Details

AI and IoT-Based Intelligent Automation in Robotics


AI and IoT-Based Intelligent Automation in Robotics


1. Aufl.

von: Ashutosh Kumar Dubey, Abhishek Kumar, S. Rakesh Kumar, N. Gayathri, Prasenjit Das

197,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 24.03.2021
ISBN/EAN: 9781119711216
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The 24 chapters in this book provides a deep overview of robotics and the application of AI and IoT in robotics. It contains the exploration of AI and IoT based intelligent automation in robotics. The various algorithms and frameworks for robotics based on AI and IoT are presented, analyzed, and discussed. This book also provides insights on application of robotics in education, healthcare, defense and many other fields which utilize IoT and AI. It also introduces the idea of smart cities using robotics.
<p>Preface xvii</p> <p><b>1 Introduction to Robotics 1<br /></b><i>Srinivas Kumar Palvadi, Pooja Dixit and Vishal Dutt</i></p> <p>1.1 Introduction 1</p> <p>1.2 History and Evolution of Robots 3</p> <p>1.3 Applications 6</p> <p>1.4 Components Needed for a Robot 7</p> <p>1.5 Robot Interaction and Navigation 10</p> <p>1.5.1 Humanoid Robot 11</p> <p>1.5.2 Control 11</p> <p>1.5.3 Autonomy Levels 12</p> <p>1.6 Conclusion 12</p> <p>References 13</p> <p><b>2 Techniques in Robotics for Automation Using AI and IoT 15<br /></b><i>Sandeep Kr. Sharma, N. Gayathri, S. Rakesh Kumar and Rajiv Kumar Modanval</i></p> <p>2.1 Introduction 16</p> <p>2.2 Brief History of Robotics 16</p> <p>2.3 Some General Terms 17</p> <p>2.4 Requirements of AI and IoT for Robotic Automation 20</p> <p>2.5 Role of AI and IoT in Robotics 21</p> <p>2.6 Diagrammatic Representations of Some Robotic Systems 23</p> <p>2.7 Algorithms Used in Robotics 25</p> <p>2.8 Application of Robotics 27</p> <p>2.9 Case Studies 30</p> <p>2.9.1 Sophia 30</p> <p>2.9.2 ASIMO 30</p> <p>2.9.3 Cheetah Robot 30</p> <p>2.9.4 IBM Watson 31</p> <p>2.10 Conclusion 31</p> <p>References 31</p> <p><b>3 Robotics, AI and IoT in the Defense Sector 35<br /></b><i>Rajiv Kumar Modanval, S. Rakesh Kumar, N. Gayathri and Sandeep Kr. Sharma</i></p> <p>3.1 Introduction 36</p> <p>3.2 How Robotics Plays an Important Role in the Defense Sector 36</p> <p>3.3 Review of the World’s Current Robotics Capabilities in the Defense Sector 38</p> <p>3.3.1 China 38</p> <p>3.3.2 United State of America 39</p> <p>3.3.3 Russia 40</p> <p>3.3.4 India 41</p> <p>3.4 Application Areas of Robotics in Warfare 43</p> <p>3.4.1 Autonomous Drones 43</p> <p>3.4.2 Autonomous Tanks and Vehicles 44</p> <p>3.4.3 Autonomous Ships and Submarines 45</p> <p>3.4.4 Humanoid Robot Soldiers 47</p> <p>3.4.5 Armed Soldier Exoskeletons 48</p> <p>3.5 Conclusion 50</p> <p>3.6 Future Work 50</p> <p>References 50</p> <p><b>4 Robotics, AI and IoT in Medical and Healthcare Applications 53<br /></b><i>Pooja Dixit, Manju Payal, Nidhi Goyal and Vishal Dutt</i></p> <p>4.1 Introduction 53</p> <p>4.1.1 Basics of AI 53</p> <p>4.1.1.1 AI in Healthcare 54</p> <p>4.1.1.2 Current Trends of AI in Healthcare 55</p> <p>4.1.1.3 Limits of AI in Healthcare 56</p> <p>4.1.2 Basics of Robotics 57</p> <p>4.1.2.1 Robotics for Healthcare 57</p> <p>4.1.3 Basics of IoT 59</p> <p>4.1.3.1 IoT Scenarios in Healthcare 60</p> <p>4.1.3.2 Requirements of Security 61</p> <p>4.2 AI, Robotics and IoT: A Logical Combination 62</p> <p>4.2.1 Artificial Intelligence and IoT in Healthcare 62</p> <p>4.2.2 AI and Robotics 63</p> <p>4.2.2.1 Limitation of Robotics in Medical Healthcare 66</p> <p>4.2.3 IoT with Robotics 66</p> <p>4.2.3.1 Overview of IoMRT 67</p> <p>4.2.3.2 Challenges of IoT Deployment 69</p> <p>4.3 Essence of AI, IoT, and Robotics in Healthcare 70</p> <p>4.4 Future Applications of Robotics, AI, and IoT 71</p> <p>4.5 Conclusion 72</p> <p>References 72</p> <p><b>5 Towards Analyzing Skill Transfer to Robots Based on Semantically Represented Activities of Humans 75<br /></b><i>Devi.T, N. Deepa, S. Rakesh Kumar, R. Ganesan and N. Gayathri</i></p> <p>5.1 Introduction 76</p> <p>5.2 Related Work 77</p> <p>5.3 Overview of Proposed System 78</p> <p>5.3.1 Visual Data Retrieval 79</p> <p>5.3.2 Data Processing to Attain User Objective 80</p> <p>5.3.3 Knowledge Base 82</p> <p>5.3.4 Robot Attaining User Goal 83</p> <p>5.4 Results and Discussion 83</p> <p>5.5 Conclusion 85</p> <p>References 85</p> <p><b>6 Healthcare Robots Enabled with IoT and Artificial Intelligence for Elderly Patients 87<br /></b><i>S. Porkodi and D. Kesavaraja</i></p> <p>6.1 Introduction 88</p> <p>6.1.1 Past, Present, and Future 88</p> <p>6.1.2 Internet of Things 88</p> <p>6.1.3 Artificial Intelligence 89</p> <p>6.1.4 Using Robotics to Enhance Healthcare Services 89</p> <p>6.2 Existing Robots in Healthcare 90</p> <p>6.3 Challenges in Implementation and Providing Potential Solutions 90</p> <p>6.4 Robotic Solutions for Problems Facing the Elderly in Society 98</p> <p>6.4.1 Solutions for Physical and Functional Challenges 98</p> <p>6.4.2 Solutions for Cognitive Challenges 98</p> <p>6.5 Healthcare Management 99</p> <p>6.5.1 Internet of Things for Data Acquisition 99</p> <p>6.5.2 Robotics for Healthcare Assistance and Medication Management 102</p> <p>6.5.3 Robotics for Psychological Issues 103</p> <p>6.6 Conclusion and Future Directions 103</p> <p>References 104</p> <p><b>7 Robotics, AI, and the IoT in Defense Systems 109<br /></b><i>Manju Payal, Pooja Dixit, T.V.M. Sairam and Nidhi Goyal</i></p> <p>7.1 AI in Defense 110</p> <p>7.1.1 AI Terminology and Background 110</p> <p>7.1.2 Systematic Sensing Applications 111</p> <p>7.1.3 Overview of AI in Defense Systems 112</p> <p>7.2 Overview of IoT in Defense Systems 114</p> <p>7.2.1 Role of IoT in Defense 116</p> <p>7.2.2 Ministry of Defense Initiatives 117</p> <p>7.2.3 IoT Defense Policy Challenges 117</p> <p>7.3 Robotics in Defense 118</p> <p>7.3.1 Technical Challenges of Defense Robots 120</p> <p>7.4 AI, Robotics, and IoT in Defense: A Logical Mix in Context 123</p> <p>7.4.1 Combination of Robotics and IoT in Defense 123</p> <p>7.4.2 Combination of Robotics and AI in Defense 124</p> <p>7.5 Conclusion 126</p> <p>References 127</p> <p><b>8 Techniques of Robotics for Automation Using AI and the IoT 129<br /></b><i>Kapil Chauhan and Vishal Dutt</i></p> <p>8.1 Introduction 130</p> <p>8.2 Internet of Robotic Things Concept 131</p> <p>8.3 Definitions of Commonly Used Terms 132</p> <p>8.4 Procedures Used in Making a Robot 133</p> <p>8.4.1 Analyzing Tasks 133</p> <p>8.4.2 Designing Robots 134</p> <p>8.4.3 Computerized Reasoning 134</p> <p>8.4.4 Combining Ideas to Make a Robot 134</p> <p>8.4.5 Making a Robot 134</p> <p>8.4.6 Designing Interfaces with Different Frameworks or Robots 134</p> <p>8.5 IoRT Technologies 135</p> <p>8.6 Sensors and Actuators 137</p> <p>8.7 Component Selection and Designing Parts 138</p> <p>8.7.1 Robot and Controller Structure 140</p> <p>8.8 Process Automation 141</p> <p>8.8.1 Benefits of Process Automation 141</p> <p>8.8.2 Incorporating AI in Process Automation 141</p> <p>8.9 Robots and Robotic Automation 142</p> <p>8.10 Architecture of the Internet of Robotic Things 142</p> <p>8.10.1 Concepts of Open Architecture Platforms 143</p> <p>8.11 Basic Abilities 143</p> <p>8.11.1 Discernment Capacity 143</p> <p>8.11.2 Motion Capacity 144</p> <p>8.11.3 Manipulation Capacity 144</p> <p>8.12 More Elevated Level Capacities 145</p> <p>8.12.1 Decisional Self-Sufficiency 145</p> <p>8.12.2 Interaction Capacity 145</p> <p>8.12.3 Cognitive Capacity 146</p> <p>8.13 Conclusion 146</p> <p>References 146</p> <p><b>9 An Artificial Intelligence-Based Smart Task Responder: Android Robot for Human Instruction Using LSTM Technique 149<br /></b><i>T. Devi, N. Deepa, SP. Chokkalingam, N. Gayathri and S. Rakesh Kumar</i></p> <p>9.1 Introduction 150</p> <p>9.2 Literature Review 152</p> <p>9.3 Proposed System 152</p> <p>9.4 Results and Discussion 157</p> <p>9.5 Conclusion 161</p> <p>References 162</p> <p><b>10 AI, IoT and Robotics in the Medical and Healthcare Field 165<br /></b><i>V. Kavidha, N. Gayathri and S. Rakesh Kumar</i></p> <p>10.1 Introduction 165</p> <p>10.2 A Survey of Robots and AI Used in the Health Sector 167</p> <p>10.2.1 Surgical Robots 167</p> <p>10.2.2 Exoskeletons 168</p> <p>10.2.3 Prosthetics 170</p> <p>10.2.4 Artificial Organs 171</p> <p>10.2.5 Pharmacy and Hospital Automation Robots 172</p> <p>10.2.6 Social Robots 173</p> <p>10.2.7 Big Data Analytics 175</p> <p>10.3 Sociotechnical Considerations 176</p> <p>10.3.1 Sociotechnical Influence 176</p> <p>10.3.2 Social Valence 177</p> <p>10.3.3 The Paradox of Evidence-Based Reasoning 178</p> <p>10.4 Legal Considerations 180</p> <p>10.4.1 Liability for Robotics, AI and IoT 180</p> <p>10.4.2 Liability for Physicians Using Robotics, AI and IoT 181</p> <p>10.4.3 Liability for Institutions Using Robotics, AI and IoT 182</p> <p>10.5 Regulating Robotics, AI and IoT as Medical Devices 183</p> <p>10.6 Conclusion 185</p> <p>References 185</p> <p><b>11 Real-Time Mild and Moderate COVID-19 Human Body Temperature Detection Using Artificial Intelligence 189<br /></b><i>K. Logu, T. Devi, N. Deepa, S. Rakesh Kumar and N. Gayathri</i></p> <p>11.1 Introduction 190</p> <p>11.2 Contactless Temperature 191</p> <p>11.2.1 Bolometers (IR-Based) 192</p> <p>11.2.2 Thermopile Radiation Sensors (IR-Based) 193</p> <p>11.2.3 Fiber-Optic Pyrometers 193</p> <p>11.2.4 RGB Photocell 194</p> <p>11.2.5 3D Sensor 195</p> <p>11.3 Fever Detection Camera 196</p> <p>11.3.1 Facial Recognition 197</p> <p>11.3.2 Geometric Approach 198</p> <p>11.3.3 Holistic Approach 198</p> <p>11.3.4 Model-Based 198</p> <p>11.3.5 Vascular Network 199</p> <p>11.4 Simulation and Analysis 200</p> <p>11.5 Conclusion 203</p> <p>References 203</p> <p><b>12 Drones in Smart Cities 205<br /></b><i>Manju Payal, Pooja Dixit and Vishal Dutt</i></p> <p>12.1 Introduction 206</p> <p>12.1.1 Overview of the Literature 206</p> <p>12.2 Utilization of UAVs for Wireless Network 209</p> <p>12.2.1 Use Cases for WN Using UAVs 209</p> <p>12.2.2 Classifications and Types of UAVs 210</p> <p>12.2.3 Deployment of UAVS Using IoT Networks 213</p> <p>12.2.4 IoT and 5G Sensor Technologies for UAVs 214</p> <p>12.3 Introduced Framework 217</p> <p>12.3.1 Architecture of UAV IoT 217</p> <p>12.3.2 Ground Control Station 218</p> <p>12.3.3 Data Links 218</p> <p>12.4 UAV IoT Applications 223</p> <p>12.4.1 UAV Traffic Management 223</p> <p>12.4.2 Situation Awareness 223</p> <p>12.4.3 Public Safety/Saving Lives 225</p> <p>12.5 Conclusion 227</p> <p>References 227</p> <p><b>13 UAVs in Agriculture 229<br /></b><i>DeepanshuSrivastava, S. RakeshKumar and N. Gayathri</i></p> <p>13.1 Introduction 230</p> <p>13.2 UAVs in Smart Farming and Take-Off Panel 230</p> <p>13.2.1 Overview of Systems 230</p> <p>13.3 Introduction to UGV Systems and Planning 234</p> <p>13.4 UAV-Hyperspectral for Agriculture 236</p> <p>13.5 UAV-Based Multisensors for Precision Agriculture 239</p> <p>13.6 Automation in Agriculture 242</p> <p>13.7 Conclusion 245</p> <p>References 245</p> <p><b>14 Semi-Automated Parking System Using DSDV and RFID 247<br /></b><i>Mayank Agrawal, Abhishek Kumar Rawat, Archana, SandhyaKatiyar and Sanjay Kumar</i></p> <p>14.1 Introduction 247</p> <p>14.2 Ad Hoc Network 248</p> <p>14.2.1 Destination-Sequenced Distance Vector (DSDV) Routing Protocol 248</p> <p>14.3 Radio Frequency Identification (RFID) 249</p> <p>14.4 Problem Identification 250</p> <p>14.5 Survey of the Literature 250</p> <p>14.6 PANet Architecture 251</p> <p>14.6.1 Approach for Semi-Automated System Using DSDV 252</p> <p>14.6.2 Tables for Parking Available/Occupied 253</p> <p>14.6.3 Algorithm for Detecting the Empty Slots 255</p> <p>14.6.4 Pseudo Code 255</p> <p>14.7 Conclusion 256</p> <p>References 256</p> <p><b>15 Survey of Various Technologies Involved in Vehicle-to-Vehicle Communication 259<br /></b><i>Lisha Kamala K., Sini Anna Alex and Anita Kanavalli</i></p> <p>15.1 Introduction 259</p> <p>15.2 Survey of the Literature 260</p> <p>15.3 Brief Description of the Techniques 262</p> <p>15.3.1 ARM and Zigbee Technology 262</p> <p>15.3.2 VANET-Based Prototype 262</p> <p>15.3.2.1 Calculating Distance by Considering Parameters 263</p> <p>15.3.2.2 Calculating Speed by Considering Parameters 263</p> <p>15.3.3 Wi-Fi–Based Technology 263</p> <p>15.3.4 Li-Fi–Based Technique 264</p> <p>15.3.5 Real-Time Wireless System 266</p> <p>15.4 Various Technologies Involved in V2V Communication 267</p> <p>15.5 Results and Analysis 267</p> <p>15.6 Conclusion 268</p> <p>References 268</p> <p><b>16 Smart Wheelchair 271<br /></b><i>Mekala Ajay, Pusapally Srinivas and Lupthavisha Netam</i></p> <p>16.1 Background 271</p> <p>16.2 System Overview 275</p> <p>16.3 Health-Monitoring System Using IoT 275</p> <p>16.4 Driver Circuit of Wheelchair Interfaced with Amazon Alexa 276</p> <p>16.5 MATLAB Simulations 277</p> <p>16.5.1 Obstacle Detection 277</p> <p>16.5.2 Implementing Path Planning Algorithms 278</p> <p>16.5.3 Differential Drive Robot for Path Following 280</p> <p>16.6 Conclusion 282</p> <p>16.7 Future Work 282</p> <p>Acknowledgment 283</p> <p>References 283</p> <p><b>17 Defaulter List Using Facial Recognition 285<br /></b><i>Kavitha Esther, Akilindin S.H., Aswin S. and Anand P.</i></p> <p>17.1 Introduction 286</p> <p>17.2 System Analysis 287</p> <p>17.2.1 Problem Description 287</p> <p>17.2.2 Existing System 287</p> <p>17.2.3 Proposed System 287</p> <p>17.3 Implementation 289</p> <p>17.3.1 Image Pre-Processing 289</p> <p>17.3.2 Polygon Shape Family Pre-Processing 289</p> <p>17.3.3 Image Segmentation 289</p> <p>17.3.4 Threshold 289</p> <p>17.3.5 Edge Detection 291</p> <p>17.3.6 Region Growing Technique 291</p> <p>17.3.7 Background Subtraction 291</p> <p>17.3.8 Morphological Operations 291</p> <p>17.3.9 Object Detection 292</p> <p>17.4 Inputs and Outputs 292</p> <p>17.5 Conclusion 292</p> <p>References 293</p> <p><b>18 Visitor/Intruder Monitoring System Using Machine Learning 295<br /></b><i>G. Jenifa, S. Indu, C. Jeevitha and V. Kiruthika</i></p> <p>18.1 Introduction 296</p> <p>18.2 Machine Learning 296</p> <p>18.2.1 Machine Learning in Home Security 297</p> <p>18.3 System Design 297</p> <p>18.4 Haar-Cascade Classifier Algorithm 298</p> <p>18.4.1 Creating the Dataset 298</p> <p>18.4.2 Training the Model 299</p> <p>18.4.3 Recognizing the Face 299</p> <p>18.5 Components 299</p> <p>18.5.1 Raspberry Pi 299</p> <p>18.5.2 Web Camera 300</p> <p>18.6 Experimental Results 300</p> <p>18.7 Conclusion 302</p> <p>Acknowledgment 302</p> <p>References 303</p> <p><b>19 Comparison of Machine Learning Algorithms for Air Pollution Monitoring System 305<br /></b><i>Tushr Sethi and R. C. Thakur</i></p> <p>19.1 Introduction 305</p> <p>19.2 System Design 306</p> <p>19.3 Model Description and Architecture 307</p> <p>19.4 Dataset 308</p> <p>19.5 Models 310</p> <p>19.6 Line of Best Fit for the Dataset 312</p> <p>19.7 Feature Importance 313</p> <p>19.8 Comparisons 315</p> <p>19.9 Results 318</p> <p>19.10 Conclusion 318</p> <p>References 321</p> <p><b>20 A Novel Approach Towards Audio Watermarking Using FFT and CORDIC-Based QR Decomposition 323<br /></b><i>Ankit Kumar, Astha Singh, Shiv Prakash and Vrijendra Singh</i></p> <p>20.1 Introduction and Related Work 324</p> <p>20.2 Proposed Methodology 326</p> <p>20.2.1 Fast Fourier Transform 328</p> <p>20.2.2 CORDIC-Based QR Decomposition 329</p> <p>20.2.3 Concept of Cyclic Codes 331</p> <p>20.2.4 Concept of Arnold’s Cat Map 331</p> <p>20.3 Algorithm Design 331</p> <p>20.4 Experiment Results 334</p> <p>20.5 Conclusion 337</p> <p>References 338</p> <p><b>21 Performance of DC-Biased Optical Orthogonal Frequency Division Multiplexing in Visible Light Communication 339<br /></b><i>S. Ponmalar and Shiny J.J.</i></p> <p>21.1 Introduction 340</p> <p>21.2 System Model 341</p> <p>21.2.1 Transmitter Block 341</p> <p>21.2.2 Receiver Block 342</p> <p>21.3 Proposed Method 342</p> <p>21.3.1 Simulation Parameters for OptSim 343</p> <p>21.3.2 Block Diagram of DCO-OFDM in OptSim 343</p> <p>21.4 Results and Discussion 344</p> <p>21.5 Conclusion 352</p> <p>References 353</p> <p><b>22 Microcontroller-Based Variable Rate Syringe Pump for Microfluidic Application 355<br /></b><i>G. B. Tejashree, S. Swarnalatha, S. Pavithra, M. C. Jobin Christ and N. Ashwin Kumar</i></p> <p>22.1 Introduction 356</p> <p>22.2 Related Work 357</p> <p>22.3 Methodology 358</p> <p>22.3.1 Hardware Design 359</p> <p>22.3.2 Hardware Interface with Software 360</p> <p>22.3.3 Programming and Debugging 361</p> <p>22.4 Result 362</p> <p>22.5 Inference 363</p> <p>22.5.1 Viscosity (η) 365</p> <p>22.5.2 Time Taken 365</p> <p>22.5.3 Syringe Diameter 366</p> <p>22.5.4 Deviation 366</p> <p>22.6 Conclusion and Future Works 366</p> <p>References 368</p> <p><b>23 Analysis of Emotion in Speech Signal Processing and Rejection of Noise Using HMM 371<br /></b><i>S. Balasubramanian</i></p> <p>23.1 Introduction 372</p> <p>23.2 Existing Method 373</p> <p>23.3 Proposed Method 374</p> <p>23.3.1 Proposed Module Description 375</p> <p>23.3.2 MFCC 376</p> <p>23.3.3 Hidden Markov Models 379</p> <p>23.4 Conclusion 382</p> <p>References 383</p> <p><b>24 Securing Cloud Data by Using Blend Cryptography with AWS Services 385<br /></b><i>Vanchhana Srivastava, Rohit Kumar Pathak and Arun Kumar</i></p> <p>24.1 Introduction 385</p> <p>24.1.1 AWS 387</p> <p>24.1.2 Quantum Cryptography 388</p> <p>24.1.3 ECDSA 389</p> <p>24.2 Background 389</p> <p>24.3 Proposed Technique 392</p> <p>24.3.1 How the System Works 393</p> <p>24.4 Results 394</p> <p>24.5 Conclusion 396</p> <p>References 396</p> <p>Index 399</p>
<p><b>Ashutosh Kumar Dubey</b> received his PhD degree in Computer Science and Engineering from JK Lakshmipat University, Jaipur, Rajasthan, India. He is currently in the Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India. His research areas are data mining, optimization, machine learning, cloud computing, artificial intelligence, big data, IoT and object-oriented programming.<p><b>Abhishek Kumar</b> is a Doctorate in computer science from the University of Madras and more than 50 publications in reputed peer reviewed national and international journals, books & conferences. His research interests include artificial intelligence, image processing, computer vision, data mining, machine learning. <p><b>S. Rakesh Kumar</b> received his M.E. degree in Computer Science and Engineering from Anna University Chennai in 2016. His main research areas are big data analytics, network security and cloud computing.<p><b>N. Gayathri</b> received her B. Tech as well as M. Tech. degree in Computer Science and Engineering from Thiagarajar College of Engineering, Madurai, India. Her research interests include cloud computing, big data analytics and network security.<p><b>Pasenjit Das PhD</b> is an associate professor at Chitkara University, Himachal Pradesh, India. He has 15 + years’ experience in industry and academia and his research areas are data mining, machine learning and image processing.</p>
<p><b>The 24 chapters in this book provide a deep overview of robotics and the application of AI and IoT in robotics across several industries such as healthcare, defense, education, etc.</b></p><p>Artificial Intelligence (AI) is one of the trending technologies in the recent era. The emergence of the robotics and application of AI in it brings out a significant change in the domain. Various algorithms that emerge in AI and the computational efficiency of the systems has made it possible to address a number of applications through robotics. The Internet of Things (IoT) is the important domain that plays a major role in robotics. With the aid of IoT and AI in robotics, an exponential development in providing solutions to complex technical problems has been created.</p><p>This book aims at providing an overview of robotics and the application of AI and IoT in robotics. It contains the deep exploration of AI and IoT-based intelligent automation in robotics. The various algorithms and frameworks for robotics based on AI and IoT are presented, analyzed and discussed. This book also provides insights on application of robotics in education, healthcare, defense and many other fields with the utilization of IoT and AI. It also includes the idea of smart cities using robotics.</p><p><b>Audience</b></p><p>Industry engineers, research scholars, and post-graduate students in information technology integrating robotics with AI and IoT, as well as those in electronics, electrical and biomedical fields, the design and manufacture of robotics, will all benefit and find this book very useful.</p>

Diese Produkte könnten Sie auch interessieren:

MDX Solutions
MDX Solutions
von: George Spofford, Sivakumar Harinath, Christopher Webb, Dylan Hai Huang, Francesco Civardi
PDF ebook
53,99 €
Concept Data Analysis
Concept Data Analysis
von: Claudio Carpineto, Giovanni Romano
PDF ebook
107,99 €
Handbook of Virtual Humans
Handbook of Virtual Humans
von: Nadia Magnenat-Thalmann, Daniel Thalmann
PDF ebook
150,99 €