Details

Advanced Materials for Agriculture, Food, and Environmental Safety


Advanced Materials for Agriculture, Food, and Environmental Safety


Advanced Material Series 1. Aufl.

von: Ashutosh Tiwari, Mikael Syväjärvi

177,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 11.08.2014
ISBN/EAN: 9781118773888
Sprache: englisch
Anzahl Seiten: 528

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><br /> The book focuses on the role of advanced materials in the food, water and environmental applications.  The monitoring of harmful organisms and toxicants in water, food and beverages is mainly discussed in the respective chapters. The senior contributors write on the following topics:</p> <ul> <li>Layered double hydroxides and environment</li> <li>Corrosion resistance of aluminium alloys of silanes</li> <li>New generation material for the removal of arsenic from water</li> <li>Prediction and optimization of heavy clay products quality</li> <li>Enhancement of physical and mechanical properties of fiber</li> <li>Environment friendly acrylates latices</li> <li>Nanoparticles for trace analysis of toxins</li> <li>Recent development on gold nanomaterial as catalyst </li> <li>Nanosized metal oxide based adsorbents for heavy metal removal</li> <li>Phytosynthesized transition metal nanoparticles- novel functional agents for textiles</li> <li>Kinetics and equilibrium modeling</li> <li>Magnetic nanoparticles for heavy metal removal</li> <li>Potential applications of nanoparticles as antipathogens</li> <li>Gas barrier properties of biopolymer based nanocomposites: Application in food packing</li> <li>Application of zero-valent iron nanoparticles for environmental clean up</li> <li>Environmental application of novel TiO2 nanoparticles</li> </ul>
Preface xv <br /> <br /> <b>Part 1: Fundamental Methodologies 1</b> <br /> <br /> <b>1 Layered Double Hydroxides and the Environment: An Overview 3<br /> </b><i>Amita Jaiswal, Ravindra Kumar Gautam and Mahesh Chandra Chattopadhyaya<br /> <br /> </i>1.1 Introduction 4<br /> <br /> 1.2 Structure of Layered Double Hydroxides 4<br /> <br /> 1.3 Properties of Layered Double Hydroxides 6<br /> <br /> 1.4 Synthesis of Layered Double Hydroxides 7<br /> <br /> 1.5 Characterization of Layered Double Hydroxides 11<br /> <br /> 1.6 Applications of Layered Double Hydroxides 13<br /> <br /> 1.7 Conclusions 19<br /> <br /> Acknowledgements 19<br /> <br /> References 20<br /> <br /> <b>2 Improvement of the Corrosion Resistance of Aluminium Alloys Applying Different Types of Silanes 27<br /> </b><i>Anca-Iulia Stoica, Norica Carmen Godja, Andje Stankovic, Matthias Polzler, Erich Kny and Christoph Kleber<br /> <br /> </i>2.1 Introduction 28<br /> <br /> 2.2 Silanes for Surface Treatment 31<br /> <br /> 2.3 Materials, Methods and Experimentals 40<br /> <br /> 2.4 Surface Analytics 42<br /> <br /> 2.5 Results and Discussion 43<br /> <br /> 2.6 Conclusions 56<br /> <br /> Acknowledgements 57<br /> <br /> References 57<br /> <br /> <b>3 New Generation Material for the Removal of Arsenic from Water 61<br /> </b><i>Dinesh Kumar and Vaishali Tomar<br /> <br /> </i>3.1 Introduction 62<br /> <br /> 3.2 Arsenic Desorption/Sorbent Regeneration 76<br /> <br /> 3.3 Conclusions 78<br /> <br /> Acknowledgement 79<br /> <br /> References 79<br /> <br /> <b>4 Prediction and Optimization of Heavy Clay Products Quality 87<br /> </b><i>Milica Arsenovic,  Lato Pezo, Lidija Mancic and Zagorka  Radojevic<br /> <br /> </i>4.1 Introduction 87<br /> <br /> 4.2 Materials and Methods 89<br /> <br /> 4.3 Results and Discussions 94<br /> <br /> 4.4 Conclusions 117<br /> <br /> Acknowledgement 118<br /> <br /> References 118<br /> <br /> <b>5 Enhancement of Physical and Mechanical Properties of Sugar Palm Fiber via Vacuum Resin Impregnation 121<br /> </b><i>M.R. Ishak, Z. Leman, S.M. Sapuan, M.Z.A. Rahman and U.M.K. Anwar<br /> <br /> </i>5.1 Introduction 122<br /> <br /> 5.2 Experimental 123<br /> <br /> 5.3 Results and Discussion 125<br /> <br /> 5.4 Conclusions 138<br /> <br /> Acknowledgments 139<br /> <br /> References 139<br /> <br /> <b>6 Environmentally-Friendly Acrylates-Based Polymer Latices 145<br /> </b><i>Sweta Shukla and J.S.P. Rai<br /> <br /> </i>6.1 Introduction 146<br /> <br /> 6.2 Polymerization Techniques 154<br /> <br /> References 170<br /> <br /> <b>Part 2: Inventive Nanotechnology 177<br /> <br /> </b><b>7 Nanoparticles for Trace Analysis of Toxins: Present and Future Scenario 179<br /> </b><i>Anupreet Kaur and Shivender Singh Saini<br /> <br /> </i>7.1 Introduction 179<br /> <br /> 7.2 Nanoremediation Using TiO2 Nanoparticles 180<br /> <br /> 7.3 Gold Nanoparticles for Nanoremediation 183<br /> <br /> 7.4 Zero-Valent Iron Nanoparticles 184<br /> <br /> 7.5 Silicon Oxide Nanoparticles for Nanoremediation 187<br /> <br /> 7.6 Other Materials for Nanoremediation 190<br /> <br /> 7.7 Conclusion 193<br /> <br /> References 193<br /> <br /> <b>8 Recent Developments in Gold Nanomaterial Catalysts for Oxidation Reaction through Green and<br /> Sustainable Routes 197<br /> </b><i>Biswajit Chowdhury, Chiranjit Santra, Sandip Mandal and Rawesh Kumar<br /> <br /> </i>8.1 Introduction 198<br /> <br /> 8.2 Propylene Epoxidation Reaction 202<br /> <br /> 8.3 Reaction Mechanism 211<br /> <br /> 8.4 Glucose Oxidation 214<br /> <br /> 8.5 Alcohol Oxidation 225<br /> <br /> 8.6 Conclusion 234<br /> <br /> References 234<br /> <br /> <b>9 Nanosized Metal Oxide-Based Adsorbents for Heavy Metal Removal: A Review 243<br /> </b><i>Deepak Pathania and Pardeep Singh<br /> <br /> </i>9.1 Introduction 244<br /> <br /> 9.2 Nanosized Metal Oxide 246<br /> <br /> 9.3 Hybrid Adsorbents 253<br /> <br /> 9.4 Conclusion 258<br /> <br /> References 258<br /> <br /> <b>10 Future Prospects of Phytosynthesized Transition Metal Nanoparticles as Novel Functional Agents for Textiles 265<br /> </b><i>Shahid-ul-Islam, Mohammad Shahid and Faqeer Mohammad<br /> <br /> </i>10.1 Introduction 266<br /> <br /> 10.2 Synthesis of Transition Metal Nanoparticle Using Various Plant Parts 266<br /> <br /> 10.3 Proposed Mechanisms 279<br /> <br /> 10.4 Transition Metal Nanoparticles as Novel Antimicrobial  Agents for Textile Modifications 282<br /> <br /> 10.5 Concluding Remarks and Future Aspects 284<br /> <br /> References 285<br /> <br /> <b>11 Functionalized Magnetic Nanoparticles for Heavy Metal Removal from Aqueous Solutions: Kinetics<br /> and Equilibrium Modeling 291<br /> </b><i>Ravindra Kumar Gautam, Amita Jaiswal and Mahesh Chandra Chattopadhyaya<br /> <br /> </i>11.1 Introduction 291<br /> <br /> 11.2 Sources of Heavy Metals in the Environment 292<br /> <br /> 11.3 Toxicity to Human Health and Ecosystems 299<br /> <br /> 11.4 Magnetic Nanoparticles 303<br /> <br /> 11.5 Synthesis of Magnetic Nanoparticles 304<br /> <br /> 11.6 Magnetic Nanoparticles in Wastewater Treatment 310<br /> <br /> 11.7 Modeling of Adsorption: Kinetic and Isotherm Models 316<br /> <br /> 11.8 Thermodynamic Analysis 322<br /> <br /> 11.9 Metal Recovery and Regeneration of Magnetic Nanoparticles 323<br /> <br /> 11.10 Conclusions 324<br /> <br /> Acknowledgements 325<br /> <br /> References 325<br /> <br /> <b>12 Potential Application of Nanoparticles as Antipathogens 333<br /> </b><i>Pratima Chauhan, Mini Mishra and Deepika Gupta<br /> <br /> </i>12.1 Introduction 333<br /> <br /> 12.2 Applications of Nanoparticles 336<br /> <br /> 12.3 Nanoparticles in Biology 340<br /> <br /> 12.4 Uses and Advantages of Nanoparticles in Medicine 341<br /> <br /> 12.5 Antibacterial Properties of Nanomaterials 342<br /> <br /> 12.6 Antiviral properties of Nanoparticles 345<br /> <br /> 12.7 Antifungal Activity 348<br /> <br /> 12.8 Mechanism of Action of Nanoparticle inside the Body 349<br /> <br /> 12.9 Detecting the Antipathogenicity of Nanoparticles on Microorganisms in Vitro 350<br /> <br /> 12.10 Types of Nanoparticles 351<br /> <br /> 12.11 Synthesis of Nanoparticles by Conventional Methods 351<br /> <br /> 12.12 Biological Synthesis of Nanoparticles 353<br /> <br /> 12.13 Characterizations of Nanoparticles 355<br /> <br /> 12.14 Biocompatibility of Nanoparticles 356<br /> <br /> 12.15 Toxic Effects of Nanoparticles 356<br /> <br /> 12.16 Conclusion 359<br /> <br /> References 360<br /> <br /> <b>13 Gas Barrier Properties of Biopolymer-Based Nanocomposites: Application in Food Packaging 369<br /> </b><i>Sarat Kumar Swain<br /> <br /> </i>13.1 Introduction 370<br /> <br /> 13.2 Experimental 372<br /> <br /> 13.3 Objective 372<br /> <br /> 13.4 Background of Food Packaging 373<br /> <br /> 13.5 Conclusion 382<br /> <br /> References 382<br /> <br /> <b>14 Application of Zero-Valent Iron Nanoparticles for Environmental Clean Up 385<br /> </b><i>Ritu Singh and Virendra Misra<br /> <br /> </i>14.1 Introduction 386<br /> <br /> 14.2 Zero-Valent Iron Nanoparticles: A Versatile Tool for Environmental Clean Up 388<br /> <br /> 14.3 Reduction Mechanisms and Pathways 406<br /> <br /> 14.4 Pilot- and Field-Scale Studies 408<br /> <br /> 14.5 Transport of nFe<sup>0</sup> in Environment 410<br /> <br /> 14.6 Integrated Approach 411<br /> <br /> 14.7 Challenges Ahead 412<br /> <br /> 14.8 Concluding Remarks 413<br /> <br /> References 414<br /> <br /> <b>15 Typical Synthesis and Environmental Application of Novel TiO<sub>2</sub> Nanoparticles 421<br /> </b><i>Tanmay Kumar Ghorai<br /> <br /> </i>15.1 Introduction 421<br /> <br /> 15.2 Use of Different Dyes 424<br /> <br /> 15.3 Synthetic Methods for Novel Titania Photocatalysts 427<br /> <br /> 15.4 Novel Chemical Synthesis Routes 438<br /> <br /> References 445<br /> <br /> <b>16 Zinc Oxide Nanowire Films: Solution Growth, Defect States and Electrical Conductivity 453<br /> </b><i>Ajay Kushwaha and M. Aslam<br /> <br /> </i>16.1 Introduction 453<br /> <br /> 16.2 Solution Growth of ZnO Nanowire Films 456<br /> <br /> 16.3 Defects and Photoluminescence Properties of ZnO 465<br /> <br /> 16.4 Role of Defect States in Electrical Conductivity of ZnO 469<br /> <br /> 16.5 Defects and Electrical Conductivity of ZnO Nanowire Films 471<br /> <br /> 16.6 ZnO Nanowires for Energy Conversion Devices 478<br /> <br /> References 483<br /> <br /> Index 493
<p><b>Ashutosh Tiwari</b> is an Associate Professor at the Biosensors and Bioelectronics Centre, Linköping University, Sweden; Editor-in-Chief, Advanced Materials Letters; Secretary General, International Association of Advanced Materials; a materials chemist and also a docent in the applied physics from Linköping University, Sweden. He has published more than 350 articles, patents, and conference proceedings in the field of materials science and technology and has edited/authored more than fifteen books on the advanced state-of-the-art of materials science.  He is a founding member of the Advanced Materials World Congress and the Indian Materials Congress.</p> <p><b>Mikael Syväjärvi</b> received his PhD degree in materials science from Linköping University, Sweden in 1999. His expertise is in materials growth and technologies of silicon carbide (SiC), graphene and related materials while his scientific focus area is material for energy and the environment. He initiated a European research collaboration in fluorescent and photovoltaic SiC, and has co-organized several symposiums at E-MRS. He has published more than 200 journal and conference papers. He is a co-inventor of The Cubic Sublimation Method for cubic SiC and the Fast Sublimation Growth Process that is applied for industrial development of fluorescent hexagonal SiC. He is also co-inventor of the High Temperature Graphene Process and a co-founder of Graphensic AB that manufactures and supplies graphene on SiC.</p>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €