Details

Advanced Plasma Technology


Advanced Plasma Technology


1. Aufl.

von: Riccardo d'Agostino, Pietro Favia, Yoshinobu Kawai, Hideo Ikegami, Noriyoshi Sato, Farzaneh Arefi-Khonsari

223,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 08.09.2008
ISBN/EAN: 9783527622191
Sprache: englisch
Anzahl Seiten: 479

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A panel of internationally renowned scientists discuss the latest results in plasma technology. This volume has been compiled with both a didactic approach and an overview of the newest achievements for industrial applications. It is divided into two main sections. One is focused on fundamental technology, including plasma production and control, high-pressure discharges, modeling and simulation, diagnostics, dust control, and etching. The section on application technology covers polymer treatments, silicon solar cell, coating and spray, biomaterials, sterilization and waste treatment, plasma propulsion, plasma display panels, and anti-corrosion coatings. The result is an indispensable work for physicists, chemists and engineers involved in the field of plasma technology.
<p>Preface XV</p> <p>List of Contributors XVII</p> <p><b>1 Basic Approaches to Plasma Production and Control 1</b><br /><i>N. Sato</i></p> <p>1.1 Plasma Production 2</p> <p>1.1.1 Under Low Gas Pressure (<0.1 torr) 2</p> <p>1.1.2 Under Medium Gas Pressure (0.1–10 torr) 4</p> <p>1.1.3 Under High (Atmospheric) Gas Pressure (>10 torr) 6</p> <p>1.2 Energy Control 7</p> <p>1.2.1 Electron-Temperature Control 7</p> <p>1.2.2 Ion-Energy Control 10</p> <p>1.3 Dust Collection and Removal 11</p> <p>References 15</p> <p><b>2 Plasma Sources and Reactor Configurations 17</b><br /><i>P. Colpo, T. Meziani, and F. Rossi</i></p> <p>2.1 Introduction 17</p> <p>2.2 Characteristics of ICP 18</p> <p>2.2.1 Principle 18</p> <p>2.2.2 Transformer Model 19</p> <p>2.2.3 Technological Aspects 20</p> <p>2.3 Sources and Reactor Configuration 23</p> <p>2.3.1 Substrate Shape 23</p> <p>2.4 Conclusions 31</p> <p>References 32</p> <p><b>3 Advanced Simulations for Industrial Plasma Applications 35</b><br /><i>S.J. Kim, F. Iza, N. Babaeva, S.H. Lee, H.J. Lee, and J.K. Lee</i></p> <p>3.1 Introduction 35</p> <p>3.2 PIC Simulations 37</p> <p>3.2.1 Capacitively Coupled O2/Ar Plasmas 37</p> <p>3.2.2 Three-Dimensional (3D) Charge-up Simulation 42</p> <p>3.3 Fluid Simulations 47</p> <p>3.3.1 Capacitively Coupled Discharges 48</p> <p>3.3.2 Large Area Plasma Source 49</p> <p>3.4 Summary 51</p> <p>References 52</p> <p><b>4 Modeling and Diagnostics of He Discharges for Treatment of Polymers 55</b><br /><i>E. Amanatides and D. Mataras</i></p> <p>4.1 Introduction 55</p> <p>4.2 Experimental 56</p> <p>4.3 Model Description 57</p> <p>4.4 Results and Discussion 60</p> <p>4.4.1 Electrical Properties 61</p> <p>4.4.2 Gas-Phase Chemistry 66</p> <p>4.4.3 Plasma–Surface Interactions 71</p> <p>4.5 Conclusions 72</p> <p>References 73</p> <p><b>5 Three-Dimensional Modeling of Thermal Plasmas (RF and Transferred Arc) for the Design of Sources and Industrial Processes 75</b><br /><i>V. Colombo, E. Ghedini, A. Mentrelli, and T. Trombetti</i></p> <p>5.1 Introduction 76</p> <p>5.2 Inductively Coupled Plasma Torches 77</p> <p>5.2.1 Modeling Approach 77</p> <p>5.2.2 Selected Simulation Results 82</p> <p>5.2.2.1 High-Definition Numerical Simulation of Industrial</p> <p>5.3 DC Transferred Arc Plasma Torches 85</p> <p>5.3.1 Modeling Approach 85</p> <p>5.3.2 Selected Simulation Results 89</p> <p>References 95</p> <p><b>6 Radiofrequency Plasma Sources for Semiconductor Processing 99</b><br /><i>F. F. Chen</i></p> <p>6.1 Introduction 99</p> <p>6.2 Capacitively Coupled Plasmas 99</p> <p>6.2.1 Dual-Frequency CCPs 100</p> <p>6.3 Inductively Coupled Plasmas 103</p> <p>6.3.1 General Description 103</p> <p>6.3.2 Anomalous Skin Depth 106</p> <p>6.3.3 Magnetized ICPs 107</p> <p>6.4 Helicon Wave Sources 109</p> <p>6.4.1 General Description 109</p> <p>6.4.2 Unusual Features 110</p> <p>6.4.3 Extended Helicon Sources 114</p> <p>References 114</p> <p><b>7 Advanced Plasma Diagnostics for Thin-Film Deposition 117</b><br /><i>R. Engeln, M.C.M. van de Sanden, W.M.M. Kessels, M. Creatore, and D.C. Schram</i></p> <p>7.1 Introduction 117</p> <p>7.2 Diagnostics Available to the (Plasma) Physicist 118</p> <p>7.3 Optical Diagnostics 118</p> <p>7.3.1 Thomson–Rayleigh and Raman Scattering 118</p> <p>7.3.2 Laser-Induced Fluorescence 121</p> <p>7.3.3 Absorption Techniques 122</p> <p>7.3.4 Surface Diagnostics 126</p> <p>7.4 Applications 127</p> <p>7.4.1 Thomson–Rayleigh Scattering and Raman Scattering 127</p> <p>7.4.2 Laser-Induced Fluorescence 128</p> <p>7.4.3 Absorption Spectroscopy 130</p> <p>7.4.4 Surface Diagnostics 133</p> <p>References 134</p> <p><b>8 Plasma Processing of Polymers by a Low-Frequency Discharge with Asymmetrical Configuration of Electrodes 137</b><br /><i>F. Arefi-Khonsari and M. Tatoulian</i></p> <p>8.1 Introduction 137</p> <p>8.2 Plasma Treatment of Polymers 139</p> <p>8.2.1 Surface Activation 139</p> <p>8.2.2 Functionalization (Grafting) Reactions 139</p> <p>8.2.3 Crosslinking Reactions 140</p> <p>8.2.4 Surface Etching (Ablation) Reactions 142</p> <p>8.3 Surface Treatment of Polymers in a Low-Frequency, Low-Pressure Reactor With Asymmetrical Configuration of Electrodes (ACE) 145</p> <p>8.3.1 Surface Functionalization 147</p> <p>8.3.2 Ablation Effect of an Ammonia Plasma During Grafting of Nitrogen Groups 148</p> <p>8.3.3 Acid–Base Properties 151</p> <p>8.3.4 Aging of Plasma-Treated Surfaces 155</p> <p>8.4 Plasma Polymerization 158</p> <p>8.4.1 Influence of the Chemical Composition of the Substrate on the Plasma Polymerization of a Mixture of CF4þH2 160</p> <p>8.4.2 Plasma Polymerization of Acrylic Acid 165</p> <p>8.5 Conclusions 169</p> <p>References 170</p> <p><b>9 Fundamentals on Plasma Deposition of Fluorocarbon Films 175</b><br /><i>A. Milella, F. Palumbo, and R. d’Agostino</i></p> <p>9.1 Deposition of Fluorocarbon Films by Continuous Discharges 175</p> <p>9.1.1 Active Species in Fluorocarbon Plasmas 176</p> <p>9.1.2 Effect of Ion Bombardment 178</p> <p>9.1.3 The Activated Growth Model 179</p> <p>9.2 Afterglow Deposition of Fluorocarbon Films 181</p> <p>9.3 Deposition of Fluorocarbon Films by Modulated Glow Discharges 183</p> <p>9.4 Deposition of Nanostructured Thin Films from Tetrafluoroethylene Glow Discharges 185</p> <p>References 193</p> <p><b>10 Plasma CVD Processes for Thin Film Silicon Solar Cells 197</b><br /><i>A. Matsuda</i></p> <p>10.1 Introduction 197</p> <p>10.2 Dissociation Reaction Processes in SiH4 and SiH4/H2 Plasmas 198</p> <p>10.3 Film-Growth Processes on the Surface 199</p> <p>10.3.1 Growth of a-Si:H 199</p> <p>10.3.2 Growth of mc-Si:H 200</p> <p>10.4 Defect Density Determination Process in a-Si:H and mc-Si:H 203</p> <p>10.4.1 Growth of a-Si:H and mc-Si:H with SiH3 (H) Radicals 203</p> <p>10.4.2 Contribution of Short-Lifetime Species 204</p> <p>10.5 Solar Cell Applications 206</p> <p>10.6 Recent Progress in Material Issues for Thin-Film Silicon Solar Cells 207</p> <p>10.6.1 Control of Photoinduced Degradation in a-Si:H 207</p> <p>10.6.2 High-Rate Growth of Device-Grade mc-Si:H 208</p> <p>10.7 Summary 210</p> <p>References 210</p> <p><b>11 VHF Plasma Production for Solar Cells 211</b><br /><i>Y. Kawai, Y. Takeuchi, H. Mashima, Y. Yamauchi, and H. Takatsuka</i></p> <p>11.1 Introduction 211</p> <p>11.2 Characteristics of VHF H2 Plasma 212</p> <p>11.3 Characteristics of VHF SiH4 Plasma 214</p> <p>11.4 Characteristics of Large-Area VHF H2 Plasma 219</p> <p>11.5 Short-Gap VHF Discharge H2 Plasma 222</p> <p>References 226</p> <p><b>12 Growth Control of Clusters in Reactive Plasmas and Application to High-Stability a-Si:H Film Deposition 227</b><br /><i>Y. Watanabe, M. Shiratani, and K. Koga</i></p> <p>12.1 Introduction 227</p> <p>12.2 Review of Cluster Growth Observation in SiH4 HFCCP 228</p> <p>12.2.1 Precursor for Cluster Growth Initiation 228</p> <p>12.2.2 Cluster Nucleation Phase 230</p> <p>12.2.3 Effects of Gas Flow on Cluster Growth 231</p> <p>12.2.4 Effects of Gas Temperature Gradient on Cluster Growth 232</p> <p>12.2.5 Effects of H2 Dilution on Cluster Growth 233</p> <p>12.2.6 Effects of Discharge Modulation on Cluster Growth 234</p> <p>12.3 Cluster Growth Kinetics in SiH4 HFCCP 235</p> <p>12.4 Growth Control of Clusters 237</p> <p>12.4.1 Control of Production Rate of Precursor Radicals 238</p> <p>12.4.2 Control of Growth Reactions and Transport Loss of Clusters 238</p> <p>12.5 Application of Cluster Growth Control to High-Stability a-Si:H Film Deposition 238</p> <p>12.6 Conclusions 241</p> <p>References 241</p> <p><b>13 Micro- and Nanostructuring in Plasma Processes for Biomaterials: Micro- and Nano-features as Powerful Tools to Address Selective Biological Responses 243</b><br /><i>E. Sardella, R. Gristina, R. d’Agostino, and P. Favia</i></p> <p>13.1 Introduction: Micro and Nano, a Good Point of View in Biomedicine 243</p> <p>13.2 Micro- and Nanofeatures Modulate Biointeractions In Vivo and In Vitro 246</p> <p>13.3 Micro- and Nano-fabrication Technologies 249</p> <p>13.3.1 Photolithography: The Role of Photolithographic Masks 249</p> <p>13.3.2 Soft Lithography 255</p> <p>13.3.3 Plasma-Assisted Micropatterning: The Role of Physical Masks 256</p> <p>13.3.4 Novel Approaches in Plasma-Patterning Procedures 262</p> <p>13.4 Conclusions 264</p> <p>References 264</p> <p><b>14 Chemical Immobilization of Biomolecules on Plasma-Modified Substrates for Biomedical Applications 269</b><br /><i>L.C. Lopez, R. Gristina, Riccardo d’Agostino, and Pietro Favia</i></p> <p>14.1 Introduction 270</p> <p>14.2 Immobilization of Biomolecules 274</p> <p>14.2.1 Immobilization of PEO Chains (Unfouling Surfaces) 274</p> <p>14.2.2 Immobilization of Polysaccharides 275</p> <p>14.2.3 Immobilization of Proteins and Peptides 276</p> <p>14.2.4 Immobilization of Enzymes 280</p> <p>14.2.5 Immobilization of Carbohydrates 281</p> <p>14.3 Conclusions 282</p> <p>14.4 List of Abbreviations 283</p> <p>References 284</p> <p><b>15 In Vitro Methods to Assess the Biocompatibility of Plasma-Modified Surfaces 287</b><br /><i>M. Nardulli, R. Gristina, Riccardo d’Agostino, and Pietro Favia</i></p> <p>15.1 Introduction 287</p> <p>15.2 Surface Modification Methods: Plasma Processes and Biomolecule Immobilization 289</p> <p>15.3 In Vitro Cell Culture Tests of Artificial Surfaces 290</p> <p>15.4 Cytotoxicity Analysis 292</p> <p>15.4.1 Viability Assays 292</p> <p>15.4.2 Metabolic Assays 293</p> <p>15.4.3 Irritancy Assays 294</p> <p>15.5 Analysis of Cell Adhesion 294</p> <p>15.6 Analysis of Cell Functions 298</p> <p>15.7 Conclusions 299</p> <p>References 299</p> <p><b>16 Cold Gas Plasma in Biology and Medicine 301</b><br /><i>E. Stoffels, I.E. Kieft, R.E.J. Sladek, M.A.M.J. Van Zandvoort, and D.W. Slaaf</i></p> <p>16.1 Introduction 301</p> <p>16.2 Experiments 303</p> <p>16.3 Plasma Characteristics 307</p> <p>16.4 Bacterial Inactivation 311</p> <p>16.5 Cell and Tissue Treatment 314</p> <p>16.6 Concluding Remarks and Perspectives 317</p> <p>References 317</p> <p><b>17 Mechanisms of Sterilization and Decontamination of Surfaces by Low-Pressure Plasma 319</b><br /><i>F. Rossi, O. Kylián, and M. Hasiwa</i></p> <p>17.1 Introduction 319</p> <p>17.1.1 Overview of Sterilization and Decontamination Methods 320</p> <p>17.2 Bacterial Spore Sterilization 322</p> <p>17.3 Depyrogenation 324</p> <p>17.4 Protein Removal 324</p> <p>17.5 Experimental 325</p> <p>17.5.1 Experimental Setup 325</p> <p>17.5.2 Biological Tests 326</p> <p>17.5.3 Pyrogen Samples Detection 326</p> <p>17.5.4 Protein Removal Tests 327</p> <p>17.6 Results 327</p> <p>17.6.1 Sterilization 327</p> <p>17.6.2 Depyrogenation 329</p> <p>17.6.3 Protein Removal 331</p> <p>17.7 Discussion 332</p> <p>17.7.1 Plasma Sterilization 332</p> <p>17.7.2 Depyrogenation 338</p> <p>17.7.3 Protein Removal 338</p> <p>17.8 Conclusions 338</p> <p>References 339</p> <p><b>18 Application of Atmospheric Pressure Glow Plasma: Powder Coating in Atmospheric Pressure Glow Plasma 341</b><br /><i>M. Kogoma and K. Tanaka</i></p> <p>18.1 Introduction 341</p> <p>18.2 Development of Silica Coating Methods for Powdered Organic and Inorganic Pigments with Atmospheric Pressure Glow Plasma 341</p> <p>18.2.1 Experimental 342</p> <p>18.2.2 Results and Discussion 343</p> <p>18.2.3 Conclusion 347</p> <p>18.3 Application to TiO2 Fine Powder Coating with Thin Film of SiO2 to Quench the Photosensitive Ability of the Powder 348</p> <p>18.3.1 Experimental 348</p> <p>18.3.2 Results and Discussion 349</p> <p>18.3.3 Conclusion 352</p> <p>References 352</p> <p><b>19 Hydrocarbon and Fluorocarbon Thin Film Deposition in Atmospheric Pressure Glow Dielectric Barrier Discharges 353</b><br /><i>F. Fanelli, R. d’Agostino, and F. Fracassi</i></p> <p>19.1 Introduction 353</p> <p>19.2 DBDs for Thin Film Deposition: State of the Art 354</p> <p>19.2.1 Filamentary and Glow Dielectric Barrier Discharges 354</p> <p>19.2.2 Electrode Configurations and Gas Injection Systems 356</p> <p>19.2.3 Hydrocarbon Thin Film Deposition 357</p> <p>19.2.4 Fluorocarbon Thin Film Deposition 359</p> <p>19.3 Experimental Results 360</p> <p>19.3.1 Apparatus and Diagnostics 360</p> <p>19.3.2 Deposition of Hydrocarbon Films by Means of He–C2H4GDBDs 361</p> <p>19.3.3 Deposition of Fluorocarbon Films by Means of He–C3F6 and He–C3F8–H2 GDBDs 364</p> <p>19.4 Conclusion 366</p> <p>References 367</p> <p><b>20 Remark on Production of Atmospheric Pressure Non-thermal Plasmas for Modern Applications 371</b><br /><i>R. Itatani</i></p> <p>20.1 Introduction 371</p> <p>20.2 Why Atmospheric Pressure Non-thermal Plasmas Are Attractive 372</p> <p>20.3 Origin of Activities of Plasmas 373</p> <p>20.4 Limits of Similarity Law of Gas Discharge 373</p> <p>20.5 Reduction of Gas Temperature 374</p> <p>20.6 Examples of Realization of the Above Discussion 375</p> <p>20.7 Large-Area Plasma Production 376</p> <p>20.8 Summery of Evidence To Date to Obtain Uniform DBDs 376</p> <p>20.9 Consideration to Realize Uniform Plasmas of Large Area 377</p> <p>20.10 Factors to be Considered to Realize Uniformity of DBD Plasma 377</p> <p>20.11 Remote Plasmas 378</p> <p>20.12 Conclusion 379</p> <p>References 380</p> <p><b>21 Present Status and Future of Color Plasma Displays 381</b><br /><i>T. Shinoda</i></p> <p>21.1 Introduction 381</p> <p>21.2 Development of Color PDP Technologies 383</p> <p>21.2.1 Panel Structure 383</p> <p>21.2.2 Driving Technologies 387</p> <p>21.3 Latest Research and Development 388</p> <p>21.3.1 Analysis of Discharge in PDPs 388</p> <p>21.3.2 High Luminance and High Luminous Efficiency 389</p> <p>21.3.3 ALIS Structure 390</p> <p>21.4 Conclusion 391</p> <p>References 391</p> <p><b>22 Characteristics of PDP Plasmas 393</b><br /><i>H. Ikegami</i></p> <p>22.1 Introduction 393</p> <p>22.2 PDP Operation 394</p> <p>22.3 PDP Plasma Structure 395</p> <p>22.4 Plasma Density and Electron Temperature 397</p> <p>22.5 Remarks 399</p> <p>References 399</p> <p><b>23 Recent Progress in Plasma Spray Processing 401</b><br /><i>M. Kambara, H. Huang, and T. Yoshida</i></p> <p>23.1 Introduction 401</p> <p>23.2 Key Elements in Thermal Plasma Spray Technology 401</p> <p>23.3 Thermal Plasma Spraying for Coating Technologies 402</p> <p>23.3.1 Plasma Powder Spraying 403</p> <p>23.3.2 Plasma Spray CVD 406</p> <p>23.3.3 Plasma Spray PVD 407</p> <p>23.3.4 Thermal Barrier Coatings 407</p> <p>23.4 Thermal Plasma Spraying for Powder Metallurgical Engineering 414</p> <p>23.4.1 Thermal Plasma Spheroidization 414</p> <p>23.4.2 Plasma Spray CVD 415</p> <p>23.4.3 Plasma Spray PVD 415</p> <p>23.5 Thermal Plasma Spraying for Waste Treatments 416</p> <p>23.6 Concluding Remarks and Prospects 417</p> <p>References 418</p> <p><b>24 Electrohydraulic Discharge Direct Plasma Water Treatment Processes 421</b><br /><i>J.-S. Chang, S. Dickson, Y. Guo, K. Urashima, and M.B. Emelko</i></p> <p>24.1 Introduction 421</p> <p>24.2 Characteristics of Electrohydraulic Discharge Systems 421</p> <p>24.3 Treatment Mechanisms Generated by Electrohydraulic Discharge 422</p> <p>24.4 Treatment of Chemical Contaminants by Electrohydraulic Discharge 424</p> <p>24.5 Disinfection of Pathogenic Contaminants by PAED 429</p> <p>24.6 Municipal Sludge Treatment 430</p> <p>24.7 Concluding Remarks 432</p> <p>References 432</p> <p><b>25 Development and Physics Issues of an Advanced Space Propulsion 435</b><br /><i>M. Inutake, A. Ando, H. Tobari, and K. Hattori</i></p> <p>25.1 Introduction 436</p> <p>25.2 Performance of Rocket Propulsion Systems 437</p> <p>25.3 Experimental Researches for an Advanced Space Thruster 440</p> <p>25.3.1 Experimental Apparatus and Diagnostics 440</p> <p>25.3.2 Improvement of an MPDA Plasma Using aMagnetic Laval Nozzle 442</p> <p>25.3.3 RF Heating of a High Mach Number Plasma Flow 444</p> <p>25.4 Summary 447</p> <p>References 448</p> <p>Index 449</p>
"this book is worth reading for the ambitious graduate student and very interesting for the specialist in academia and industry who intends to revamp his know-how." (<i>Plasma Process. Polym</i>. 2008, 5)
Professor Riccardo d'Agostino is director of the Department of Chemistry at the University of Bari, Italy. His research is focused on low pressure plasma processes and diagnostics for the modification of materials. During is career, he authored 180 scientific papers and edited four books and three international proceedings. His memberships include the managing committee of Plasma Science Technique Division of IUVSTA and, as chairman, the IUPAC Committee on "Plasma Chemistry" (1989-1991). He served as co-editor of the journal Plasmas and Polymers (until 2003) and chaired numerous international conferences.<br> <br> Professor Pietro Favia is Associate Professor of Chemistry and Chemistry of Materials at the Department of Chemistry, University of Bari, Italy. During his career he focused on low pressure plasma processes, plasma diagnostics and surface characterization techniques. He authored about 100 papers, acted as editor of two books and served in many organizing and scientific committees of renowned international conferences on Plasma Chemistry.<br> <br> Professors Favia and d'Agostino are the two editors in chief of the journal Plasma Processes and Polymers (PPP).<br> The co-editors, Professors Farzaneh Arefi-Konsari, Yoshinobu Kawai, Noriyoshi Sato, Hideo Ikegami, are also experienced plasma researchers. They are responsible for sub-areas within the monograph, on which they have concentrated in their respective careers.<br>
Plasma technology is a rapidly growing field of science and technology with a boom of industrial applications. Panel display technology, solar cell development as well as tissue engineering and prostheses are just a few examples of significance to physicists, chemists, biologists and engineers alike. Edited and compiled by scientists with a global reputation in plasma research, this monograph compiles contributions on the latest results in plasma technology.<br> <br> From the Contents:<br> Basic Approaches to Plasma Production and Control<br> Plasma Sources and Reactor Configurations<br> Advanced Simulations for Industrial Plasma Applications<br> Modeling and Diagnostics of He Discharges for Treatment of<br> Polymers<br> Three-Dimensional Modeling of Thermal Plasmas for the Design<br> of Sources<br> Radiofrequency Plasma Sources for Semiconductor Processing<br> Advanced Plasma Diagnostics for Thin-Film Deposition<br> Plasma Processing of Polymers by a Low-Frequency Discharge<br> Fundamentals on Plasma Deposition of Fluorocarbon Films<br> Plasma CVD Processes for Thin Film Silicon Solar Cells<br> VHF Plasma Production for Solar Cells<br> Growth Control of Clusters in Reactive Plasmas<br> Micro- and Nanostructuring in Plasma Processes for Biomaterials<br> Chemical Immobilization of Biomolecules on Plasma-Modified<br> Substrates<br> In Vitro Methods to Assess the Biocompatibility of Plasma-Modified Surfaces<br> Cold Gas Plasma in Biology and Medicine<br> Mechanisms of Sterilization and Decontamination of Surfaces<br> Application of Atmospheric Pressure Glow Plasma<br> Hydrocarbon and Fluorocarbon Thin Film Deposition<br> Remark on Production of Atmospheric Pressure Non-thermal<br> Plasmas<br> Present Status and Future of Color Plasma Displays<br> Characteristics of PDP Plasmas<br> Recent Progress in Plasma Spray Processing<br> Electrohydraulic Discharge Direct Plasma Water Treatment<br> Processes<br> Development and Physics Issues of an Advanced Space Prop

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Acoustics
Fundamentals of Acoustics
von: Michel Bruneau, Thomas Socit Franaise d'Acoustique
PDF ebook
266,99 €
Crystal Growth Technology
Crystal Growth Technology
von: Hans J. Scheel, Tsuguo Fukuda
PDF ebook
163,99 €
Plasma Processes and Polymers
Plasma Processes and Polymers
von: Riccardo d'Agostino, Pietro Favia, Christian Oehr, Michael R. Wertheimer
PDF ebook
210,99 €