Details

Advanced Functional Textiles and Polymers


Advanced Functional Textiles and Polymers

Fabrication, Processing and Applications
1. Aufl.

von: Shahid Ul-Islam, B. S. Butola

190,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 24.10.2019
ISBN/EAN: 9781119605829
Sprache: englisch
Anzahl Seiten: 462

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book on advanced functional textiles and polymers will offer a comprehensive view of cutting-edge research in newly discovered areas such as flame retardant textiles, antimicrobial textiles, insect repellent textiles, aroma textiles, medical-textiles, smart textiles, and nano-textiles etc. The second part the book provides innovative fabrication strategies, unique methodologies and overview of latest novel agents employed in the research and development of functional polymers.</p>
<p>Preface xvii</p> <p><b>1 Flame Retarded Cotton Fabrics: Current Achievements, Open Challenges, and Future Perspectives 1<br /></b><i>Giulio Malucelli</i></p> <p>1.1 Introduction 2</p> <p>1.2 Textile Finishing with Sol–Gel Treatments 8</p> <p>1.2.1 Fully Inorganic Systems 10</p> <p>1.2.2 Phosphorus-Doped Sol–Gel Coatings 13</p> <p>1.2.3 Hybrid Organic–Inorganic Sol–Gel Coatings 14</p> <p>1.3 Textile Finishing with Layer-by-Layer Assemblies 17</p> <p>1.3.1 Fully Inorganic LbL Assemblies on Cotton 18</p> <p>1.3.2 Intumescent LbL Assemblies on Cotton 19</p> <p>1.3.3 Hybrid LbL Assemblies on Cotton 23</p> <p>1.4 Current Limitations of Sol–Gel and Layer-by-Layer Treatments 25</p> <p>1.5 Conclusions and Future Perspectives 26</p> <p>Acknowledgments 27</p> <p>References 27</p> <p><b>2 UV Protective Clothing 33<br /></b><i>Anu Mishra and Bhupendra Singh Butola</i></p> <p>2.1 Introduction 33</p> <p>2.2 Harmful Effects of UV Radiations on Skin 34</p> <p>2.2.1 Short-Term Effects 37</p> <p>2.2.2 Long-Term Effects 38</p> <p>2.3 Environmental Factors Influencing UV Level on Earth 39</p> <p>2.3.1 Effect of Ozone Layer Depletion 40</p> <p>2.3.2 Solar Elevation (Height of the Sun in the Sky) 40</p> <p>2.3.3 Latitude and Altitude 40</p> <p>2.3.4 Cloud Cover and Haze 41</p> <p>2.3.5 Ground Reflection 41</p> <p>2.4 Effect of Physical and Chemical Characteristics of Textile Materials on UV Protection 42</p> <p>2.4.1 Effect of Physical Parameters 43</p> <p>2.4.1.1 Yarn Structural Parameters 43</p> <p>2.4.1.2 Fabric Structural Parameters 43</p> <p>2.4.2 Effect of Chemical Parameters 44</p> <p>2.4.2.1 Effect of Fiber Chemistry 44</p> <p>2.4.2.2 Effect of Chemical Processing (Bleaching, Dyeing, and Other Finishing Chemicals) 45</p> <p>2.5 Type of UV Finishes, Their Working Mechanism, and Limitations 46</p> <p>2.5.1 Organic UV Absorbers 46</p> <p>2.5.2 Inorganic UV Blockers 49</p> <p>2.6 Application Methods of UV Finish in Textiles 50</p> <p>2.7 Test Methods for Quantitative Assessment of UV Protection of Textiles 54</p> <p>2.7.1 <i>In Vitro </i>56</p> <p>2.7.2 <i>In Vivo </i>57</p> <p>2.8 Summary 57</p> <p>References 58</p> <p><b>3 Potential of Textile Structure Reinforced Composites for Automotive Applications 65<br /></b><i>Vikas Khatkar, R. N. Manjunath, Sandeep Olhan and B. K. Behera</i></p> <p>3.1 Introduction 66</p> <p>3.2 Materials for Automotive 68</p> <p>3.2.1 Metallic Materials in Automotive 68</p> <p>3.2.1.1 Steel 68</p> <p>3.2.1.2 Aluminum 68</p> <p>3.2.1.3 Magnesium 69</p> <p>3.2.2 Composite Materials for Automotives 70</p> <p>3.2.2.1 Natural Fiber Reinforcement Polymer Composites 71</p> <p>3.2.2.2 Advance Fiber-Based Composite 73</p> <p>3.2.3 Advantage of Composite Over Conventional Materials 75</p> <p>3.2.3.1 Lightweight 75</p> <p>3.2.3.2 Crashworthiness 78</p> <p>3.2.3.3 Joining 79</p> <p>3.2.3.4 Recycling 79</p> <p>3.3 Textile Materials for Automotive 80</p> <p>3.3.1 Textile Structural Composites for Automotive 82</p> <p>3.3.1.1 3D Fabrics as New Solutions for Transportation Applications 84</p> <p>3.4 Potential Automotive Parts to be Replaced with Textile Structural Composites 85</p> <p>3.4.1 Automotive Interiors 85</p> <p>3.4.2 Exterior Body Panels 87</p> <p>3.4.2.1 Car Hoods (Bonnet) 87</p> <p>3.4.2.2 Bumpers 88</p> <p>3.4.2.3 Door Panels 90</p> <p>3.4.3 Structural Components 90</p> <p>3.4.3.1 Leaf Spring 91</p> <p>3.5 Lightweight Solution for Electric Car 93</p> <p>3.6 Conclusion 93</p> <p>References 94</p> <p><b>4 Biotechnology Applications in Textiles 99<br /></b><i>Lalit Jajpura</i></p> <p>4.1 Introduction 100</p> <p>4.2 Adverse Effects of Industrial Farm Practices in Cotton Cultivation 101</p> <p>4.2.1 Adverse Effect of Synthetic Fertilizers 101</p> <p>4.2.2 Adverse Effect of Synthetic Pesticides 102</p> <p>4.2.3 Adverse Effect of Excessive Irrigation 103</p> <p>4.3 Application of Biotechnology in Cotton Cultivation 103</p> <p>4.3.1 Gene Construction and Transformation 104</p> <p>4.3.2 Bt Cotton 105</p> <p>4.4 Wet Processing of Cotton and Its Environmental Impact 105</p> <p>4.5 Enzyme and Its Properties 106</p> <p>4.6 Classification of Enzymes 107</p> <p>4.7 Enzymatic Bioprocessing of Cotton 108</p> <p>4.7.1 Desizing 108</p> <p>4.7.2 Enzymatic Desizing 109</p> <p>4.7.2.1 Amylase (E.C. 3.2.1.1) 109</p> <p>4.7.2.2 Lipase (EC 3.1.1.3) 109</p> <p>4.7.3 Scouring 110</p> <p>4.7.4 Enzymatic Scouring 110</p> <p>4.7.4.1 Pectinase (EC 3.2.1.15) 110</p> <p>4.7.4.2 Lipase (EC 3.1.1.3) 111</p> <p>4.7.4.3 Cellulase (EC 3.2.1.4) 111</p> <p>4.7.4.4 Cutinase (EC 3.1.1.74) 111</p> <p>4.7.4.5 Xylanase (EC 3.2.1.8) 112</p> <p>4.7.5 Enzymatic Bleaching 112</p> <p>4.7.5.1 Laccase (E.C. 1.10.3.2) 113</p> <p>4.8 Enzymatic Hydrogen Peroxide Removal by Catalase 113</p> <p>4.8.1 Catalase (E.C. 1.11.1.6) 114</p> <p>4.9 Biopolishing of Cotton 114</p> <p>4.10 Enzymatic Fading of Denim 114</p> <p>4.11 Application of Biotechnology in Wool Production and its Wet Processing 115</p> <p>4.12 Enzymatic Bioprocessing of Wool 115</p> <p>4.12.1 Enzymatic Carbonization of Wool 115</p> <p>4.12.2 Enzymatic Scouring of Wool 116</p> <p>4.12.2.1 Protease (EC 3.4.21.112) 116</p> <p>4.12.3 Enzymatic Finishing of Wool 116</p> <p>4.13 Application of Biotechnology in Sericulture and Wet Processing of Silk 117</p> <p>4.14 Enzymatic Bioprocessing of Silk 117</p> <p>4.15 Application of Biotechnology in Sustainable Finishing 118</p> <p>4.16 Application of Enzyme Immobilization Techniques in Reuse of Enzymes 119</p> <p>4.17 Conclusion 119</p> <p>References 120</p> <p><b>5 Environmental Issues in Textiles 129<br /></b><i>Rishabh Kumar Saran, Raj Kumar and Shashikant Yadav</i></p> <p>5.1 Introduction 130</p> <p>5.2 Textile Fiber 130</p> <p>5.3 Processes in the Textile Industry 131</p> <p>5.4 Key Environmental Issues 134</p> <p>5.4.1 Supply Water 134</p> <p>5.4.2 Chlorinated Solvents 137</p> <p>5.4.3 Hydrocarbon Solvents—Aliphatic Hydrocarbons 137</p> <p>5.4.4 Hydrocarbon Solvents—Aromatic Hydrocarbons 138</p> <p>5.4.5 Oxygenated Solvents (Alcohols/Glycols/Ethers/Esters/Ketones/Aldehydes) 138</p> <p>5.4.6 Grease and Oil Impregnated Wastes 139</p> <p>5.4.7 Used Oils 139</p> <p>5.4.8 Dyestuffs and Pigments Containing Dangerous Substances 140</p> <p>5.4.9 Heat and Energy Generation From Textile Industry Waste 140</p> <p>5.4.10 Carbon Footprint of a Textile Product 143</p> <p>5.5 Environmental Impact of Textile Industry Wastewater 144</p> <p>5.6 Environmental Legislation 146</p> <p>References 146</p> <p><b>6 Water Saving Technologies for Textile Chemical Processing 153<br /></b><i>Nagender Singh</i></p> <p>6.1 Introduction 154</p> <p>6.1.1 Indian Textile Industry 155</p> <p>6.1.2 Water Consumption in Textile Processing 157</p> <p>6.2 Technologies for Water Saving in Textile Chemical Processing 158</p> <p>6.2.1 Process Optimization Techniques 158</p> <p>6.2.2 Emerging Water-Saving Wet Processing Technologies 160</p> <p>6.2.3 Low Liquor Technologies 165</p> <p>6.3 Conclusion 166</p> <p>References 167</p> <p><b>7 Photocatalytic Dye Degradation Using Modified Titania 171<br /></b><i>Waseem Raza and Mohd Faraz</i></p> <p>7.1 Introduction 172</p> <p>7.1.1 Discovery of Photocatalysis: A Short Historical Overview 174</p> <p>7.1.2 Photocatalytic Mechanism 175</p> <p>7.1.3 Mechanism Under Visible Light Irradiation 176</p> <p>7.1.4 Direct Mechanism for Dye Degradation 178</p> <p>7.1.5 Our Research Focus 179</p> <p>7.2 Photocatalytic Application 180</p> <p>7.2.1 Degradation of Methylene Blue Using Fe-Doped TiO<sub>2</sub> 180</p> <p>7.2.2 Degradation of Acid Yellow 29 Using La and Mo-Doped TiO<sub>2</sub> Carbon Sphere (CS) 181</p> <p>7.2.3 Degradation of Coomassie Brilliant Blue G250 Using La and Mo-Doped TiO<sub>2</sub> Carbon Sphere 182</p> <p>7.2.4 Degradation of Acid Green 25 Using La and Mo-Doped TiO<sub>2</sub> Carbon Sphere 184</p> <p>7.2.5 Degradation of Acid Yellow 29 Using Ce and Mn-Doped TiO<sub>2</sub> Carbon Sphere 185</p> <p>7.2.6 Degradation of Acid Green 25 Using Ce and Mn-Doped TiO<sub>2</sub> Carbon Sphere 186</p> <p>7.2.7 Degradation of Barbituric Acid and Matrinidazole in Using Undoped and Ni-Doped TiO<sub>2</sub> 188</p> <p>7.3 Factors Affecting the Degradation of Organic Pollutants 190</p> <p>7.3.1 Effect of pH 190</p> <p>7.3.2 Effect of Photocatalyst Loading 191</p> <p>7.3.3 Effect of Calcination Temperature 192</p> <p>7.3.4 Effect of Reaction Temperature 193</p> <p>7.3.5 Effect of Inorganic Ions 193</p> <p>7.4 Conclusions 195</p> <p>References 195</p> <p><b>8 Advanced Approaches for Remediation of Textile Wastewater: A Comparative Study 201<br /></b><i>Shumaila Kiran, Sofia Nosheen, Shazia Abrar, Fozia Anjum, Tahsin Gulzar and Saba Naz</i></p> <p>8.1 Introduction 202</p> <p>8.1.1 Textile Wastewater 202</p> <p>8.1.2 Characteristics of Textile Wastewater 202</p> <p>8.1.3 Damages Caused by Textile Effluent 202</p> <p>8.1.4 Ecological Balance and Environmental Issue 204</p> <p>8.1.5 Need for the Treatment 204</p> <p>8.1.6 Standards of Textile Industry for Water Contaminants 206</p> <p>8.2 Treatment Methods for Textile Effluent 207</p> <p>8.2.1 Dealings to Control Water Contamination 207</p> <p>8.2.2 Physical Methods 208</p> <p>8.2.2.1 Screening 208</p> <p>8.2.2.2 Coagulation–Flocculation Treatments 209</p> <p>8.2.2.3 Sedimentation 210</p> <p>8.2.2.4 Equalization or Homogenization 211</p> <p>8.2.2.5 Floatation 211</p> <p>8.2.2.6 Adsorption 212</p> <p>8.2.2.7 Membrane Processes 214</p> <p>8.2.3 Chemical Methods 219</p> <p>8.2.3.1 Chemical Precipitation 219</p> <p>8.2.3.2 Neutralization 220</p> <p>8.2.3.3 Electro Chemical Process 220</p> <p>8.2.3.4 Oxidation Methods 221</p> <p>8.2.3.5 Ion Exchange Process 226</p> <p>8.2.4 Biological Methods 229</p> <p>8.2.4.1 Efficiency of Biological Methods 232</p> <p>8.2.4.2 Bacterial Decolorization of Dyes 232</p> <p>8.2.4.3 Dye Degradation by Fungal Cultures 234</p> <p>8.2.4.4 Algae for Degradation of Dyes 236</p> <p>8.2.4.5 Microbial Fuel Cell 238</p> <p>8.3 Sequential Method for Textile Effluent Treatment 240</p> <p>8.3.1 Levels of Textile Effluent Treatments 241</p> <p>8.3.1.1 Preliminary Treatment 241</p> <p>8.3.1.2 Primary Treatment 242</p> <p>8.3.1.3 Secondary Treatment 243</p> <p>8.3.1.4 Tertiary Treatment 245</p> <p>8.4 Conclusion 247</p> <p>References 247</p> <p><b>9 Polymer-Supported Nanocomposite-Based Nanomaterials for Removal and Recovery of Pollutants and Their Application in Bio-Electrochemical System 265<br /></b><i>Abdul Hakeem Anwer, Nishat Khan, Mohammad Shahadat, Mohammad Zain Khan, Ziauddin Ahammad Shaikh and Syed Wazed Ali</i></p> <p>9.1 Introduction 266</p> <p>9.1.1 Reason for Selection of Polyaniline-Based Nanocomposite Material 268</p> <p>9.1.2 Synthesis of PANI Based Nanocomposite 269</p> <p>9.1.2.1 Sol–Gel Methode 274</p> <p>9.1.2.2 Hydrothermal Method 274</p> <p>9.1.2.3 Chemical Reduction Method 274</p> <p>9.1.2.4 Chemical <i>In Situ </i>Polymerization Method 275</p> <p>9.1.3 Treatment of Wastewater Using Bioelectrochemical System 275</p> <p>9.1.3.1 Microbial Fuel Cell 276</p> <p>9.1.3.2 MEC System 279</p> <p>9.1.3.3 Electrode Material 279</p> <p>9.1.4 Polyaniline-Supported Electrodic Material for MFC/MEC 281</p> <p>9.2 Conclusion 282</p> <p>Acknowledgments 283</p> <p>References 283</p> <p><b>10 Reactive and Functional Polymers 291<br /></b><i>Tanvir Arfin</i></p> <p>10.1 Introduction 291</p> <p>10.2 Types of Textiles 293</p> <p>10.3 Location of Textile Industries in India 293</p> <p>10.4 Role of Polymer 294</p> <p>10.4.1 Chitosan 294</p> <p>10.4.2 Starch 295</p> <p>10.4.3 Gelatin 296</p> <p>10.4.4 Cellulose 297</p> <p>10.4.5 Protein 298</p> <p>10.4.6 MWCNT 298</p> <p>10.4.7 Dendrimer 299</p> <p>10.4.8 Polystyrene 299</p> <p>10.4.9 Nylon-6,6 300</p> <p>10.4.10 Polyaniline 300</p> <p>10.4.11 Polyvinyl Alcohol 301</p> <p>10.5 Conclusion 301</p> <p>References 302</p> <p><b>11 Fabrication and Biomedical Applications of Polyvinyl-Alcohol-Based Nanocomposites with Special Emphasis on the Anti-Bacterial Applications of Metal/Metal Oxide Polymer Nanocomposites 309<br /></b><i>Shahnawaz Ahmad Bhat, Fahmina Zafar, Azar Ullah Mirza, Abdulrahman Mohammad, Paramjit Singh and Nahid Nishat</i></p> <p>11.1 Introduction 310</p> <p>11.2 Scope of the Chapter 312</p> <p>11.3 Metal/Metal Oxide Nanoparticles 313</p> <p>11.3.1 Preparation of Metal Oxide Nanoparticles 314</p> <p>11.3.1.1 Co-Precipitation Method 314</p> <p>11.3.1.2 Hydrothermal Technique 314</p> <p>11.3.1.3 Micro-Emulsion Method 315</p> <p>11.3.1.4 Sol–Gel Method 315</p> <p>11.4 Nanocomposite 316</p> <p>11.4.1 Preparation of Nanocomposite 318</p> <p>11.4.1.1 <i>Ex Situ </i>Method 318</p> <p>11.4.1.2 <i>In Situ </i>Method 318</p> <p>11.5 Biomedical Applications of Nanocomposite 319</p> <p>11.5.1 Anticancer Application 320</p> <p>11.5.2 Antibacterial Application 320</p> <p>11.6 Conclusions 325</p> <p>Acknowledgments 326</p> <p>References 326</p> <p><b>12 Preparation, Classification, and Applications of Smart Hydrogels 337<br /></b><i>Ali Akbar Merati, Nahid Hemmatinejad, Mina Shakeri and Azadeh Bashari</i></p> <p>12.1 Introduction 337</p> <p>12.2 Preparation and Characterization of Smart Hydrogels 339</p> <p>12.2.1 Preparation of Smart Hydrogels 339</p> <p>12.2.2 Characterization of Smart Hydrogels 341</p> <p>12.3 Classifications of Smart Hydrogels 344</p> <p>12.3.1 Physical Stimuli-Responsive Hydrogels 345</p> <p>12.3.2 Chemical Stimuli-Responsive Hydrogels 346</p> <p>12.3.3 Biochemical Stimuli-Responsive Hydrogels 347</p> <p>12.4 Applications of Smart Hydrogels 348</p> <p>12.4.1 Drug Delivery Systems 349</p> <p>12.4.2 Injectable Hydrogels 350</p> <p>12.4.3 Tissue Engineering 351</p> <p>12.4.4 Smart Hydrogels as Actuators 351</p> <p>12.4.5 Sensors 351</p> <p>12.4.6 Self-Healing 352</p> <p>12.5 Smart Hydrogel-Functionalized Textile Systems 353</p> <p>12.6 Electrospinning of Smart Hydrogels 355</p> <p>12.7 Future Trends of Smart Hydrogels 356</p> <p>12.8 Conclusions 357</p> <p>References 357</p> <p><b>13 Potential Applications of Chitosan Nanocomposites: Recent Trends and Challenges 365<br /></b><i>Tara Chand Yadav, Pallavi Saxena, Amit Kumar Srivastava, Amit Kumar Singh, Ravi Kumar Yadav, Harish, R. Prasad and Vikas Pruthi</i></p> <p>13.1 Introduction 366</p> <p>13.2 Synthetic Routes for the Preparation of Nanocomposites of Chitosan 368</p> <p>13.2.1 General Synthetic Routes 368</p> <p>13.2.2 Physical Methods 369</p> <p>13.2.2.1 Photochemical Methods (UV, Near-IR), Radiolysis, and Sonochemistry 370</p> <p>13.2.3 Chemical Method 370</p> <p>13.2.3.1 Borohydride Reduction 371</p> <p>13.2.3.2 Citrate Reduction 372</p> <p>13.2.4 Seeding-Growth Method 372</p> <p>13.2.5 Biosynthesis Methods 372</p> <p>13.3 Applications of Chitosan Nanocomposites 373</p> <p>13.3.1 Chitosan Treatment of Textiles 373</p> <p>13.3.1.1 Wool 374</p> <p>13.3.1.2 Silk 375</p> <p>13.3.1.3 Cotton 376</p> <p>13.3.2 Textile Functionalities Achieved 376</p> <p>13.3.2.1 Antimicrobial and Enriched Dyeing Properties 376</p> <p>13.3.2.2 Wrinkle Proof Resistance 378</p> <p>13.3.3 Effluent Treatment Applications 378</p> <p>13.3.4 Bioremediation 379</p> <p>13.4 Biomedical Application 380</p> <p>13.4.1 Drug Delivery 380</p> <p>13.4.2 Wound Healing 381</p> <p>13.4.2.1 Scaffolds Ingrained with Chitosan/Natural/Synthetic Graft for Wound Healing 381</p> <p>13.4.2.2 Composite Chitosan Graft Scaffoldings for Wound Healing 382</p> <p>13.4.2.3 Chitosan–Oil Ingrained Grafts for Wound Healing 384</p> <p>13.4.2.4 Plant Extract Ingrained Chitosan Film Scaffoldings for Wound Healing 384</p> <p>13.4.2.5 Modified Chitosan Products for Wound Healing 385</p> <p>13.4.2.6 Toxicological Assessment of Tri-Methyl Chitosan 385</p> <p>13.4.2.7 Effect of Trimethyl Chitosan in Wound Healing 385</p> <p>13.4.2.8 Impact of Carboxymethyl Chitosan and Carboxymethyl-Trimethyl Chitosan 386</p> <p>13.4.2.9 Peptides Conjugates-Chitosan/Derivatives for Wound Healing 386</p> <p>13.4.2.10 Commercial Dressing Bandages of Chitosan Blend 387</p> <p>13.5 Future Prospects 388</p> <p>References 389</p> <p><b>14 Use of Polymer Nanocomposites in Asphalt Binder Modification </b><b>405<br /></b><i>Saqib Gulzar and Shane Underwood</i></p> <p>14.1 Introduction 405</p> <p>14.2 Background 407</p> <p>14.2.1 Asphalt Binders 408</p> <p>14.2.2 Asphalt Modification 411</p> <p>14.2.3 Comparative Analysis 413</p> <p>14.3 Polymer Nanocomposites 415</p> <p>14.3.1 Polymers and Nanomaterials 415</p> <p>14.3.2 Polymer Nanocomposites (PNC) 416</p> <p>14.3.2.1 PNC Blended Systems 417</p> <p>14.3.2.2 PNC Integrated Systems 417</p> <p>14.4 Rheological Impacts 418</p> <p>14.4.1 Measures for Polymer Modified and Nano Modified Asphalt Binder Systems 418</p> <p>14.4.2 Measures with PNC Modified Asphalt 421</p> <p>14.5 Suggested Evaluation Method for PNC Modified Asphalt Binders 427</p> <p>14.6 Summary 428</p> <p>References 428</p> <p>Index 433</p>
<p><b>Shahid-ul-Islam</b> is a researcher of international recognition at the Indian Institute of Technology, New Delhi, India. His current research interests include green chemistry, dyes & pigments, thermodynamics and kinetics of colorants, and polymeric nanocomposites. He has numerous academic publications in international journals of high repute to his credit. This current book is his 5<sup>th</sup> volume with the Wiley-Scrivener imprint. <p><b>B. S. Butola</b> obtained his B. Tech. (1990) and Ph.D. degrees (2005) in textile technology from IIT Delhi, India. Currently he is an Associate Professor at the Department of Textile Technology, IIT Delhi. His research interests include functionalization of textiles with metal oxides, use of shear thickening fluids for improving the impact performance of ballistic textiles, polymeric nanocomposites and smart colorants. This current book is his 3rd volume with the Wiley-Scrivener imprint.
<p><b>A groundbreaking book on the recent advances in flame retardant textiles, antimicrobial textiles, medical-textiles, smart textiles, and nano-textiles etc.</b> <p>Advanced functional textiles and polymers have assumed a prominent position in everyday life as well in industrial and technological applications. Research on several functional materials is going on a war footing basis to explore effective finishing agents in order to produce materials with diverse functions. <p>This book, <i>Advanced Functional Textiles and Polymers</i>, contains 14 important chapters written by specialists to provide systematic and comprehensive coverage of the topics, from advanced fabrication methodologies, through novel materials, to current and potential application sectors. The book provides state-of-the art information to researchers on flame retardant textiles, antimicrobial textiles, medical-textiles, smart textiles, and nano-textiles etc. The book also introduces several advanced polymers and provides an overview of latest novel agents employed in the research and development of functional polymers. <p><b>Audience</b> <p>The book offers an excellent source for materials scientists, chemists, chemical engineers, textile engineers and especially for academicians working in the field of health care textiles, polymer processing, synthesis and modification, chemical processing of textiles, antimicrobial coatings, and nano-finishing.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €