Details

Advanced Coating Materials


Advanced Coating Materials


1. Aufl.

von: Liang Li, Qing Yang

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 15.11.2018
ISBN/EAN: 9781119407645
Sprache: englisch
Anzahl Seiten: 546

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides a comprehensive, yet practical source of reference, and excellent foundation for comparing the properties and performance of coatings and selecting the most suitable materials based on specific service needs and environmental factors.</b></p> <p>Coating technology has developed significant techniques for protecting existing infrastructure from corrosion and erosion, maintaining and enhancing the performance of equipment, and provided novel functions such as smart coatings greatly benefiting the medical device, energy, automotive and construction industries.</p> <p>The mechanisms, usage, and manipulation of cutting-edge coating methods are the focus of this book. Not only are the working mechanisms of coating materials explored in great detail, but also craft designs for further optimization of more uniform, safe, stable, and scalable coatings.</p> <p>A group of leading experts in different coating technologies demonstrate their main applications, identify the key bottlenecks, and outline future prospects. <i>Advanced Coating Materials</i> broadly covers the coating techniques, including cold spray, plasma vapor deposition, chemical vapor deposition, sol–gel method, etc., and their significant applications in microreactor technology, super(de)wetting, joint implants, electrocatalyst, etc. Numerous kinds of coating structures are addressed, including nanosize particles, biomimicry structures, metals and complexed materials, along with the environmental and human compatible biopolymers resulting from microbial activities. This state-of-the-art book is divided into three parts: (1) Materials and Methods: Design and Fabrication, (2) Coating Materials: Nanotechnology, and (3) Advanced Coating Technology and Applications.</p>
<p>Preface xvii</p> <p><b>Part I: Materials and Methods: Design and Fabrication 1</b></p> <p><b>1 The Science of Molecular Precursor Method 3<br /></b><i>Hiroki Nagai and Mitsunobu Sato</i></p> <p>1.1 Metal Complex 4</p> <p>1.2 Molecular Precursor Method 6</p> <p>1.3 Counter Ion (Stability) 6</p> <p>1.4 Conversion Process from Precursor Film to Oxide Thin Film 8</p> <p>1.5 Anatase–Rutile Transformation Controlled by Ligand 8</p> <p>1.6 Homogeneity 11</p> <p>1.7 Miscibility 13</p> <p>1.8 Coatability (Thin Hydroxyapatite Coating of Ti Fiber Web Scaffolds) 13</p> <p>1.9 Oxygen-Deficient Rutile Thin Films 15</p> <p>1.10 Cu Thin Film 16</p> <p>1.11 Applications Using the Molecular Precursor Method 20</p> <p>1.12 Conclusion 22</p> <p>References 23</p> <p><b>2 Cold Spray—Advanced Coating Process and 3D Modeling 29<br /></b><i>Muhammad Faizan-Ur-Rab, Saden H. Zahiri and Syed H. Masood</i></p> <p>2.1 Introduction 30</p> <p>2.1.1 Cold Spray Equipment 31</p> <p>2.1.1.1 CGT KINETIKS 3000 CS System 31</p> <p>2.1.1.2 Plasma Giken PCS 1000 System 32</p> <p>2.1.1.3 Impact Innovations ISS 5/8 and 5/11 CS Systems 33</p> <p>2.1.2 Applications of Cold Spray Coatings 35</p> <p>2.2 3D Numerical Modeling of Cold Spray Coating 36</p> <p>2.2.1 Computational Domain and Boundary Conditions in Numerical Model 37</p> <p>2.2.2 Three-Dimensional Grid 40</p> <p>2.2.3 Particle-Fluid Interaction 41</p> <p>2.3 Experimental Methods of Cold Spray Coatings for Validation of 3D Model 44</p> <p>2.3.1 Measurement of Substrate’s Temperature 44</p> <p>2.3.2 Particle Image Velocimetry (PIV) 45</p> <p>2.4 Results and Discussions 48</p> <p>2.4.1 3D Model Calibration 48</p> <p>2.4.2 Effect of Propellant Gas 51</p> <p>2.4.3 Effect of Nozzle Length 53</p> <p>2.4.4 Particle’s Temperature 56</p> <p>2.5 Conclusion 59</p> <p>References 60</p> <p><b>3 Effects of Laser Process Parameters on Overlapped Multipass/Multitrack Hardened Bead Parameters of Ti-6Al-4V Titanium Alloy Using Continuous-Wave Rectangular Beam 65<br /></b><i>D.S. Badkar</i></p> <p>3.1 Introduction 66</p> <p>3.2 Experimental Methodology 70</p> <p>3.2.1 Principle of Rectangular Beam 70</p> <p>3.2.2 Materials Used and Experimental Set-Up 70</p> <p>3.2.3 Fixture Fabrication 73</p> <p>3.2.3.1 Bottom Plate 74</p> <p>3.2.3.2 The Top Plate 75</p> <p>3.2.4 Specimen Preparation 76</p> <p>3.2.5 Phase Transformations of Ti-6Al-4V During Laser Transformation Hardening 78</p> <p>3.2.5.1 Laser Heating 78</p> <p>3.2.5.2 Cooling or Self Quenching 78</p> <p>3.3 Results and Discussion 78</p> <p>3.3.1 Effect of Laser Process Parameters on Overlapped Multipass/Multitrack Hardened Bead Parameters 78</p> <p>3.4 Conclusions 82</p> <p>Acknowledgment 82</p> <p>References 82</p> <p><b>4 Dimensionally Stable Lead Dioxide Anodes Electrodeposited from Methanesulfonate Electrolytes: Physicochemical Properties and Electrocatalytic Reactivity in Oxygen Transfer Reactions 85<br /></b><i>Olesia Shmychkova, T. Luk’yanenko and A. Velichenko</i></p> <p>4.1 Introduction 86</p> <p>4.2 Chemical Composition of Coatings 89</p> <p>4.3 Electrocatalytical Properties of Materials 95</p> <p>4.3.1 p-Nitroaniline Oxidation 98</p> <p>4.3.2 p-Nitrophenol Oxidation 100</p> <p>4.3.3 Oxidation of Salicylic Acid and its Derivatives 101</p> <p>4.4 Electrode Endurance Tests 108</p> <p>4.5 Conclusions 116</p> <p>References 118</p> <p><b>5 Polycrystalline Diamond Coating Protects Zr Cladding Surface Against Corrosion in Water-Cooled Nuclear Reactors: Nuclear Fuel Durability Enhancement 123<br /></b><i>Irena Kratochvílová, Radek Škoda, Andrew Taylor, Jan Škarohlíd, Petr Ashcheulov and František Fendrych</i></p> <p>5.1 Introduction 124</p> <p>5.2 Zr Alloy Surface Corrosion—General Description 128</p> <p>5.3 Growth of Polycrystalline Diamond as Anticorrosion Coating on Zr Alloy Surface 131</p> <p>5.4 Properties of PCD-Coated Zr Alloy Samples Processed in Autoclave 135</p> <p>5.4.1 Oxidation of Autoclave-Processed PCD-Coated Zr Samples 135</p> <p>5.4.2 Composition Changes of PCD-Coated Zr Alloy Compared to Autoclaved Zr Alloy and PCD-Coated Zr Alloy 137</p> <p>5.4.2.1 Capacitance Measurements, NanoESCA, X-Ray-Photoelectron Spectroscopy, Neutron Transmission, and Mass Spectrometry 137</p> <p>5.4.2.2 Raman, SEM, and SIMS Analysis of the Autoclave-Processed Samples 143</p> <p>5.4.3 Mechanical and Tribological Properties of Autoclaved PCD Layer-Covered Zr Alloy 145</p> <p>5.4.4 Radiation Damage Test of Autoclaved PCD-Covered Zr Alloy Sample: Ion Beam Irradiation 147</p> <p>5.5 PCD Coating Increases Operation Safety and Prolongs the Zr Nuclear Fuel Cladding Lifetime—Overall</p> <p>Summaries 148</p> <p>5.6 Conclusion 153</p> <p>Acknowledgments 154</p> <p>References 154</p> <p><b>6 High-Performance WC-Based Coatings for Narrow and Complex Geometries 157<br /></b><i>Satish Tailor, Ankur Modi and S. C.Modi</i></p> <p>6.1 Introduction 157</p> <p>6.2 Experimental 159</p> <p>6.2.1 Feedstock Powder 159</p> <p>6.2.2 Substrate Preparation and Coating Deposition 159</p> <p>6.2.3 Why Choosing 45<sup>°</sup> and 70<sup>°</sup> Angles to Design the Connectors 163</p> <p>6.2.4 Characterizations 163</p> <p>6.3 Results and Discussion 164</p> <p>6.3.1 Coating Mechanism Behind the Uniform Coating Properties at Both Spray Angles 45<sup>°</sup> and 70<sup>°</sup> 164</p> <p>6.3.2 Coating Microstructures 164</p> <p>6.3.3 Microhardness of the “As-Sprayed” Coatings 166</p> <p>6.3.4 X-Ray Diffraction 167</p> <p>6.3.5 Residual Stress Analysis 169</p> <p>6.3.6 Adhesion Strength of the Coatings 171</p> <p>6.4 Conclusions 172</p> <p>References 172</p> <p><b>Part II: Coating Materials Nanotechnology 175</b></p> <p><b>7 Nanotechnology in Paints and Coatings 177<br /></b><i>Emmanuel Rotimi Sadiku, Oluranti Agboola, Ibrahim David Ibrahim, Peter Apata Olubambi, BabulReddy Avabaram, Manjula Bandla, Williams Kehinde Kupolati, Jayaramudu Tippabattini, Kokkarachedu Varaprasad, Stephen Chinenyeze Agwuncha, Jonas Mochane, Oluyemi Ojo Daramola, Bilainu Oboirien, Taoreed Adesola Adegbola, Clara Nkuna, Sheshan John Owonubi, Victoria Oluwaseun Fasiku, Blessing Aderibigbe, Vincent Ojijo, Regan Dunne, Koena Selatile, Gertude Makgatho, Caroline Khoathane, Wshington Mhike, Olusesan Frank Biotidara, Mbuso Kingdom Dludlu, AO Adeboje, Oladimeji Adetona Adeyeye, Abongile Ndamase, Samuel Sanni, Gomotsegang Fred Molelekwa, Periyar Selvam, Reshma Nambiar, Anand Babu Perumal, Jarugula Jayaramudu, Nnamdi Iheaturu, Ihuoma Diwe and Betty Chima</i></p> <p>7.1 Introduction 178</p> <p>7.1.1 Paint and Coating 178</p> <p>7.1.2 Nanopaints and Nanocoatings 180</p> <p>7.1.2.1 Some Uses of Nanopaints in Different Materials 181</p> <p>7.1.2.2 Nanomaterials in Paints 183</p> <p>7.1.3 Types of Nanocoating 189</p> <p>7.1.3.1 Superhydrophobic Coating 190</p> <p>7.1.3.2 Oleophobic/Hydrophobic Coating 191</p> <p>7.1.3.3 Hydrophilic Coatings 191</p> <p>7.1.3.4 Ceramic, Metal and Glass Coatings 192</p> <p>7.2 Application of Nanopaints and Nanocoating in the Automotive Industry 195</p> <p>7.3 Application of Nanopaints and Nanocoating in the Energy Sector 196</p> <p>7.4 Application of Nanocoating in Catalysis 198</p> <p>7.5 Application of Nanopaints and Nanocoating in the Marine Industry 200</p> <p>7.6 Applications of Nanopaints and Nanocoating in the Aerospace Industry 200</p> <p>7.7 Domestic and Civil Engineering Applications of Nanopaints and Coating 202</p> <p>7.8 Medical and Biomedical Applications of Nanocoating 205</p> <p>7.8.1 Antibacterial Applications of Nanocoating 205</p> <p>7.9 Defense and Military Applications of Nanopaints and Coatings 227</p> <p>7.10 Conclusion 228</p> <p>7.11 Future Trend 228</p> <p>References 229</p> <p><b>8 Anodic Oxide Nanostructures: Theories of Anodic Nanostructure Self-Organization 235<br /></b><i>Naveen Verma, Jitender Jindal, Krishan Chander Singh and Anuj Mittal</i></p> <p>8.1 Introduction 235</p> <p>8.2 Anodization 237</p> <p>8.3 Barrier-Type Anodic Metal Oxide Films 237</p> <p>8.4 Porous-Type Anodic Metal Oxide Films 238</p> <p>8.5 Theories or Models of Growth Kinetics of Anodic Oxide Films and Fundamental Equations for High-Field Ionic Conductivity 239</p> <p>8.5.1 Guntherschulze and Betz Model 239</p> <p>8.5.2 Cabrera and Mott Model 240</p> <p>8.5.3 Verwey’s High Field Model 242</p> <p>8.5.4 Young Model 243</p> <p>8.5.5 Dignam Model 244</p> <p>8.5.6 Dewald Model: (Dual Barrier Control with Space Charge) 244</p> <p>8.6 Corrosion Characteristics and Related Phenomenon 246</p> <p>8.7 Electrochemical Impedance Spectroscopy 249</p> <p>8.8 Characterization Techniques 250</p> <p>References 251</p> <p><b>9 Nanodiamond Reinforced Epoxy Composite: Prospective Material for Coatings 255<br /></b><i>Ayesha Kausar</i></p> <p>9.1 Introduction 256</p> <p>9.2 Nanodiamond: A Leading Carbon Nanomaterial 256</p> <p>9.3 Epoxy: A Multipurpose Thermoset Polymer 258</p> <p>9.4 Nanodiamond Dispersion in Epoxy: Impediments and Challenges 259</p> <p>9.5 Epoxy/Nanodiamond Coatings 261</p> <p>9.6 Coating Formulation 262</p> <p>9.7 Industrial Relevance of Epoxy/ND Coatings 264</p> <p>9.7.1 Strength and High Temperature Demanding Engineering Application 264</p> <p>9.7.2 Thermal Conductivity Relevance 266</p> <p>9.7.3 Microwave Absorbers 268</p> <p>9.7.4 In Biomedical 268</p> <p>9.8 Summary, Challenges, and Outlook 269</p> <p>References 270</p> <p><b>10 Nanostructured Metal–Metal Oxides and Their Electrocatalytic Applications 275<br /></b><i>Kemal Volkan Özdokur, Süleyman Koçak and Fatma Nil Ertaş</i></p> <p>10.1 Brief History of Electrocatalysis 276</p> <p>10.2 Electrocatalytic Activity 278</p> <p>10.3 Oxygen Reduction Reaction 280</p> <p>10.4 Transition Metal Chalcogenides and Their Catalytic Applications 281</p> <p>10.5 Preparation of Nanostructured Transition Metal Oxide Surfaces 296</p> <p>10.6 Polyoxometallates (POM) 303</p> <p>10.7 Future Trends in Electrocatalysis Applications of Metal/metal oxides 305</p> <p>References 305</p> <p><b>Part III: Advanced Coating Technology and Applications 315</b></p> <p><b>11 Solid-Phase Microextraction Coatings Based on Tailored Materials: Metal–Organic Frameworks and Molecularly Imprinted Polymers 317<br /></b><i>Priscilla Rocío-Bautista, Adrián Gutiérrez-Serpa and Verónica Pino</i></p> <p>11.1 Solid-Phase Microextraction 317</p> <p>11.2 HS-SPME-GC Applications Using MOF-Based Coatings 320</p> <p>11.2.1 Metal–Organic Frameworks (MOFs) 320</p> <p>11.2.2 SPME Coating Fibers Based on MOFs 322</p> <p>11.3 DI-SPME-LC Applications Using MIP-Based Coatings 331</p> <p>11.3.1 Molecularly Imprinted Polymers (MIPs) 332</p> <p>11.3.2 SPME Coating Fibers Based on MIPs 333</p> <p>11.3.3 MIPs and MOFs Features as SPME Coatings 340</p> <p>11.4 Conclusions and Trends 341</p> <p>Acknowledgements 341</p> <p>References 342</p> <p><b>12 Investigations on Laser Surface Modification of Commercially Pure Titanium Using Continuous-Wave Nd:YAG Laser 349<br /></b><i>Duradundi Sawant Badkar</i></p> <p>12.1 Introduction 350</p> <p>12.2 Experimental Design 354</p> <p>12.3 Experimental Methodology 355</p> <p>12.4 Results and Discussions 358</p> <p>12.4.1 Analysis of Variance (ANOVA) for Response Surface Full Model 358</p> <p>12.4.2 Validation of the Models 366</p> <p>12.4.3 Effect of Process Factors on Hardened Bead Profile Parameters 370</p> <p>12.4.3.1 Heat Input (HI) 370</p> <p>12.4.3.2 Hardened Bead Width (HBW) 370</p> <p>12.4.3.3 Hardened Depth (HD) 374</p> <p>12.4.3.4 Angle of Entry of Hardened Bead Profile (AEHB) 377</p> <p>12.4.3.5 Power Density (PD) 381</p> <p>12.4.4 Microstructural Analysis 384</p> <p>12.5 Conclusions 387</p> <p>Acknowledgements 390</p> <p>References 390</p> <p><b>13 Multiscale Engineering and Scalable Fabrication of Super(de)wetting Coatings 393<br /></b><i>William S. Y. Wong and Antonio Tricoli</i></p> <p>13.1 Introduction 394</p> <p>13.2 Fundamentals of Wettability and Superwettability 395</p> <p>13.2.1 Defining Hydrophilicity and Hydrophobicity 397</p> <p>13.2.2 Defining Superhydrophilicity and Superhydrophobicity 398</p> <p>13.2.2.1 Wenzel’s Model 398</p> <p>13.2.2.2 Cassie–Baxter’s Model 399</p> <p>13.2.2.3 Contact Angle Hysteresis 400</p> <p>13.2.2.4 Variants of Superhydrophilicity 402</p> <p>13.2.2.5 Ideal Superhydrophilicity 402</p> <p>13.2.2.6 Hemiwicking Superhydrophilicity 402</p> <p>13.2.2.7 Variants of Superhydrophobicity 403</p> <p>13.2.2.8 Ideal Lotus Superhydrophobicity 403</p> <p>13.2.2.9 Petal-Like Adhesive Superhydrophobicity 404</p> <p>13.2.3 Defining Superoleophobicity, Superamphiphobicity and Superomniphobicity 405</p> <p>13.2.3.1 Superoleophobicity and Superamphiphobicity 405</p> <p>13.2.3.2 Superomniphobicity 407</p> <p>13.2.3.3 Re-Entrant Profiles 407</p> <p>13.2.3.4 Shades of Grey: Superoleo(amphi) phobicity to Superomniphobicity 408</p> <p>13.2.4 Characterization Techniques 409</p> <p>13.2.4.1 Static Contact Angle Analysis 409</p> <p>13.2.4.2 Dynamic Contact Angle Analysis—Contact Angle Hysteresis 411</p> <p>13.2.4.3 Dynamic Contact Angle Analysis—Sliding Angle 412</p> <p>13.2.4.4 Other Modes of Dynamic Analysis—Droplet Bouncing and Fluid Immersion 412</p> <p>13.3 Nature to Artificial: Bioinspired Engineering 413</p> <p>13.3.1 Superhydrophilicity 414</p> <p>13.3.2 “Lotus-Like” Low-Adhesion Superhydrophobicity 416</p> <p>13.3.3 “Rose Petal-Like” High-Adhesion Superhydrophobicity 416</p> <p>13.3.4 Anisotropic Low-Adhesion/High-Adhesion Superhydrophobicity 417</p> <p>13.3.5 Superhydrophobic–Hydrophilic Patterning 418</p> <p>13.3.6 Superoleo(amphi)phobicity 418</p> <p>13.4 Top-Down and Bottom-Up Nanotexturing Approaches 419</p> <p>13.4.1 Templating 419</p> <p>13.4.2 (Photo)-Lithography 420</p> <p>13.4.3 Scalable Bottom-Up Texturing Approaches 421</p> <p>13.5 Superhydrophilicity 421</p> <p>13.5.1 The State of Superhydrophilicity 421</p> <p>13.5.1.1 Plasma and Ozone Surface Hydroxylation 421</p> <p>13.5.1.2 Aerosol Deposition 422</p> <p>13.5.1.3 Electrospinning 423</p> <p>13.5.1.4 Chemical Etching Hydroxylation 424</p> <p>13.5.1.5 Wet-Deposition 424</p> <p>13.5.1.6 Sol–Gel and Photoactivation 424</p> <p>13.5.1.7 Thiol-Functionalization 425</p> <p>13.6 Superhydrophobicity 426</p> <p>13.6.1 Ideal Lotus Slippery Superhydrophobicity 426</p> <p>13.6.1.1 Plasma 426</p> <p>13.6.1.2 Chemical Vapor Deposition 427</p> <p>13.6.1.3 Spraying (Wet-Spray, Liquid-Fed Flame Spray, Sputtering) 428</p> <p>13.6.1.4 Wet-Deposition 433</p> <p>13.6.1.5 Sol-Gel 434</p> <p>13.6.1.6 Electrodeposition 435</p> <p>13.6.1.7 Chemical Etching 436</p> <p>13.6.2 Petal-Like Adhesive Superhydrophobicity 437</p> <p>13.6.2.1 Templating 437</p> <p>13.6.2.2 Liquid-Fed Flame Spray Pyrolysis 438</p> <p>13.6.2.3 Sol–Gel and Hydrothermal Synthesis 438</p> <p>13.6.2.4 Electrospinning 440</p> <p>13.6.2.5 Electrodeposition 441</p> <p>13.6.2.6 Micro- and Nanostructural Self-Assembly 441</p> <p>13.6.2.7 Mechanical Methods 442</p> <p>13.7 Superoleophobicity and Superamphiphobicity 443</p> <p>13.7.1 Nanofilaments, Fabric Fibers, Meshes, and Tubes 443</p> <p>13.7.2 Aerosol-Coating (Wet-Spray, Candle Soot / Liquid-Fed Flame Spray) 445</p> <p>13.7.2.1 Wet-Spray Deposition 445</p> <p>13.7.2.2 Flame Soot Deposition 445</p> <p>13.7.2.3 Flame Spray Pyrolysis 447</p> <p>13.7.3 Sol–Gel 448</p> <p>13.7.4 Wet-Coating (Dip- and Spin-Coating) 448</p> <p>13.7.4.1 Dip-Coating 448</p> <p>13.7.4.2 Spin-Coating 449</p> <p>13.7.5 Micro- and Nanostructural Self-Assembly 449</p> <p>13.7.6 Electrospinning 450</p> <p>13.7.7 Electrodeposition and Electrochemical Etching 450</p> <p>13.7.7.1 Electrochemical Etching 450</p> <p>13.7.7.2 Electrodeposition 451</p> <p>13.7.8 Perfluoro-Acid Etching 452</p> <p>13.7.9 Physical Etching 452</p> <p>13.8 Superomniphobicity 452</p> <p>13.8.1 Electrospun Beads on Mesh-Like Profiles 453</p> <p>13.8.2 Controlled Sol–Gel Growth 455</p> <p>13.8.3 Etched Aluminum Meshes 455</p> <p>13.8.4 Hybridized Lithography 455</p> <p>13.9 Conclusions 456</p> <p>References 457</p> <p><b>14 Polymeric Materials in Coatings for Biomedical Applications 481<br /></b><i>Victoria Oluwaseun Fasiku, Shesan John Owonubi, Emmanuel Mukwevho, Blessing Aderibigbe, Emmanuel Rotimi Sadiku, Yolandy Lemmer, Idowu David Ibrahim, Jonas Mochane, Oluyemi Ojo Daramola, Koena Selatile, Abongile Ndamase and Oluranti Agboola</i></p> <p>14.1 Introduction 482</p> <p>14.1.1 Coating Materials 483</p> <p>14.2 Polymeric Coating Materials 484</p> <p>14.2.1 Structure, Synthesis, and Properties 485</p> <p>14.2.1.1 Polyvinyl Alcohol (PVA) 485</p> <p>14.2.1.2 Parylene 486</p> <p>14.2.1.3 Polyurethane (PU) 487</p> <p>14.2.2 Coating Methods 489</p> <p>14.2.3 Biomedical Coating Applications 492</p> <p>14.2.3.1 Antifouling Coating 492</p> <p>14.2.3.2 Nanoparticle Coating for Drug Delivery 493</p> <p>14.2.3.3 Implants Coating 495</p> <p>14.2.3.4 Cardiovascular Stents 497</p> <p>14.2.3.5 Antimicrobial Surface Coating 498</p> <p>14.2.3.6 Drug Delivery Coating 499</p> <p>14.2.3.7 Tissue Engineering Coating 500</p> <p>14.2.3.8 Sensor Coating 501</p> <p>14.3 Conclusion 502</p> <p>References 503</p> <p>Index 519</p>
<p><b>Liang Li</b> received his PhD from the Institute of Solid State Physics at the Chinese Academy of Sciences and won the Excellent President Scholarship in 2006. He is currently a full Professor at Soochow University, China. His research group (http://ecs.suda.edu.cn) focuses mainly on the energy conversion (solar cells and photodetectors) and storage (Li/Na batteries) devices of low-dimensional nanomaterials. He has published more than 140 papers with 6000 citations with an H-index of 40, as well as 16 patents. <p><b>Qing Yang</b> is a Professor in the College of Optical Science and Engineering, Zhejiang University, China. She received her PhD degree from Zhejiang University in 2006. Dr. Yang's research focuses on nanophotonics and piezo-photontronics. She has made original contributions to the fabrication, tuning and applications of nanophotonic devices and has pioneered and systematically investigated nanowire-based lasers. Dr. Yang has published about 55 peer reviewed journal articles with over 1500 citations and an H index of 25, as well as 11 Chinese or U.S. patents.
<p><b>Provides a comprehensive, yet practical source of reference, and excellent foundation for comparing the properties and performance of coatings and selecting the most suitable materials based on specific service needs and environmental factors.</b> <p>Coating technology has developed significant techniques for protecting existing infrastructure from corrosion and erosion, maintaining and enhancing the performance of equipment, and provided novel functions such as smart coatings greatly benefiting the medical device, energy, automotive and construction industries. <p>The mechanisms, usage, and manipulation of cutting-edge coating methods are the focus of this book. Not only are the working mechanisms of coating materials explored in great detail, but also craft designs for further optimization of more uniform, safe, stable, and scalable coatings. <p>A group of leading experts in different coating technologies demonstrate their main applications, identify the key bottlenecks, and outline future prospects. <i>Advanced Coating Materials</i> broadly covers the coating techniques, including cold spray, plasma vapor deposition, chemical vapor deposition, sol–gel method, etc., and their significant applications in microreactor technology, super(de)wetting, joint implants, electrocatalyst, etc. Numerous kinds of coating structures are addressed, including nanosize particles, biomimicry structures, metals and complexed materials, along with the environmental and human compatible biopolymers resulting from microbial activities. This state-of-the-art book is divided into three parts: (1) Materials and Methods: Design and Fabrication, (2) Coating Materials: Nanotechnology, and (3) Advanced Coating Technology and Applications. <p><b>Audience</b> <p>Scientists, researchers, engineers and technologists in chemistry, physics, biotechnology, materials science, environmental and biomedical engineering involved with surface materials processing.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €