Details

A Users Guide to Vacuum Technology


A Users Guide to Vacuum Technology


4. Aufl.

von: John F. O'Hanlon, Timothy A. Gessert

111,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 09.10.2023
ISBN/EAN: 9781394174140
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>A USERS GUIDE TO VACUUM TECHNOLOGY</b> <p><b>Choose and understand the vacuum technology that fits your project’s needs with this indispensable guide</b> <p>Vacuum technology is used to provide process environments for other kinds of engineering technology, making it an unsung cornerstone of hundreds of projects incorporating analysis, research and development, manufacturing, and more. Since it is very often a secondary technology, users primarily interested in processes incorporating it will frequently only encounter vacuum technology when purchasing or troubleshooting. There is an urgent need for a guide to vacuum technology made with these users in mind. <p>For decades, <i>A User’s Guide to Vacuum Technology</i> has met this need, with a user-focused introduction to vacuum technology as it is incorporated into semiconductor, optics, solar sell, and other engineering processes. With an emphasis on otherwise neglected subjects and on accessibility to the secondary user of vacuum technology, it balances treatment of older systems that are still in use with a survey of the latest cutting-edge technologies. The result promises to continue as the essential guide to vacuum systems. <p>Readers of the fourth edition of <i>A User’s Guide to Vacuum Technology</i> will also find: <ul><li>Expanded treatment of gauges, pumps, materials, systems, and best??operating practices</li> <li>Detailed discussion of cutting-edge topics like ultraclean vacuum and contamination control</li> <li>An authorial team with decades of combined research and engineering experience</li></ul> <p><i>A User’s Guide to Vacuum Technology</i> is essential for those entering emerging STEM programs, engineering professionals and graduate students working with a huge range of engineering technologies.
<p>Preface xvii</p> <p>Symbols xix</p> <p><b>Part I Its Basis 1</b></p> <p><b>1 Vacuum Technology 3</b></p> <p>1.1 Units of Measurement 8</p> <p>References 9</p> <p><b>2 Gas Properties 11</b></p> <p>2.1 Kinetic Picture of a Gas 11</p> <p>2.1.1 Velocity Distribution 12</p> <p>2.1.2 Energy Distribution 13</p> <p>2.1.3 Mean Free Path 14</p> <p>2.1.4 Particle Flux 15</p> <p>2.1.5 Monolayer Formation Time 15</p> <p>2.1.6 Pressure 16</p> <p>2.2 Gas Laws 16</p> <p>2.2.1 Boyle’s Law 17</p> <p>2.2.2 Amontons’ Law 17</p> <p>2.2.3 Charles’ Law 18</p> <p>2.2.4 Dalton’s Law 18</p> <p>2.2.5 Avogadro’s Law 18</p> <p>2.2.6 Graham’s Law 19</p> <p>2.3 Elementary Gas Transport Phenomena 19</p> <p>2.3.1 Viscosity 19</p> <p>2.3.2 Thermal Conductivity 22</p> <p>2.3.3 Diffusion 23</p> <p>2.3.4 Thermal Transpiration 24</p> <p>References 25</p> <p><b>3 Gas Flow 27</b></p> <p>3.1 Flow Regimes 27</p> <p>3.2 Flow Concepts 29</p> <p>3.3 Continuum Flow 31</p> <p>3.3.1 Orifice 32</p> <p>3.3.2 Long Round Tube 34</p> <p>3.3.3 Short Round Tube 36</p> <p>3.4 Molecular Flow 37</p> <p>3.4.1 Orifice 38</p> <p>3.4.2 Long Round Tube 39</p> <p>3.4.3 Short Round Tube 39</p> <p>3.4.4 Irregular Structures 41</p> <p>3.4.4.1 Analytical Solutions 42</p> <p>3.4.4.2 Statistical Solutions 43</p> <p>3.4.5 Components in Parallel and Series 43</p> <p>3.5 Models Spanning Molecular and Viscous Flow 53</p> <p>References 55</p> <p><b>4 Gas Release from Solids 59</b></p> <p>4.1 Vaporization 59</p> <p>4.2 Diffusion 60</p> <p>4.2.1 Reduction of Outdiffusion by Vacuum Baking 62</p> <p>4.3 Thermal Desorption 63</p> <p>4.3.1 Zero Order 63</p> <p>4.3.2 First Order 64</p> <p>4.3.3 Second Order 65</p> <p>4.3.4 Desorption from Real Surfaces 67</p> <p>4.3.5 Outgassing Measurements 67</p> <p>4.3.6 Outgassing Models 69</p> <p>4.3.7 Reduction by Baking 69</p> <p>4.4 Stimulated Desorption 71</p> <p>4.4.1 Electron-Stimulated Desorption 71</p> <p>4.4.2 Ion-Stimulated Desorption 71</p> <p>4.4.3 Stimulated Chemical Reactions 72</p> <p>4.4.4 Photo Desorption 72</p> <p>4.5 Permeation 73</p> <p>4.5.1 Atomic and Molecular Permeation 73</p> <p>4.5.2 Dissociative Permeation 74</p> <p>4.5.3 Permeation and Outgassing Units 75</p> <p>4.6 Pressure Limitations During Pumping 76</p> <p>References 78</p> <p><b>Part II Measurement 81</b></p> <p><b>5 Pressure Gauges 83</b></p> <p>5.1 Direct Reading Gauges 83</p> <p>5.1.1 Diaphragm and Bourdon Gauges 84</p> <p>5.1.2 Capacitance Manometer 85</p> <p>5.2 Indirect Reading Gauges 88</p> <p>5.2.1 Thermal Conductivity Gauges 88</p> <p>5.2.1.1 Pirani Gauge 90</p> <p>5.2.1.2 Thermocouple Gauge 91</p> <p>5.2.1.3 Stability and Calibration 92</p> <p>5.2.2 Spinning Rotor Gauge 93</p> <p>5.2.3 Ionization Gauges 95</p> <p>5.2.3.1 Hot Cathode Gauges 95</p> <p>5.2.3.2 Hot Cathode Gauge Errors 100</p> <p>5.2.3.3 Cold Cathode Gauge 103</p> <p>5.2.3.4 Gauge Calibration 105</p> <p>References 105</p> <p><b>6 Flow Meters 109</b></p> <p>6.1 Molar Flow, Mass Flow, and Throughput 109</p> <p>6.2 Rotameters and Chokes 111</p> <p>6.3 Differential Pressure Devices 112</p> <p>6.4 Thermal Mass Flow Technique 114</p> <p>6.4.1 Mass Flow Meter 114</p> <p>6.4.2 Mass Flow Controller 117</p> <p>6.4.3 Mass Flow Meter Calibration 119</p> <p>References 119</p> <p><b>7 Pumping Speed 121</b></p> <p>7.1 Definition 121</p> <p>7.2 Mechanical Pump Speed Measurements 122</p> <p>7.3 High Vacuum Pump Speed Measurements 123</p> <p>7.3.1 Methods 123</p> <p>7.3.2 Gas and Pump Dependence 124</p> <p>7.3.3 Approximate Speed Measurements 125</p> <p>7.3.4 Errors 125</p> <p>References 127</p> <p><b>8 Residual Gas Analyzers 129</b></p> <p>8.1 Instrument Description 129</p> <p>8.1.1 Ion Sources 131</p> <p>8.1.1.1 Open Ion Sources 131</p> <p>8.1.1.2 Closed Ion Sources 133</p> <p>8.1.2 Mass Filters 134</p> <p>8.1.2.1 Magnetic Sector 134</p> <p>8.1.2.2 RF Quadrupole 135</p> <p>8.1.2.3 Resolving Power 138</p> <p>8.1.3 Detectors 138</p> <p>8.1.3.1 Discrete Dynode Electron Multiplier 139</p> <p>8.1.3.2 Continuous Dynode Electron Multiplier 140</p> <p>8.2 Installation and Operation 142</p> <p>8.2.1 Operation at High Vacuum 142</p> <p>8.2.1.1 Sensor Mounting 142</p> <p>8.2.1.2 Stability 143</p> <p>8.2.2 Operation at Medium and Low Vacuum 145</p> <p>8.2.2.1 Differentially Pumped Analysis 145</p> <p>8.2.2.2 Miniature Quadrupoles 148</p> <p>8.3 Calibration 148</p> <p>8.4 Choosing an Instrument 149</p> <p>References 150</p> <p><b>9 Interpretation of RGA Data 153</b></p> <p>9.1 Cracking Patterns 153</p> <p>9.1.1 Dissociative Ionization 153</p> <p>9.1.2 Isotopes 154</p> <p>9.1.3 Multiple Ionization 154</p> <p>9.1.4 Combined Effects 154</p> <p>9.1.5 Ion–Molecule Reactions 157</p> <p>9.2 Qualitative Analysis 158</p> <p>9.3 Quantitative Analysis 163</p> <p>9.3.1 Isolated Spectra 164</p> <p>9.3.2 Overlapping Spectra 165</p> <p>References 169</p> <p><b>Part III Production 171</b></p> <p><b>10 Mechanical Pumps 173</b></p> <p>10.1 Rotary Vane 173</p> <p>10.2 Lobe 177</p> <p>10.3 Claw 180</p> <p>10.4 Multistage Lobe 182</p> <p>10.5 Scroll 184</p> <p>10.6 Screw 185</p> <p>10.7 Diaphragm 185</p> <p>10.8 Reciprocating Piston 187</p> <p>10.9 Mechanical Pump Operation 189</p> <p>References 189</p> <p><b>11 Turbomolecular Pumps 191</b></p> <p>11.1 Pumping Mechanism 191</p> <p>11.2 Speed–Compression Relations 192</p> <p>11.2.1 Maximum Compression 193</p> <p>11.2.2 Maximum Speed 195</p> <p>11.2.3 General Relation 197</p> <p>11.3 Ultimate Pressure 198</p> <p>11.4 Turbomolecular Pump Designs 199</p> <p>11.5 Turbo-Drag Pumps 201</p> <p>References 203</p> <p><b>12 Diffusion Pumps 205</b></p> <p>12.1 Pumping Mechanism 205</p> <p>12.2 Speed–Throughput Characteristics 207</p> <p>12.3 Boiler Heating Effects 211</p> <p>12.4 Backstreaming, Baffles, and Traps 212</p> <p>References 215</p> <p><b>13 Getter and Ion Pumps 217</b></p> <p>13.1 Getter Pumps 217</p> <p>13.1.1 Titanium Sublimation 218</p> <p>13.1.2 Non-evaporable Getters 223</p> <p>13.2 Ion Pumps 224</p> <p>References 229</p> <p><b>14 Cryogenic Pumps 233</b></p> <p>14.1 Pumping Mechanisms 234</p> <p>14.2 Speed, Pressure, and Saturation 237</p> <p>14.3 Cooling Methods 241</p> <p>14.4 Cryopump Characteristics 245</p> <p>14.4.1 Sorption Pumps 246</p> <p>14.4.2 Gas Refrigerator Pumps 249</p> <p>14.4.3 Liquid Cryogen Pumps 253</p> <p>References 253</p> <p><b>Part IV Materials 257</b></p> <p><b>15 Materials in Vacuum 259</b></p> <p>15.1 Metals 260</p> <p>15.1.1 Vaporization 260</p> <p>15.1.2 Permeability 260</p> <p>15.1.3 Outgassing 261</p> <p>15.1.3.1 Dissolved Gas 262</p> <p>15.1.3.2 Surface and Near-Surface Gas 264</p> <p>15.1.4 Structural Metals 269</p> <p>15.2 Glasses and Ceramics 272</p> <p>15.3 Polymers 277</p> <p>References 281</p> <p><b>16 Joints Seals and Valves 285</b></p> <p>16.1 Permanent Joints 285</p> <p>16.1.1 Welding 286</p> <p>16.1.2 Soldering and Brazing 290</p> <p>16.1.3 Joining Glasses and Ceramics 291</p> <p>16.2 Demountable Joints 293</p> <p>16.2.1 Elastomer Seals 294</p> <p>16.2.2 Metal Gaskets 300</p> <p>16.3 Valves and Motion Feedthroughs 302</p> <p>16.3.1 Small Valves 302</p> <p>16.3.2 Large Valves 304</p> <p>16.3.3 Special-Purpose Valves 307</p> <p>16.3.4 Motion Feedthroughs 308</p> <p>References 313</p> <p><b>17 Pump Fluids and Lubricants 315</b></p> <p>17.1 Pump Fluids 315</p> <p>17.1.1 Fluid Properties 315</p> <p>17.1.1.1 Vapor Pressure 316</p> <p>17.1.1.2 Other Characteristics 319</p> <p>17.1.2 Fluid Types 319</p> <p>17.1.2.1 Mineral Oils 320</p> <p>17.1.2.2 Esters 321</p> <p>17.1.2.3 Silicones 321</p> <p>17.1.2.4 Ethers 322</p> <p>17.1.2.5 Fluorochemicals 322</p> <p>17.1.3 Selecting Fluids 323</p> <p>17.1.3.1 Rotary, Vane, and Lobe Pump Fluids 323</p> <p>17.1.3.2 Turbo Pump Fluids 325</p> <p>17.1.3.3 Diffusion Pump Fluids 325</p> <p>17.1.4 Reclamation 328</p> <p>17.2 Lubricants 328</p> <p>17.2.1 Lubricant Properties 329</p> <p>17.2.1.1 Absolute Viscosity 330</p> <p>17.2.1.2 Kinematic Viscosity 331</p> <p>17.2.1.3 Viscosity Index 332</p> <p>17.2.2 Selecting Lubricants 333</p> <p>17.2.2.1 Liquid 333</p> <p>17.2.2.2 Grease 334</p> <p>17.2.2.3 Solid Film 336</p> <p>References 338</p> <p><b>Part V Systems 341</b></p> <p><b>18 Rough Vacuum Pumping 343</b></p> <p>18.1 Exhaust Rate 344</p> <p>18.1.1 Pump Size 344</p> <p>18.1.2 Aerosol Formation 346</p> <p>18.2 Crossover 350</p> <p>18.2.1 Minimum Crossover Pressure 351</p> <p>18.2.2 Maximum Crossover Pressure 354</p> <p>18.2.2.1 Diffusion 354</p> <p>18.2.2.2 Turbo 357</p> <p>18.2.2.3 Cryo 357</p> <p>18.2.2.4 Sputter-Ion 360</p> <p>References 362</p> <p><b>19 High Vacuum Systems 365</b></p> <p>19.1 Diffusion-Pumped Systems 365</p> <p>19.1.1 Operating Modes 368</p> <p>19.1.2 Operating Issues 369</p> <p>19.2 Turbo-Pumped Systems 371</p> <p>19.2.1 Operating Modes 374</p> <p>19.2.2 Operating Issues 375</p> <p>19.3 Sputter-Ion-Pumped Systems 376</p> <p>19.3.1 Operating Modes 377</p> <p>19.3.2 Operating Issues 379</p> <p>19.4 Cryo-Pumped Systems 379</p> <p>19.4.1 Operating Modes 380</p> <p>19.4.2 Regeneration 380</p> <p>19.4.3 Operating Issues 382</p> <p>19.5 High Vacuum Chambers 383</p> <p>19.5.1 Managing Water Vapor 384</p> <p>References 386</p> <p><b>20 Ultraclean Vacuum Systems 387</b></p> <p>20.1 Ultraclean Pumps 389</p> <p>20.1.1 Dry Roughing Pumps 390</p> <p>20.1.2 Turbopumps 390</p> <p>20.1.3 Cryopumps 390</p> <p>20.1.4 Sputter-Ion, TSP, and NEG Pumps 391</p> <p>20.2 Ultraclean Chamber Materials and Components 392</p> <p>20.3 Ultraclean System Pumping and Pressure Measurement 394</p> <p>References 398</p> <p><b>21 Controlling Contamination in Vacuum Systems 401</b></p> <p>21.1 Defining Contamination in a Vacuum Environment 401</p> <p>21.1.1 Establishing Control of Vacuum Contamination 401</p> <p>21.1.2 Types of Vacuum Contamination 402</p> <p>21.1.2.1 Particle Contamination 403</p> <p>21.1.2.2 Gas Contamination 409</p> <p>21.1.2.3 Film Contamination 410</p> <p>21.2 Pump Contamination 411</p> <p>21.2.1 Low/Rough and Medium Vacuum Pump Contamination 411</p> <p>21.2.1.1 Fluid-Sealed Mechanical Pumps 412</p> <p>21.2.1.2 Dry Mechanical Pumps 413</p> <p>21.2.2 High and UHV Vacuum Pump Contamination 415</p> <p>21.2.2.1 Diffusion Pumps 416</p> <p>21.2.2.2 Turbo- and Turbo-Drag Pumps 417</p> <p>21.2.2.3 Cryopumps 418</p> <p>21.2.2.4 Sputter-Ion and Titanium-Sublimination Pumps 419</p> <p>21.3 Evacuation Contamination 420</p> <p>21.3.1 Particle Sources 420</p> <p>21.3.2 Remediation Methods 421</p> <p>21.4 Venting Contamination 422</p> <p>21.5 Internal Components, Mechanisms, and Bearings 423</p> <p>21.6 Machining Contamination 426</p> <p>21.6.1 Cutting, Milling, and Turning 426</p> <p>21.6.2 Grinding and Polishing 427</p> <p>21.6.3 Welding 428</p> <p>21.7 Process-Related Sources 429</p> <p>21.7.1 Deposition Sources 429</p> <p>21.7.2 Leak Detection 430</p> <p>21.8 Lubrication Contamination 432</p> <p>21.8.1 Liquid Lubricants 432</p> <p>21.8.2 Solid Lubricants 433</p> <p>21.8.3 Lamellar, Polymer, and Suspension Lubricants 434</p> <p>21.9 Vacuum System and Component Cleaning 434</p> <p>21.9.1 Designing a Cleaning Process 435</p> <p>21.10 Review of Clean Room Environments for Vacuum Systems 436</p> <p>21.10.1 The Cleanroom Environment 438</p> <p>21.10.2 Using Vacuum Systems in a Cleanroom Environment 438</p> <p>References 442</p> <p><b>22 High Flow Systems 445</b></p> <p>22.1 Mechanically Pumped Systems 447</p> <p>22.2 Throttled High Vacuum Systems 449</p> <p>22.2.1 Chamber Designs 449</p> <p>22.2.2 Turbo Pumped 451</p> <p>22.2.3 Cryo Pumped 455</p> <p>References 459</p> <p><b>23 Multichambered Systems 461</b></p> <p>23.1 Flexible Substrates 462</p> <p>23.2 Rigid Substrates 465</p> <p>23.2.1 Inline Systems 465</p> <p>23.2.2 Cluster Systems 469</p> <p>23.3 Analytical Instruments 472</p> <p>References 472</p> <p><b>24 Leak Detection 475</b></p> <p>24.1 Mass Spectrometer Leak Detectors 476</p> <p>24.1.1 Forward Flow 476</p> <p>24.1.2 Counter flow 477</p> <p>24.2 Performance 478</p> <p>24.2.1 Sensitivity 478</p> <p>24.2.2 Response Time 480</p> <p>24.2.3 Testing Pressurized Chambers 481</p> <p>24.2.4 Calibration 482</p> <p>24.3 Leak Hunting Techniques 483</p> <p>24.4 Leak Detecting with Hydrogen Tracer Gas 486</p> <p>References 487</p> <p><b>Part VI Appendices 489</b></p> <p>Appendix A Units and Constants 491</p> <p>Appendix B Gas Properties 495</p> <p>Appendix C Material Properties 509</p> <p>Appendix D Isotopes 519</p> <p>Appendix E Cracking Patterns 525</p> <p>Appendix F Pump Fluid Properties 535</p> <p>Index 543</p>
<p><b>John F. O’Hanlon, PhD,</b> Emeritus Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, USA and retired IBM Research Staff Member. He is a Senior Member of the IEEE, a Fellow of the AVS and has published widely on vacuum technology and related subjects. <p><b>Timothy A. Gessert, PhD,</b> is Principal Scientist and Managing Member of Gessert Consulting, LLC, USA, former Principal Scientist at the National Renewable Energy Laboratory, USA, and Fellow and Past President of the AVS. He has published extensively on vacuum technology and related subjects.
<p><b>Choose and understand the vacuum technology that fits your project’s needs with this indispensable guide</b> <p>Vacuum technology is used to provide process environments for other kinds of engineering technology, making it an unsung cornerstone of hundreds of projects incorporating analysis, research and development, manufacturing, and more. Since it is very often a secondary technology, users primarily interested in processes incorporating it will frequently only encounter vacuum technology when purchasing or troubleshooting. There is an urgent need for a guide to vacuum technology made with these users in mind. <p>For decades, <i>A User’s Guide to Vacuum Technology</i> has met this need, with a user-focused introduction to vacuum technology as it is incorporated into semiconductor, optics, solar sell, and other engineering processes. With an emphasis on otherwise neglected subjects and on accessibility to the secondary user of vacuum technology, it balances treatment of older systems that are still in use with a survey of the latest cutting-edge technologies. The result promises to continue as the essential guide to vacuum systems. <p>Readers of the fourth edition of <i>A User’s Guide to Vacuum Technology</i> will also find: <ul><li>Expanded treatment of gauges, pumps, materials, systems, and best??operating practices</li> <li>Detailed discussion of cutting-edge topics like ultraclean vacuum and contamination control</li> <li>An authorial team with decades of combined research and engineering experience</li></ul> <p><i>A User’s Guide to Vacuum Technology</i> is essential for those entering emerging STEM programs, engineering professionals and graduate students working with a huge range of engineering technologies.

Diese Produkte könnten Sie auch interessieren:

Integrating Program Management and Systems Engineering
Integrating Program Management and Systems Engineering
von: Eric Rebentisch, Larry Prusak
PDF ebook
89,99 €
EEG Signal Processing and Machine Learning
EEG Signal Processing and Machine Learning
von: Saeid Sanei, Jonathon A. Chambers
PDF ebook
100,99 €
Integrating Program Management and Systems Engineering
Integrating Program Management and Systems Engineering
von: Eric Rebentisch, Larry Prusak
EPUB ebook
89,99 €