Details

Advanced Hierarchical Nanostructured Materials


Advanced Hierarchical Nanostructured Materials


1. Aufl.

von: Qiang Zhang, Fei Wei

160,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 27.02.2014
ISBN/EAN: 9783527664962
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

An overview of the recent developments and prospects in this highly topical area, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbons, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. <br> Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.<br>
<p>Preface XIII</p> <p>List of Contributors XV</p> <p><b>1 Structural Diversity in Ordered Mesoporous Silica Materials 1</b><br /><i>Yu Han, Yihan Zhu, and Daliang Zhang</i></p> <p>1.1 Introduction 2</p> <p>1.2 Electron Crystallography and Electron Tomography 8</p> <p>1.2.1 Electron Crystallography 9</p> <p>1.2.2 Electron Tomography 11</p> <p>1.3 Diverse Structures of Ordered Mesoporous Silicas 12</p> <p>1.3.1 2D Hexagonal Structures with Cylindrical Channels 13</p> <p>1.3.2 3D Mesoporous Structures with Cage-Type Pores 13</p> <p>1.3.3 Bi-Continuous Mesoporous Structures 17</p> <p>1.3.4 Tri-Continuous Mesoporous Structure IBN-9 19</p> <p>1.3.5 Low-Symmetry Mesoporous Structures 21</p> <p>1.3.6 Transition and Intergrowth of Different Mesoporous Structures 24</p> <p>1.4 Outlook 26</p> <p>References 28</p> <p><b>2 Hierarchically Nanostructured Biological Materials 35</b><br /><i>Jong Seto, Ashit Rao, and Helmut Cölfen</i></p> <p>2.1 Introduction 35</p> <p>2.2 ‘‘Bottom-Up’’ Design Scheme 36</p> <p>2.3 Organic–Inorganic Interfaces 38</p> <p>2.4 Engineering Principles in Biological Materials 40</p> <p>2.4.1 Anisotropy 40</p> <p>2.4.2 Effects of Scaling 41</p> <p>2.4.3 Organizing Defects and Damage in Biological Materials 43</p> <p>2.4.4 Mesocrystalline Schemes in Short- to Long-Range Organization 43</p> <p>2.4.5 Hierarchical Structuring and Its Properties 45</p> <p>2.5 Model Hierarchical Biological Systems and Materials 47</p> <p>2.5.1 Nacre 47</p> <p>2.5.2 Wood 48</p> <p>2.5.3 Bone 50</p> <p>2.5.4 Diatoms 52</p> <p>2.5.5 Butterfly Wings 53</p> <p>2.5.6 Glass Sponge 55</p> <p>2.5.7 Adult Sea Urchin Spine 56</p> <p>2.5.8 Red Coral 57</p> <p>2.6 Conclusions and Outlook 59</p> <p>Acknowledgments 59</p> <p>References 60</p> <p><b>3 Use of Magnetic Nanoparticles for the Preparation of Micro- and Nanostructured Materials 71</b><br /><i>Marco Furlan and Marco Lattuada</i></p> <p>3.1 Introduction 71</p> <p>3.2 Preparation of Superparamagnetic Nanocolloids 73</p> <p>3.2.1 Synthesis of Magnetic Nanocrystals 73</p> <p>3.2.2 Synthesis of Polymer–Magnetic Nanocomposite Particles and Magnetic Nanoclusters 77</p> <p>3.2.3 Summary 82</p> <p>3.3 Magnetic Gels 82</p> <p>3.3.1 Summary 90</p> <p>3.4 Self-Assembly of Magnetic Nanoparticles, Nanoclusters, and Magnetic–Polymer Nanocomposites 90</p> <p>3.4.1 Assembly in 1-D Structures 90</p> <p>3.4.2 Assembly in Higher Dimensional Structures 97</p> <p>3.4.3 Summary 102</p> <p>3.5 Magnetic Colloidal Crystals 102</p> <p>3.5.1 Summary 106</p> <p>3.6 Concluding Remarks 106</p> <p>Acknowledgment 107</p> <p>References 107</p> <p><b>4 Hollow Metallic Micro/Nanostructures 119</b><br /><i>Juanjuan Qi, Lidong Li, and Lin Guo</i></p> <p>4.1 Introduction 119</p> <p>4.2 Synthetic Methods for 1-D Hollow Metallic Micro/Nanostructures 120</p> <p>4.2.1 Template-Directed Approach 121</p> <p>4.2.2 Template-Free Methods 134</p> <p>4.2.3 Electrospinning Technique 135</p> <p>4.3 Synthetic Methods for 3-D or Nonspherical Hollow Metallic Micro/Nanostructures 139</p> <p>4.3.1 Hard Template Strategy 139</p> <p>4.3.2 Sacrificial Template Strategy 141</p> <p>4.3.3 Soft Template Strategy 143</p> <p>4.3.4 Template-Free Strategy 144</p> <p>4.4 Potential Applications of Hollow Metallic Micro/Nanostructures 147</p> <p>4.4.1 Lithium-Ion Batteries 148</p> <p>4.4.2 Magnetic Properties 152</p> <p>4.4.3 Sensors 154</p> <p>4.4.4 Catalytic Properties 156</p> <p>4.5 Conclusions and Outlook 160</p> <p>Acknowledgments 162</p> <p>References 162</p> <p><b>5 Polymer Vesicles 177</b><br /><i>Jianzhong Du</i></p> <p>5.1 Introduction 177</p> <p>5.2 Vesicle Formation 178</p> <p>5.3 Smart Polymer Vesicles 179</p> <p>5.3.1 pH-Responsive Vesicles 180</p> <p>5.3.2 Thermoresponsive Vesicles 180</p> <p>5.3.3 Voltage-Responsive Polymer Vesicles 183</p> <p>5.3.4 Sugar-Responsive Vesicles 184</p> <p>5.3.5 Photoresponsive Vesicles 185</p> <p>5.4 Applications 186</p> <p>5.5 Summary and Outlook 188</p> <p>Acknowledgments 189</p> <p>References 189</p> <p><b>6 Helical Nanoarchitecture 193</b><br /><i>Meng-Qiang Zhao, Qiang Zhang, and Fei Wei</i></p> <p>6.1 Introduction 193</p> <p>6.2 Fabrication of Organic Helical Nanostructures 194</p> <p>6.2.1 Helical Micelles from Staggered Stacking 194</p> <p>6.2.2 Helical Micelle-Like Copolymers 197</p> <p>6.2.3 Helical Organic Nanostructures by Postsynthetic Processes 198</p> <p>6.3 Fabrication of Inorganic Helical Nanostructures 199</p> <p>6.3.1 Templated Methods 199</p> <p>6.3.2 Solution-Based Reactions 205</p> <p>6.3.3 Catalytic Deposition 209</p> <p>6.3.4 Postsynthetic Methods 216</p> <p>6.4 Properties of Helical Nanostructures 220</p> <p>6.4.1 Mechanical Properties 220</p> <p>6.4.2 Electromagnetic Properties 220</p> <p>6.4.3 Optical Properties 221</p> <p>Summary 222</p> <p>References 223</p> <p><b>7 Hierarchical Layered Double Hydroxide Materials 231</b><br /><i>Jingbin Han, Min Wei, David G. Evans, and Xue Duan</i></p> <p>7.1 Introduction 231</p> <p>7.2 Preparation of Hierarchical LDHs 232</p> <p>7.2.1 LDH-Based Belt/Rod-Like Structures 233</p> <p>7.2.2 LDH-Based Nano/Microspheres 234</p> <p>7.2.3 LDH-Based Core–Shell Structures 238</p> <p>7.2.4 LDHs as Substrate to the Growth of Hierarchical Structures 243</p> <p>7.3 Properties of Hierarchical LDHs 247</p> <p>7.3.1 Hierarchical LDHs as Absorbents 247</p> <p>7.3.2 Hierarchical LDHs as Catalysts and Supports 250</p> <p>7.3.3 Hierarchical LDHs as Electrochemical Energy-Storage Materials 253</p> <p>7.3.4 Hierarchical LDHs as Drug-Delivery System 258</p> <p>7.4 Summary and Outlook 260</p> <p>Acknowledgments 261</p> <p>References 261</p> <p><b>8 Hierarchically Nanostructured Porous Boron Nitride 267</b><br /><i>Philippe Miele, Mikhael Bechelany, and Samuel Bernard</i></p> <p>8.1 Introduction 267</p> <p>8.2 Synthesis of Mesoporous Boron Nitride 268</p> <p>8.2.1 Exo-Templating Synthesis 269</p> <p>8.2.2 Endo-Templating Approach 275</p> <p>8.2.3 Direct Synthesis 276</p> <p>8.3 Synthesis of Microporous Boron Nitride 277</p> <p>8.4 Synthesis of Boron Nitride with Hierarchical Porosity 278</p> <p>8.4.1 Synthesis of Hierarchical Micro- and Meso-porous Boron Nitride 278</p> <p>8.4.2 Synthesis of Hierarchical Macro-, Meso-, and Micro-porous Boron Nitride 281</p> <p>8.5 BN Nanosheets (BNNSs) 284</p> <p>8.6 Conclusion 285</p> <p>References 287</p> <p><b>9 Macroscopic Graphene Structures: Preparation, Properties, and Applications 291</b><br /><i>Zhiqiang Niu, Lili Liu, Yueyue Jiang, and Xiaodong Chen</i></p> <p>9.1 Introduction 291</p> <p>9.2 Preparation of Graphene 292</p> <p>9.3 The Preparation and Properties of Graphene Macroscopic Structures 294</p> <p>9.3.1 Vacuum Filtering 294</p> <p>9.3.2 Template-Assisted Growth 297</p> <p>9.3.3 Chemical Self-Assembly Method 301</p> <p>9.3.4 Electrophoretic Method 307</p> <p>9.3.5 Layer-by-Layer Method 309</p> <p>9.3.6 Other Methods 313</p> <p>9.4 Applications of Graphene Macroscopic Structures 316</p> <p>9.4.1 Energy Storage 316</p> <p>9.4.2 Selective Absorption 329</p> <p>9.4.3 Photocatalytic Activities 331</p> <p>9.4.4 Electrochemical Sensing 332</p> <p>9.4.5 Actuator 333</p> <p>9.4.6 Bio-Applications 334</p> <p>9.5 Conclusions and Outlook 334</p> <p>References 335</p> <p><b>10 Hydrothermal Nanocarbons 351</b><br /><i>Maria-Magdalena Titirici</i></p> <p>10.1 Introduction 351</p> <p>10.2 Templating –An Opportunity for Pore Morphology Control 352</p> <p>10.2.1 Hard Templating in HTC 354</p> <p>10.2.2 Soft Templating HTC 357</p> <p>10.2.3 Naturally Inspired Systems: The Use of Natural Templates 363</p> <p>10.3 Carbon Aerogels 365</p> <p>10.3.1 Ovalbumin/Glucose-Derived HTC Carbogels 367</p> <p>10.3.2 Borax-Mediated Formation of HTC Carbogels from Glucose 371</p> <p>10.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic Compounds 377</p> <p>10.3.4 Emulsion-Templated ‘‘Carbo-HIPEs’’ from the Hydrothermal Treatment of Sugar Derivatives and Phenolic Compounds 380</p> <p>10.4 Hydrothermal Carbon Nanocomposites 384</p> <p>10.4.1 Coating HTC onto Preformed Nanostructures 384</p> <p>10.4.2 Post-Synthetic Decoration of HTC with Inorganic Nanostructures 386</p> <p>10.4.3 One-Step HTC Synthetic Method 387</p> <p>10.4.4 HTC as Sacrificial Templates for Inorganic Porous Materials 391</p> <p>10.5 Hydrothermal Carbon Quantum Dots 394</p> <p>10.6 Summary and Outlook 398</p> <p>References 400</p> <p><b>11 Hierarchical Porous Carbon Nanocomposites for Electrochemical Energy Storage 407</b><br /><i>Hiesang Sohn, Mikhail L. Gordin, and Donghai Wang</i></p> <p>11.1 Introduction 407</p> <p>11.2 Types of Porous Structures 408</p> <p>11.2.1 Pore Size 408</p> <p>11.2.2 Zero-Dimensional Porous Structures 409</p> <p>11.2.3 One-Dimensional Porous Structures 410</p> <p>11.2.4 Two-Dimensional Porous Structures 410</p> <p>11.2.5 Three-Dimensional Porous Structures 410</p> <p>11.3 Synthesis of Porous Structures 411</p> <p>11.3.1 Hard Templating 411</p> <p>11.3.2 Soft Templating 415</p> <p>11.3.3 Non-Templating Methods 417</p> <p>11.3.4 Generating the Composite 421</p> <p>11.4 Applications of Hierarchically Porous Carbon Composites 422</p> <p>11.4.1 Lithium Batteries 422</p> <p>11.4.2 Supercapacitors 431</p> <p>11.5 Summary and Conclusions 435</p> <p>References 436</p> <p><b>12 Hierarchical Design of Porous Carbon Materials for Supercapacitors 443</b><br /><i>Da-Wei Wang</i></p> <p>12.1 Introduction 443</p> <p>12.2 Capacitance: Electrostatic Storage 445</p> <p>12.2.1 Pore Wall Structure 445</p> <p>12.2.2 Pore Size 448</p> <p>12.3 Ion Accessibility: Porosity and Surface Wettability 450</p> <p>12.3.1 Porosity 450</p> <p>12.3.2 Wettability 456</p> <p>12.4 Conclusion 456</p> <p>References 457</p> <p><b>13 Nanoscale Functional Polymer Coatings for Biointerface Engineering 461</b><br /><i>Hsien-Yeh Chen, Chiao-Tzu Su, and Meng-Yu Tsai</i></p> <p>13.1 Introduction 461</p> <p>13.2 Synthesis of Precursors –Substituted-[2.2]paracyclophanes 462</p> <p>13.3 Synthesis of Functionalized Poly-p-Xylylenes via CVD Polymerization 464</p> <p>13.4 Surface Bioconjugate Chemistry by Using Functionalized Poly-p-Xylylenes 466</p> <p>13.4.1 Poly[(4-Formyl-p-Xylylene)-co-(p-Xylylene)] 466</p> <p>13.4.2 Poly[(4-Ethynyl-p-Xylylene)-co-(p-Xylylene)] 468</p> <p>13.4.3 Poly[(4-Aminomethyl-p-Xylylene)-co-(p-Xylylene)] 469</p> <p>13.4.4 Poly[(4-Benzoyl-p-Xylylene)-co-(p-Xylylene)] 469</p> <p>13.4.5 Poly[(4-N-Maleimidomethyl-p-Xylylene)-co-(p-Xylylene)] 469</p> <p>13.4.6 Poly[(Carboxylic Acid Pentafluorophenol Ester-p-Xylylene)-co-(p-Xylylene)] 470</p> <p>13.4.7 Poly[(4-Hydroxymethyl-p-Xylylene)-co-(p-Xylylene)] 470</p> <p>13.4.8 Poly[(4-Vinyl-p-Xylylene)-co-(p-Xylylene)] 470</p> <p>13.5 Multifunctional and Gradient Poly-p-Xylylenes 471</p> <p>13.6 Outlook 475</p> <p>References 476</p> <p>Index 479</p>
<b>Qiang Zhang</b> obtained his PhD degree from Tsinghua University (China) in 2009. After a short stay as a Research Associate in Case Western Reserve University (USA), he joined the Fritz Haber Institute of the Max Planck Society (Germany) as a post-doctoral fellow. He was appointed an associate professor of chemical engineering of Tsinghua University in 2011. His current research interests are nanocarbon, advanced hierarchical materials, energy conversion and storage. Dr. Zhang has published around 100 research articles and written 3 book chapters.<br /><br /><b>Fei Wei</b> obtained his PhD in chemical engineering from China University of Petroleum in 1990. After a postdoctoral fellowship at Tsinghua University, he was appointed an associate professor in 1992 and professor of chemical engineering of Tsinghua University in 1996. He was also a Visiting Professor at Ohio State University (USA), University of Western Ontario (Canada), and Nagoya Institute of Science and Technology (Japan). Currently he is the director of the Fluidization Laboratory of Tsinghua University (FLOTU). His scientific interests include chemical reaction engineering, multiphase flow, advanced materials, and sustainable energy. He has authored and co-authored over 300 refereed publications. He was awarded the Young Particuology Research Award for his contributions in the field of powder technology
Nature provides us with amazing examples of nanostructured materials structures can be used as a basis for materials reproduced by mankind. This work is an overview of the recent developments and prospects in the highly topical area of nanomaterials, covering the synthesis, characterization, properties and applications of hierarchical nanostructured materials. The book concentrates on those materials relevant for research and development in the fields of energy, biomedicine and environmental protection, with a strong focus on 3D materials based on nanocarbon structures, mesoporous silicates, hydroxides, core-shell particles and helical nanostructures. The range of covered topics and applications reflects the importance of hierarchical nanostructured materials in materials science, chemistry, and physics as well as biology.<br> <br> Thanks to its clear concept and application-oriented approach, this is an essential reference for experienced researchers and newcomers to the field alike.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €