Details

Advanced Magnetic and Optical Materials


Advanced Magnetic and Optical Materials


Advanced Material Series 1. Aufl.

von: Ashutosh Tiwari, Parameswar K. Iyer, Vijay Kumar, Hendrik Swart

173,99 €

Verlag: Wiley-Scrivener
Format: EPUB
Veröffentl.: 29.11.2016
ISBN/EAN: 9781119241959
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Advanced Magnetic and OpticalMaterials offers detailed up-to-date chapters on the functional optical and magnetic materials, engineering of quantum structures, high-tech magnets, characterization and new applications.  It brings together innovative methodologies and strategies adopted in the research and development of the subject and all the contributors are established specialists in the research area. The 14 chapters are organized in two parts: Part 1: Magnetic Materials Magnetic Heterostructures and superconducting order Magnetic Antiresonance in nanocomposites Magnetic bioactive glass-ceramics for bone healing and hyperthermic treatment of solid tumors Magnetic iron oxide nanoparticles Magnetic nanomaterial-based anticancer therapy Theoretical study of strained carbon-based nanobelts: Structural, energetical, electronic, and magnetic properties Room temperature molecular magnets – Modeling and applications Part 2: Optical Materials Advances and future of white LED phosphors for solid-state lighting Design of luminescent materials with “Turn-on/off” response for anions and cations Recent advancements in luminescent materials and their potential applications Strongly confined quantum dots: Emission limiting, photonic doping, and magneto-optical effects Microstructure characterization of some quantum dots synthesized by mechanical alloying Advances in functional luminescent materials and phosphors Development in organic light emitting materials and their potential applications
Preface xix Part 1 Magnetic Materials 1 Superconducting Order in Magnetic Heterostructures 3 Sol H. Jacobsen, Jabir Ali Ouassou and Jacob Linder 1.1 Introduction 3 1.2 Fundamental Physics 6 1.3 Theoretical Framework 15 1.4 Experimental Status 23 1.5 Novel Predictions 33 1.6 Outlook 37 Acknowledgements 38 References 39 2 Magnetic Antiresonance in Nanocomposite Materials 47 Anatoly B. Rinkevich, Dmitry V. Perov and Olga V. Nemytova 2.1 Introduction: Phenomenon of Magnetic Antiresonance 47 2.2 Magnetic Antiresonance Review 49 2.3 Phase Composition and Structure of Nanocomposites Based on Artificial Opals 54 2.4 Experimental Methods of the Antiresonance Investigation 56 2.5 Nanocomposites Where the Antiresonance Is Observed in 60 2.6 Conditions of Magnetic Antiresonance Observation in Non-conducting Nanocomposite Plate 63 2.7 Magnetic Field Dependence of Transmission and Reflection Coefficients 70 2.8 Frequency Dependence of Resonance Amplitude 72 2.9 Magnetic Resonance and Antiresonance upon Parallel and Perpendicular Orientation of Microwave and a Permanent Magnetic Field 74 2.10 Conclusion 76 Acknowledgement 77 References 77 3 Magnetic Bioactive Glass Ceramics for Bone Healing and Hyperthermic Treatment of Solid Tumors 81 Andrea Cochis, Marta Miola, Oana Bretcanu, Lia Rimondini and Enrica Vernè 3.1 Bone and Cancer: A Hazardous Attraction 82 3.2 Hyperthermia Therapy for Cancer Treatment 86 3.3 Evidences of Hyperthermia Efficacy 94 3.4 Magnetic Composites for Hyperthermia Treatment 95 3.5 Conclusions 103 References 103 4 Magnetic Iron Oxide Nanoparticles: Advances on Controlled Synthesis, Multifunctionalization, and Biomedical Applications 113 Dung The Nguyen and Kyo-Seon Kim 4.1 Introduction 114 4.2 Controlled Synthesis of Fe3O4 Nanoparticles 115 4.3 Surface Modification of Fe3O4 Nanoparticles for Biomedical Applications 122 4.4 Magnetism and Magnetically Induced Heating of Fe3O4 Nanoparticles 126 4.5 Applications of Fe3O4 Nanoparticles to Magnetic Hyperthermia 130 4.6 Applications of Fe3O4 Nanoparticles to Hyperthermia-based Controlled Drug Delivery 132 4.7 Conclusions 134 Acknowledgment 135 References 135 5 Magnetic Nanomaterial-based Anticancer Therapy 141 Catalano Enrico 5.1 Introduction 142 5.2 Magnetic Nanomaterials 144 5.3 Biomedical Applications of Magnetic Nanomaterials 145 5.4 Magnetic Nanomaterials for Cancer Therapies 146 5.5 Relevance of Nanotechnology to Cancer Therapy 147 5.6 Cancer Therapy with Magnetic Nanoparticle Drug Delivery 148 5.7 Drug Delivery in the Cancer Therapy 149 5.8 Magnetic Hyperthermia 151 5.9 Role of Theranostic Nanomedicine in Cancer Treatment 154 5.10 Magnetic Nanomaterials for Chemotherapy 155 5.11 Magnetic Nanomaterials as Carrier for Cancer Gene Therapeutics 156 5.12 Conclusions 156 5.13 Future Prospects 158 References 159 6 Theoretical Study of Strained Carbon-based Nanobelts: Structural, Energetic, Electronic, and Magnetic properties of [n]Cyclacenes 165 E. San-Fabián, A. Pérez-Guardiola, M. Moral, A. J. Pérez-Jiménez and J. C. Sancho-García 6.1 Introduction 166 6.2 Computational Strategy and Associated Details 168 6.3 Results and Discussion 171 6.4 Conclusions 181 Acknowledgments 182 References 182 7 Room Temperature Molecular Magnets: Modeling and Applications 185 Mihai A. Gîr?u and Corneliu I. Oprea 7.1 Introduction 186 7.2 Experimental Background 187 7.3 Ideal Structure and Sources of Structural Disorder 193 7.4 Exchange Coupling Constants and Ferrimagnetic Ordering 200 7.5 Magnetic Anisotropy 224 7.6 Applications of V[TCNE]x 233 7.7 Conclusions 241 Acknowledgments 243 References 243 8 Advances and Future of White LED Phosphors for Solid-State Lighting 251 Xianwen Zhang and Xin Zhang 8.1 Light Generation Mechanisms and History of LEDs Chips 251 8.2 Fabrication of WLEDs 254 8.3 Evaluation Criteria of WLEDs 257 8.4 Phosphors for WLEDs 261 8.5 Conclusions 271 References 272 Part 2 Optical Materials 277 9 Design of Luminescent Materials with “Turn-On/Off” Response for Anions and Cations 279 Serkan Erdemir and Sait Malkondu 9.1 Introduction 280 9.2 Luminescent Materials for Sensing of Cations 283 9.3 Luminescent Materials for Sensing of Anions 302 9.4 Conclusion 307 Acknowledgments 308 References 308 10 Recent Advancements in Luminescent Materials and Their Potential Applications 317 Devender Singh, Vijeta Tanwar, Shri Bhagwan and Ishwar Singh 10.1 Phosphor 317 10.2 An Overview on the Past Research on Phosphor 318 10.3 Luminescence 319 10.4 Mechanism of Emission of Light in Phosphor Particles 320 10.5 How Luminescence Occur in Luminescent Materials? 321 10.6 Luminescence Is Broadly Classified within the Following Categories 326 10.7 Inorganic phosphors 332 10.8 Organic Phosphors 332 10.9 Optical Properties of Inorganic Phosphors 333 10.10 Role of Activator and Coactivator 333 10.11 Role of Rare Earth as Activator and Coactivator in Phosphors 334 10.12 There Are Different Classes of Phosphors, Which May Be Classified According to the Host Lattice 342 10.13 Applications of Phosphors 345 10.14 Future Prospects of Phosphors 348 10.15 Conclusions 349 References 349 11 Strongly Confined PbS Quantum Dots: Emission Limiting, Photonic Doping, and Magneto-optical Effects 353 P. Barik, A. K. Singh, E. V. García-Ramírez, J. A. Reyes-Esqueda, J. S. Wang, H. Xi and B. Ullrich 11.1 Introduction 354 11.2 QDs Used and Sample Preparation 356 11.3 Basic Properties of PbS Quantum Dots 356 11.4 Measuring Techniques and Equipment Employed 358 11.5 Photoluminescence Limiting of Colloidal PbS Quantum Dots 361 11.6 Photonic Doping of Soft Matter 364 11.7 Magneto-optical Properties 370 11.8 Conclusions 380 Acknowledgment 380 References 380 12 Microstructure Characterization of Some Quantum Dots Synthesized by Mechanical Alloying 385 S. Sain and S.K. Pradhan 12.1 Introduction 386 12.2 Brief History of QDs 387 12.3 Theory of QDs 388 12.4 Different Processes of Synthesis of QDs 391 12.5 Structure of QDs 392 12.6 Applications of QDs 393 12.7 Mechanical Alloying 395 12.8 The Rietveld Refinement Method 398 12.9 Some Previous Work on Metal Chalcogenide QDs Prepared by Mechanical Alloying from Other Groups 402 12.11 Conclusions 419 References 419 13 Advances in Functional Luminescent Materials and Phosphors 425 Radhaballabh Debnath 13.1 Introduction 425 13.2 Some Theoretical Aspects of the Processes of Light Absorption/Emission by Matter 427 13.3 Sensitization/Energy Transfer Phenomenon in Luminescence Process 433 13.4 Functional Phosphors 435 13.5 Classifications of Functional Phosphors 438 13.6 Solid-state Luminescent Materials for Laser 460 Acknowledgments 467 References 467 14 Development in Organic Light-emitting Materials and Their Potential Applications 473 Devender Singh, Shri Bhagwan, Raman Kumar Saini, Vandna Nishal and Ishwar Singh 14.1 Luminescence in Organic Molecules 473 14.2 Types of Luminescence 475 14.3 Mechanism of Luminescence 479 14.4 Organic Compounds as Luminescent Material 480 14.5 Possible Transitions in Organic Molecules 494 14.6 OLED’s Structure and Composition 495 14.7 Basic Principle of OLEDs 502 14.8 Working of OLEDs 502 14.9 Light Emission in OLEDs 504 14.10 Types of OLED Displays 505 14.11 Techniques of Fabrication of OLEDs Devices 506 14.12 Advantages of OLEDs 507 14.13 Potential Applications of OLEDs 511 14.14 Future Prospects of OLEDs 512 14.15 Conclusions 512 References 513

Diese Produkte könnten Sie auch interessieren: