p>2.4.4.4 Deciding on Significance 44</p> <p>2.4.4.5 Interpretation 45</p> <p>2.4.5 Modelling the Significant Variables Using Response Surface Designs 46</p> <p>2.4.5.1 Sparse Response Surface Designs 48</p> <p>2.4.5.2 Analysing Response Surface Models 48</p> <p>2.4.5.3 Validation 49</p> <p>2.4.5.4 Optimisation 49</p> <p><b>3 Presumptive Testing 51<br /></b><i>Rosalind Wolstenholme and Shari Forbes</i></p> <p>3.1 Introduction 51</p> <p>3.2 Drugs 52</p> <p>3.2.1 Drugs Seizure Sampling 52</p> <p>3.2.2 Major Drug Classes 52</p> <p>3.2.2.1 Marijuana 52</p> <p>3.2.2.2 Opioids, Cocaine, and Amphetamines 53</p> <p>3.2.2.3 Barbiturates and Benzodiazepines 53</p> <p>3.2.2.4 LSD 53</p> <p>3.2.2.5 New Psychoactive Substances 55</p> <p>3.2.3 Presumptive Tests for Drugs 56</p> <p>3.2.3.1 Colour Tests 56</p> <p>3.2.3.2 Thin Layer Chromatography 56</p> <p>3.2.3.3 Microcrystal Tests 56</p> <p>3.3 Firearms Discharge Residue 57</p> <p>3.3.1 Firearms Discharge Residue Sampling 57</p> <p>3.3.2 Firearms Discharge Residue Presumptive Tests 58</p> <p>3.4 Explosives 59</p> <p>3.4.1 Explosive Residue Sampling 60</p> <p>3.4.2 Explosive Residue Presumptive Tests 60</p> <p>3.4.2.1 Colour Tests 60</p> <p>3.4.2.2 Thin Layer Chromatography 61</p> <p>3.4.2.3 Portable Instruments 61</p> <p>3.5 Ethanol (Ethyl Alcohol) 61</p> <p>3.5.1 Breath Alcohol Testing 61</p> <p>3.5.1.1 Electronic Devices 62</p> <p>3.5.1.2 Chemical Test Devices 63</p> <p>3.5.2 Saliva-Based Testing 63</p> <p>3.6 Ignitable Liquid Residues 64</p> <p>3.7 Non-Chemical Presumptive Tests 65</p> <p>3.7.1 Electronic Detectors 65</p> <p>3.7.1.1 Electronic Detectors for Fire Investigations 65</p> <p>3.7.1.2 Electronic Detectors for Explosives and Illicit Drugs 66</p> <p>3.7.2 Canine Detection 67</p> <p>References 68</p> <p><b>4 Sample Preparation 71<br /></b><i>Sue Jickells</i></p> <p>4.1 Sample Preparation 71</p> <p>4.2 Extraction 75</p> <p>4.2.1 Solvent Extraction 76</p> <p>4.2.2 Liquid–Liquid Extraction 77</p> <p>4.2.3 Solid Phase Extraction 82</p> <p>4.2.3.1 Stationary Phases 85</p> <p>4.2.3.2 Normal Phase 92</p> <p>4.2.3.3 Reversed Phase 93</p> <p>4.2.3.4 Ion Exchange 95</p> <p>4.2.3.5 Molecularly Imprinted Polymers 95</p> <p>4.2.3.6 Immunoaffinity SPE 97</p> <p>4.2.4 Solid-Phase Microextraction 97</p> <p>4.2.5 QuEChERS 101</p> <p>4.2.6 Sample Handling Post Extraction 101</p> <p>4.2.6.1 Solvent Evaporation 101</p> <p>4.2.6.2 Derivatisation 102</p> <p>4.3 Sample Preparation for Inorganic Analyses 102</p> <p>4.3.1 Total Analysis 103</p> <p>4.3.2 Chemical Speciation 105</p> <p>4.4 DNA Profiling 105</p> <p>4.5 Conclusion 106</p> <p>References 106</p> <p><b>Part II Spectroscopic and Spectrometric Techniques 109</b></p> <p><b>5 The Electromagnetic Spectrum 111<br /></b>Rosalind Wolstenholme</p> <p>Reference 114</p> <p><b>6 Ultraviolet–Visible and Fluorescence Spectroscopy 115<br /></b><i>Rosalind Wolstenholme</i></p> <p>6.1 Forensic Introduction 115</p> <p>6.2 Theory 115</p> <p>6.2.1 Electronic Transitions 115</p> <p>6.2.2 Photoluminescence and Fluorescence 118</p> <p>6.2.3 Quantification 120</p> <p>6.2.3.1 UV-Vis Quantification 120</p> <p>6.2.3.2 Fluorescence Quantification 121</p> <p>6.3 Instrumentation 122</p> <p>6.3.1 UV-Vis Spectrometers 122</p> <p>6.3.2 Fluorescence Spectrometers/Fluorometers 123</p> <p>6.3.3 Coupling Techniques 126</p> <p>6.3.4 Microspectrophotometers 126</p> <p>6.3.5 Hyperspectral Imaging 126</p> <p>6.3.6 Filtered Light Examination 127</p> <p>6.4 Application to Analyte 128</p> <p>6.4.1 Transmission Analysis in Solution 128</p> <p>6.4.1.1 UV-Vis Solution Analysis 128</p> <p>6.4.1.2 Fluorescent Solution Analysis 129</p> <p>6.4.2 MSP Sample Preparation 129</p> <p>6.4.3 Acquiring a Spectrum 130</p> <p>6.4.3.1 Capture of Spectra in Solution 130</p> <p>6.4.3.2 MSP and HSI Sample Analysis 131</p> <p>6.4.4 Forensic Applications 131</p> <p>6.4.4.1 Writing Ink Examination 132</p> <p>6.4.4.2 Fibre Examination 133</p> <p>6.5 Interpretation and Law 134</p> <p>6.5.1 Interpreting UV-Vis Spectra 135</p> <p>6.5.2 Interpreting Fluorescence Spectra 137</p> <p>6.5.3 UV-Vis and Fluorescence Spectroscopy in Court 138</p> <p>6.6 Case Studies 138</p> <p>6.6.1 Case Study 1 138</p> <p>6.6.2 Case Study 2 139</p> <p>6.7 Forensic Developments 140</p> <p>References 140</p> <p><b>7 Infrared Spectroscopy 145<br /></b><i>Barbara Stuart</i></p> <p>7.1 Introduction 145</p> <p>7.2 Theory of the Technique 145</p> <p>7.2.1 Basis of the Technique 145</p> <p>7.2.2 Instrumentation 146</p> <p>7.2.3 Transmission Spectroscopy 148</p> <p>7.2.4 Reflectance Spectroscopy 148</p> <p>7.2.5 Infrared Microspectroscopy 150</p> <p>7.2.6 Handheld and Portable Instruments 151</p> <p>7.3 Application to Analyte 151</p> <p>7.3.1 Sampling 151</p> <p>7.3.2 Spectrum Analysis 152</p> <p>7.4 Interpretation and Law 155</p> <p>7.5 Case Studies – Discrimination of Acrylic Fibres 157</p> <p>7.6 Forensic Developments 158</p> <p>References 159</p> <p><b>8 Raman Spectroscopy 161<br /></b><i>Rosalind Wolstenholme</i></p> <p>8.1 Forensic Introduction 161</p> <p>8.2 Theory 161</p> <p>8.2.1 Raman Scattering 161</p> <p>8.2.2 Modes of Vibration 163</p> <p>8.2.3 Raman Shift 165</p> <p>8.2.4 Raman Instrumentation 166</p> <p>8.2.4.1 Lasers, Fluorescence, and Resolution 166</p> <p>8.2.4.2 Dispersive versus FT 167</p> <p>8.2.4.3 Dispersive Raman Spectrometers 168</p> <p>8.2.4.4 FT-Raman Spectrometers 169</p> <p>8.2.4.5 Polarisers 169</p> <p>8.2.4.6 Microscopes and Imaging 169</p> <p>8.2.4.7 Portable Instruments and Probes 170</p> <p>8.2.4.8 Quantitation 170</p> <p>8.2.5 Advanced Techniques 171</p> <p>8.2.5.1 Resonance Raman Spectroscopy 171</p> <p>8.2.5.2 SERS/SERRS 171</p> <p>8.2.5.3 SORS 172</p> <p>8.2.6 Advantages and Disadvantages of Raman Spectroscopy 173</p> <p>8.3 Application to Analyte 174</p> <p>8.3.1 Acquiring a Spectrum 174</p> <p>8.3.2 Forensic Applications 175</p> <p>8.3.2.1 Pen Ink 175</p> <p>8.3.2.2 Paint 175</p> <p>8.3.2.3 Drugs of Abuse 176</p> <p>8.4 Interpretation and Law 177</p> <p>8.4.1 Interpreting Raman Spectra 177</p> <p>8.4.2 Raman Spectroscopy in Court 179</p> <p>8.5 Case Studies 180</p> <p>8.5.1 Case Study 1 180</p> <p>8.5.2 Case Study 2 180</p> <p>8.6 Forensic Developments 181</p> <p>References 181</p> <p><b>9 Scanning Electron Microscopy 185<br /></b><i>Grzegorz Zadora and Aleksandra Michalska</i></p> <p>9.1 Introduction 185</p> <p>9.2 Theory of the Technique 186</p> <p>9.2.1 Scanning Electron Microscope 186</p> <p>9.2.2 X-Ray Detection 191</p> <p>9.2.3 Operating Conditions 192</p> <p>9.2.4 Specimen Preparation 193</p> <p>9.2.4.1 Vacuum Evaporation 194</p> <p>9.3 Application to Analyte(s) 195</p> <p>9.3.1 Gunshot Residue 196</p> <p>9.3.2 Glass 200</p> <p>9.3.3 Other Samples 203</p> <p>9.4 Interpretation and Law 203</p> <p>9.4.1 Evidence Evaluation on Source Level 203</p> <p>9.4.2 Evidence Evaluation on Activity Level 206</p> <p>9.5 Case Study 207</p> <p>9.5.1 GSR – Case Study 207</p> <p>9.5.2 Glass – Comparison and Classification Problem 209</p> <p>9.5.3 Glass –Was the Car Bulb Switched on During the Accident? 212</p> <p>References 214</p> <p><b>10 Mass Spectrometry 219<br /></b><i>Mark C. Parkin and Alan Brailsford</i></p> <p>10.1 Introduction 219</p> <p>10.1.1 Forensic Application of Mass Spectrometry 221</p> <p>10.2 Theory of the Technique 223</p> <p>10.2.1 Principles of Mass Spectrometry 223</p> <p>10.2.2 Sample Introduction 224</p> <p>10.2.3 Modes of Sample Ionisation 225</p> <p>10.2.3.1 Electron Ionisation 225</p> <p>10.2.3.2 Chemical Ionisation 227</p> <p>10.2.3.3 Electrospray Ionisation 230</p> <p>10.2.3.4 Atmospheric Pressure Chemical Ionisation 231</p> <p>10.2.3.5 Desorption and Ambient Methods 232</p> <p>10.2.3.6 Matrix-Assisted Laser Desorption/Ionisation 232</p> <p>10.2.3.7 Secondary Ion Mass Spectrometry 234</p> <p>10.2.3.8 Desorption Electrospray Ionisation 234</p> <p>10.2.3.9 Direct Analysis in Real Time 234</p> <p>10.2.4 Ion Separation – Mass Analysers 235</p> <p>10.2.4.1 Mass Range, Resolution and Accuracy 235</p> <p>10.2.4.2 Magnetic Sector 236</p> <p>10.2.4.3 Quadrupoles – Quadrupole Mass Filter 236</p> <p>10.2.4.4 Quadrupole Ion Trap 237</p> <p>10.2.4.5 Time of Flight 238</p> <p>10.2.4.6 Fourier Transform Instruments – Ion Cyclotron Resonance 239</p> <p>10.2.4.7 Fourier Transform Instruments – Orbitrap 240</p> <p>10.2.4.8 Tandem Mass Spectrometry – Ion Fragmentation by Collision Induced Dissociation 241</p> <p>10.2.4.9 Tandem Mass Analysers – Ion Traps 242</p> <p>10.2.4.10 Tandem Mass Analysers – Triple Quadrupoles 242</p> <p>10.2.4.11 Tandem Mass Analysers – Hybrid Instruments 242</p> <p>10.2.5 Ion Detection 243</p> <p>10.2.5.1 Electron Multipliers 243</p> <p>10.2.5.2 Faraday Cup 244</p> <p>10.2.6 Anatomy of a Mass Spectrum 244</p> <p>10.2.6.1 The Molecular or Quasi-Molecular Ion 245</p> <p>10.2.6.2 The Fragment Region 247</p> <p>10.2.6.3 Full Scan Mass Spectra 247</p> <p>10.2.6.4 Product Ion Spectra 248</p> <p>10.2.6.5 Extracted Ion Chromatograms 248</p> <p>10.2.6.6 Selected Ion Chromatograms and Multiple Reaction Monitoring 249</p> <p>10.2.6.7 Precursor Ion Detection and Neutral Loss Scanning 252</p> <p>10.3 Application to Analytes 252</p> <p>10.4 Interpretation and Law 254</p> <p>10.4.1 Chain of Custody 254</p> <p>10.4.2 New Forensic Regulations 255</p> <p>10.4.3 ID Criteria – Screen and Confirmation 255</p> <p>10.4.4 Chromatographic Criteria 256</p> <p>10.4.5 Mass Spectrometric Identification Criteria 256</p> <p>10.5 Case Studies 257</p> <p>10.5.1 Serial Killing by Poisoning 257</p> <p>10.5.2 Surreptitious Insulin Administration 257</p> <p>10.6 Forensic Developments 258</p> <p>10.6.1 Beyond Blood and Urine 258</p> <p>10.6.2 High Mass Accuracy Mass Spectrometry 259</p> <p>10.6.3 Mobile Mass Spectrometers 260</p> <p>References 261</p> <p><b>11 Isotope Ratio Mass Spectrometry 267<br /></b><i>Sarah Benson and Kylie Jones</i></p> <p>11.1 Forensic Introduction 267</p> <p>11.2 Basis of the Technique 268</p> <p>11.2.1 Isotopes 268</p> <p>11.2.2 Isotopic Abundance and Delta Notation 268</p> <p>11.2.3 Standards and Reference Materials 269</p> <p>11.2.4 Isotopic Variability – Fractionation and Mixing 270</p> <p>11.2.5 Isotopic Variability of Natural Materials 272</p> <p>11.2.6 Instrumentation: Stable Isotope Ratio Mass Spectrometers 272</p> <p>11.3 Introduction to the Isotope Ratio Mass Spectrometer 276</p> <p>11.3.1 IRMS – Detection and Measurement 276</p> <p>11.3.2 Sample Preparation 277</p> <p>11.3.3 Bulk Stable Isotope Analysis 277</p> <p>11.3.4 Bulk Measurements by Quantitative High Temperature Combustion 278</p> <p>11.3.5 Bulk Measurements by Quantitative High Temperature Conversion 279</p> <p>11.3.6 Compound Specific Isotope Analysis 279</p> <p>11.4 Interpretation 280</p> <p>11.5 Case Studies 281</p> <p>11.6 Applications in Forensic Science 283</p> <p>11.6.1 Distinguishing between Naturally Occurring and Synthetic Materials in Doping, e.g. Endogenous and Exogenous (Synthetic) Testosterone 284</p> <p>11.6.2 Determining Authenticity and Predicting Geographical Origin of Food, Pharmaceuticals and Other Materials, e.g. Counterfeiting 284</p> <p>11.6.3 Tracing the Geographic Origin and Movement of Wildlife, Persons and Materials 284</p> <p>11.6.4 Identifying the Source of Environmental Contaminants 285</p> <p>11.6.5 Determining the Geographical Origin of Plant Materials, e.g. Natural Illicit Drugs – Cannabis, Cocaine, and Heroin 285</p> <p>11.6.6 Characterising Microorganisms 286</p> <p>11.6.7 Determining Synthetic Pathways Used to Manufacture Illicit Drugs, e.g. Ecstasy and MDMA, Methamphetamine, and Amphetamine 286</p> <p>11.6.8 Distinguishing between Two or More Samples of a Material to Infer Source or a Common Origin 287</p> <p>11.6.9 Distinguishing Between Two or More Samples of Ignitable Liquids and Chemicals 287</p> <p>11.6.10 Determining Source Through Association of Starting Materials and End Products, e.g. Explosives 288</p> <p>11.7 Future of IRMS and Stable Isotopic Comparisons 288</p> <p>References 288</p> <p><b>Part III Chromatographic Techniques 295</b></p> <p><b>12 Chromatographic Separation and Theory 297<br /></b><i>Sue Jickells and Shari Forbes</i></p> <p>12.1 Introduction 297</p> <p>12.2 Chromatography 298</p> <p>12.2.1 Planar Chromatography 299</p> <p>12.2.2 Column Chromatography 300</p> <p>12.3 The Separation Process 300</p> <p>12.3.1 Distribution Constant 303</p> <p>12.3.2 Hold-Up Time (or Volume) 304</p> <p>12.3.3 Retention Time (or Volume) 305</p> <p>12.3.3.1 Retention Time and Sample Concentration 306</p> <p>12.3.4 Retention Factor 306</p> <p>12.3.5 Separation Factor 307</p> <p>12.4 Separation Theory 307</p> <p>12.4.1 Plate Theory 307</p> <p>12.4.2 Theory versus Practice: Band Broadening 308</p> <p>12.4.3 Rate Theory 311</p> <p>12.4.3.1 Eddy Diffusion (A) 312</p> <p>12.4.3.2 Longitudinal Diffusion (B) 313</p> <p>12.4.3.3 Mass Transfer (C) 314</p> <p>12.4.3.4 Non-Column Parameters Contributing to Band Broadening 316</p> <p>12.5 Practical Applications of Chromatographic Theory 316</p> <p>12.5.1 Optimising Chromatographic Separations 317</p> <p>12.5.1.1 Resolution 317</p> <p>12.5.1.2 GC 319</p> <p>12.5.1.3 Mobile Phase 320</p> <p>12.6 Conclusion 323</p> <p>References 323</p> <p><b>13 Gas Chromatography 327<br /></b><i>Shari Forbes</i></p> <p>13.1 Introduction 327</p> <p>13.2 Gas Chromatography Components 327</p> <p>13.2.1 Mobile Phase System 328</p> <p>13.2.2 Sample Injection System 329</p> <p>13.2.2.1 Liquid Samples 330</p> <p>13.2.2.2 Gases and Volatile Compounds 334</p> <p>13.2.2.3 Gas Samples 334</p> <p>13.2.2.4 Volatile Compounds: Headspace Analysis 335</p> <p>13.2.2.5 Static Headspace Analysis 335</p> <p>13.2.2.6 Dynamic Headspace Analysis 336</p> <p>13.2.2.7 Pyrolysis GC 338</p> <p>13.2.3 Columns and Chromatographic Separation 338</p> <p>13.2.3.1 Column Selection 340</p> <p>13.2.3.2 Column Temperature and Programming 341</p> <p>13.2.4 Detectors and Detection Systems 343</p> <p>13.2.4.1 Flame Ionisation Detectors 344</p> <p>13.2.4.2 Electron Capture Detectors 345</p> <p>13.2.4.3 Nitrogen–Phosphorous Detectors 345</p> <p>13.2.4.4 Mass Spectrometric Detection Systems 346</p> <p>13.3 Application to Analyte 348</p> <p>13.3.1 Sample Derivatisation 348</p> <p>13.3.2 Qualitative Analysis 350</p> <p>13.3.3 Quantitative Analysis 351</p> <p>13.3.3.1 Methods of Quantitative Analysis 353</p> <p>13.4 Interpretation and Law 354</p> <p>13.5 Case Studies 356</p> <p>13.5.1 Case Study 1 356</p> <p>13.5.2 Case Study 2 357</p> <p>13.6 Forensic Developments 358</p> <p>13.6.1 Multidimensional GC 358</p> <p>13.6.2 Portable GC 361</p> <p>References 362</p> <p><b>14 High Performance Liquid Chromatography and Ultra-High Performance Liquid Chromatography Including Liquid Chromatography–Mass Spectrometry 365<br /></b><i>Sophie Turfus and Luke N. Rodda</i></p> <p>14.1 Introduction 365</p> <p>14.2 Components of an HPLC instrument and their Optimisation 368</p> <p>14.2.1 Pump and Mixer 368</p> <p>14.2.2 Autosampler and Inlet 370</p> <p>14.2.3 Injector 370</p> <p>14.2.4 Column 370</p> <p>14.2.4.1 Stationary Phase 371</p> <p>14.2.4.2 Column Dimensions 373</p> <p>14.2.4.3 Particle Size 373</p> <p>14.2.4.4 Pre-Column/Guard Column 373</p> <p>14.2.5 Fittings 374</p> <p>14.2.6 Mobile Phase 375</p> <p>14.2.6.1 Mobile Phase A 376</p> <p>14.2.6.2 Mobile Phase B 376</p> <p>14.2.7 Effect of Temperature/Flow Rate 379</p> <p>14.2.8 Detector 380</p> <p>14.2.8.1 Mass Spectrometer 380</p> <p>14.2.8.2 UV Detector 382</p> <p>14.2.8.3 PDA Detector 383</p> <p>14.3 Related Techniques 384</p> <p>14.3.1 Ion Chromatography 384</p> <p>14.3.2 Affinity Chromatography 384</p> <p>14.3.3 Chiral Chromatography 385</p> <p>14.4 Chromatography Theory 385</p> <p>14.5 Detection 386</p> <p>14.6 Coupling of Liquid Chromatography to Mass Spectrometry 388</p> <p>14.7 Types of Analytes 390</p> <p>14.7.1 Basic Analytes 390</p> <p>14.7.2 Acidic Analytes 390</p> <p>14.7.3 Proteins 391</p> <p>14.7.4 DNA 391</p> <p>14.7.5 Chiral Compounds 392</p> <p>14.7.6 Bulk Drugs and High-Concentration Analytes 392</p> <p>14.7.7 Low-Concentration Analytes 392</p> <p>14.8 Accreditation and Method Validation 393</p> <p>14.8.1 Use of Internal Standards 393</p> <p>14.8.2 Effect of Sample Matrix 394</p> <p>14.8.3 Ion Ratios 394</p> <p>14.9 Interpretation of Results in the Forensic and Legal Context 394</p> <p>14.10 Case Studies 396</p> <p>14.10.1 Case Study 1: Post-Mortem Death Investigation – Poly-Drug Overdose 396</p> <p>14.10.2 Case Study 2: Post-Mortem Death Investigation – No Derivatisation Needed for LC-MS 397</p> <p>14.10.3 Case Study 3: Driving Under the Influence of Drugs – Increased Sensitivity with LC-MS 398</p> <p>14.11 Forensic Developments 399</p> <p>14.11.1 Column Switching and Two-Dimensional HPLC 399</p> <p>14.11.2 Capillary Liquid Chromatography 401</p> <p>14.11.3 Column-on-a-Chip Technologies 401</p> <p>14.12 Conclusion 402</p> <p>References 402</p> <p><b>15 Capillary and Microchip Electrophoresis 407<br /></b><i>Lucas Blanes, Ellen Flávia Moreira Gabriel, Renata Mayumi Saito, Wendell Karlos Tomazelli Coltro, Nerida Cole, Philip Doble, Claude Roux and Robson Oliveira dos Santos</i></p> <p>15.1 Capillary Electrophoresis: Introduction 407</p> <p>15.2 Microchip-Capillary Electrophoresis 410</p> <p>15.2.1 Sample Injection Modes in ME 410</p> <p>15.3 Detection Systems 411</p> <p>15.4 CE and ME in Forensic Analysis 412</p> <p>15.5 Case Study: Lab-on-a-Chip Screening of Methamphetamine and Pseudoephedrine in Clandestine Laboratory Samples 412</p> <p>15.5.1 Screening of Methamphetamine and Pseudoephedrine from Clandestine Laboratories 416</p> <p>15.5.2 Interferents 416</p> <p>15.5.3 Simulated Surface Swabs 418</p> <p>15.6 Conclusions 418</p> <p>Acknowledgements 419</p> <p>References 419</p> <p>Index 425</p>
<p><b>ROSALIND WOLSTENHOLME, BS<small>C</small>, MS<small>C</small>, PhD,</b> is a senior lecturer in analytical science in the<b></b> Department of Biosciences and Chemistry, Sheffield Hallam University, UK. <p><b>SUE JICKELLS, BS<small>C</small>, MS<small>C</small>, PhD,</b> is a retired analytical chemist, formerly at the University of East Anglia and King's College London. <p><b>SHARI FORBES, BS<small>C</small>, PhD,</b> is a forensic scientist and researcher with the<b></b> Department of Chemistry, Biochemistry and Physics, University of Quebec Trois-Rivières, Canada.
<p><b>AN IN-DEPTH TEXT THAT EXPLORES THE INTERFACE BETWEEN ANALYTICAL CHEMISTRY AND TRACE EVIDENCE</b> <p><i>Analytical Techniques in Forensic Science</i> is a comprehensive guide written in accessible terms that examines the interface between analytical chemistry and trace evidence in forensic science. With contributions from noted experts on the topic, the text features a detailed introduction to analysis in forensic science and then subsequent chapters explore the laboratory techniques grouped by shared operating principles. For each technique, the authors incorporate specific theory, application to forensic analytics, interpretation, forensic specific developments, and illustrative case studies. <p>Forensic techniques covered include UV-Vis and vibrational spectroscopy, mass spectrometry and gas and liquid chromatography. The applications reviewed include evidence types such as fibers, paint, drugs and explosives. The authors highlight data collection, subsequent analysis, what information has been obtained and what this means in the context of a case. The text shows how analytical chemistry and trace evidence can problem solve the nature of much of forensic analysis. This important text: <ul> <li>Puts the focus on trace evidence and analytical science</li> <li>Contains case studies that illustrate theory in practice</li> <li>Includes contributions from experts on the topics of instrumentation, theory, and case examples</li> <li>Explores novel and future applications for analytical techniques</li> </ul> <p>Written for undergraduate and graduate students in forensic chemistry and forensic practitioners and researchers, <i>Analytical Techniques in Forensic Science</i> offers a text that<i></i> bridges the gap between introductory textbooks and professional level literature.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €