Details

A Framework of Human Systems Engineering


A Framework of Human Systems Engineering

Applications and Case Studies
1. Aufl.

von: Holly A. H. Handley, Andreas Tolk

108,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 03.12.2020
ISBN/EAN: 9781119698777
Sprache: englisch
Anzahl Seiten: 304

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Explores the breadth and versatility of Human Systems Engineering (HSE) practices and illustrates its value in system development</b></p> <p><i>A Framework of Human Systems Engineering</i>: <i>Applications and Case Studies</i> offers a guide to identifying and improving methods to integrate human concerns into the conceptualization and design of systems. With contributions from a panel of noted experts on the topic, the book presents a series of Human Systems Engineering (HSE) applications on a wide range of topics: interface design, training requirements, personnel capabilities and limitations, and human task allocation.</p> <p>Each of the book's chapters present a case study of the application of HSE from different dimensions of socio-technical systems. The examples are organized using a socio-technical system framework to reference the applications across multiple system types and domains. These case studies are based in real-world examples and highlight the value of applying HSE to the broader engineering community. This important book:</p> <ul> <li>Includes a proven framework with case studies to different dimensions of practice, including domain, system type, and system maturity</li> <li>Contains the needed tools and methods in order to integrate human concerns within systems</li> <li>Encourages the use of Human Systems Engineering throughout the design process</li> <li>Provides examples that cross traditional system engineering sectors and identifies a diverse set of human engineering practices</li> </ul> <p>Written for systems engineers, human factors engineers, and HSI practitioners, <i>A Framework of Human Systems Engineering: Applications and Case Studies</i> provides the information needed for the better integration of human and systems and early resolution of issues based on human constraints and limitations.</p>
<p>Biographies xv</p> <p>Contributors List xvii</p> <p>Foreword xxi</p> <p>Preface xxiii</p> <p><b>Section 1 Sociotechnical System Types </b><b>1</b></p> <p><b>1 Introduction to the Human Systems Engineering Framework </b><b>3<br /></b><i>Holly A. H. Handley</i></p> <p>1.1 Introduction 3</p> <p>1.2 Human-Centered Disciplines 3</p> <p>1.3 Human Systems Engineering 4</p> <p>1.4 Development of the HSE Framework 5</p> <p>1.5 HSE Applications 7</p> <p>1.6 Conclusion 9</p> <p>References 9</p> <p><b>2 Human Interface Considerations for Situational Awareness </b><b>11<br /></b><i>Christian G. W. Schnedler and Michael Joy</i></p> <p>2.1 Introduction 11</p> <p>2.2 Situational Awareness: A Global Challenge 12</p> <p>2.3 Putting Situational Awareness in Context: First Responders 13</p> <p>2.4 Deep Dive on Human Interface Considerations 14</p> <p>2.5 Putting Human Interface Considerations in Context: Safe Cities 15</p> <p>2.6 Human Interface Considerations for Privacy-Aware SA 16</p> <p>Reference 17</p> <p><b>3 Utilizing Artificial Intelligence to Make Systems Engineering More Human </b><b>19<br /></b><i>Philip S. Barry and Steve Doskey</i></p> <p>3.1 Introduction 19</p> <p>3.2 Changing Business Needs Drive Changes in Systems Engineering 20</p> <p>3.3 Epoch 4: Delivering Capabilities in the Sociotechnical Ecosystem 21</p> <p>3.3.1 A Conceptual Architecture for Epoch 4 22</p> <p>3.3.2 Temporal Sociotechnical Measures 22</p> <p>3.3.3 Systems Engineering Frameworks 23</p> <p>3.3.3.1 Sociotechnical Network Models 23</p> <p>3.3.3.2 Digital Twins 23</p> <p>3.4 The Artificial Intelligence Opportunity for Building Sociotechnical Systems 24</p> <p>3.5 Using AI to Track and Interpret Temporal Sociotechnical Measures 25</p> <p>3.6 AI in Systems Engineering Frameworks 25</p> <p>3.7 AI in Sociotechnical Network Models 26</p> <p>3.8 AI-Based Digital Twins 27</p> <p>3.9 Discussion 27</p> <p>3.10 Case Study 30</p> <p>3.11 Systems Engineering Sociotechnical Modeling Approach 31</p> <p>3.11.1 Modeling the Project 33</p> <p>3.12 Results 36</p> <p>3.13 Summary 38</p> <p>References 39</p> <p><b>4 Life Learning of Smart Autonomous Systems for Meaningful Human-Autonomy Teaming </b><b>43<br /></b><i>Kate J. Yaxley, Keith F. Joiner, Jean Bogais, and Hussein A. Abbass</i></p> <p>4.1 Introduction 43</p> <p>4.2 Trust in Successful Teaming 45</p> <p>4.3 Meaningful Human-Autonomy Teaming 46</p> <p>4.4 Systematic Taxonomy for Iterative Through-Life Learning of SAS 47</p> <p>4.5 Ensuring Successful SAS 51</p> <p>4.6 Developing Case Study: Airborne Shepherding SAS 53</p> <p>4.7 Conclusion 57</p> <p>Acknowledgment 58</p> <p>References 58</p> <p><b>Section 2 Domain Deep Dives </b><b>63</b></p> <p><b>5 Modeling the Evolution of Organizational Systems for the Digital Transformation of Heavy Rail </b><b>65<br /></b><i>Grace A. L. Kennedy, William R. Scott, Farid Shirvani, and A. Peter Campbell</i></p> <p>5.1 Introduction 65</p> <p>5.2 Organizational System Evolution 66</p> <p>5.2.1 Characteristics of Organizational Systems 66</p> <p>5.2.2 The Organization in Flux 67</p> <p>5.2.3 Introducing New Technologies 68</p> <p>5.3 Model-Based Systems Engineering 70</p> <p>5.4 Modeling Approach for the Development of OCMM 71</p> <p>5.4.1 Technology Specification 72</p> <p>5.4.2 Capture System Change 73</p> <p>5.4.3 Capture Organizational Changes 73</p> <p>5.4.4 Manage Organization Change 73</p> <p>5.4.5 Analyze Emergent System 73</p> <p>5.5 Implementation 74</p> <p>5.5.1 User Portals 75</p> <p>5.5.2 OCMM Metamodel 75</p> <p>5.6 Case Study: Digital Transformation in the Rail Industry 78</p> <p>5.6.1 Technology Specification 79</p> <p>5.6.2 Capture System Change 79</p> <p>5.6.3 Capture Organization Changes 80</p> <p>5.6.4 Organization Change Management 84</p> <p>5.6.5 Analyze Emergent System 85</p> <p>5.6.5.1 Situation Awareness 85</p> <p>5.6.5.2 Workload Analysis 90</p> <p>5.7 OCMM Reception 91</p> <p>5.8 Summary and Conclusions 94</p> <p>References 94</p> <p><b>6 Human Systems Integration in the Space Exploration Systems Engineering Life Cycle </b><b>97<br /></b><i>George Salazar and Maria Natalia Russi-Vigoya</i></p> <p>6.1 Introduction 97</p> <p>6.2 Spacecraft History 98</p> <p>6.2.1 Mercury/Gemini/Apollo 98</p> <p>6.2.2 Space Shuttle 100</p> <p>6.2.3 International Space Station 101</p> <p>6.2.4 Orion Spacecraft 101</p> <p>6.3 Human Systems Integration in the NASA Systems Engineering Process 103</p> <p>6.3.1 NASA Systems Engineering Process and HSI 103</p> <p>6.4 Mission Challenges 108</p> <p>6.4.1 Innovation and Future Vehicle Designs Challenge 108</p> <p>6.4.2 Operations Challenges 109</p> <p>6.4.3 Maintainability and Supportability Challenges 110</p> <p>6.4.4 Habitability and Environment Challenges 110</p> <p>6.4.5 Safety Challenges 110</p> <p>6.4.6 Training Challenges 111</p> <p>6.5 Conclusions 111</p> <p>References 112</p> <p><b>7 Aerospace Human Systems Integration: Evolution over the Last 40 Years </b><b>113<br /></b><i>Guy André Boy</i></p> <p>7.1 Introduction 113</p> <p>7.2 Evolution of Aviation: A Human Systems Integration Perspective 114</p> <p>7.3 Evolution with Respect to Models, Human Roles, and Disciplines 116</p> <p>7.3.1 From Single-Agent Interaction to Multi-agent Integration 116</p> <p>7.3.2 Systems Management and Authority Sharing 117</p> <p>7.3.3 Human-Centered Disciplines Involved 118</p> <p>7.3.4 From Automation Issues to Tangibility Issues 119</p> <p>7.4 From Rigid Automation to Flexible Autonomy 120</p> <p>7.5 How Software Took the Lead on Hardware 122</p> <p>7.6 Toward a Human-Centered Systemic Framework 123</p> <p>7.6.1 System of Systems, Physical and Cognitive Structures and Functions 123</p> <p>7.6.2 Emergent Behaviors and Properties 125</p> <p>7.6.3 System of Systems Properties 126</p> <p>7.7 Conclusion and Perspectives 126</p> <p>References 127</p> <p><b>Section 3 Focus on Training and Skill Sets</b> <b>129</b></p> <p><b>8 Building a Socio-cognitive Evaluation Framework to Develop Enhanced Aviation Training Concepts for Gen Y and Gen Z Pilot Trainees </b><b>131<br /></b><i>Alliya Anderson, Samuel F. Feng, Fabrizio Interlandi, Michael Melkonian, Vladimir Parezanović, M. Lynn Woolsey, Claudine Habak, and Nelson King</i></p> <p>8.1 Introduction 131</p> <p>8.1.1 Gamification Coupled with Cognitive Neuroscience and Data Analysis 132</p> <p>8.1.2 Generational Differences in Learning 133</p> <p>8.2 Virtual Technologies in Aviation 134</p> <p>8.2.1 Potential Approaches for Incorporating Virtual Technologies 135</p> <p>8.3 Human Systems Engineering Challenges 136</p> <p>8.4 Potential Applications Beyond Aviation Training 137</p> <p>8.5 Looking Forward 137</p> <p>Acknowledgement 137</p> <p>References 138</p> <p><b>9 Improving Enterprise Resilience by Evaluating Training System Architecture: Method Selection for Australian Defense </b><b>143<br /></b><i>Victoria Jnitova, Mahmoud Efatmaneshnik, Keith F. Joiner, and Elizabeth Chang</i></p> <p>9.1 Introduction 143</p> <p>9.2 Defense Training System 144</p> <p>9.2.1 DTS Conceptualization 144</p> <p>9.2.2 DTS as an Extended Enterprise Systems 144</p> <p>9.2.3 Example: Navy Training System 145</p> <p>9.2.3.1 Navy Training System as a Part of DTS 145</p> <p>9.2.3.2 Navy Training System as a Part of DoD 145</p> <p>9.3 Concept of Resilience in the Academic Literature 147</p> <p>9.3.1 Definition of Resilience: A Multidisciplinary and Historical View 147</p> <p>9.3.2 Definition of Resilience: Key Aspects 147</p> <p>9.3.2.1 What? (Resilience Is and Is Not) 147</p> <p>9.3.2.2 Why? (Resilience Triggers) 159</p> <p>9.3.2.3 How? (Resilience Mechanisms and Measures) 160</p> <p>9.4 DTS Case Study Methodology 169</p> <p>9.4.1 DTS Resilience Measurement Methodology 169</p> <p>9.4.2 DTS Architecture 169</p> <p>9.4.3 DTS Resilience Survey 172</p> <p>9.4.3.1 DTS Resilience Survey Design 172</p> <p>9.4.3.2 DTS Resilience Survey Conduct 172</p> <p>9.5 Research Findings and Future Directions 176</p> <p>References 177</p> <p><b>10 Integrating New Technology into the Complex System of Air Combat Training </b><b>185<br /></b><i>Sarah M. Sherwood, Kelly J. Neville, Angus L. M. T. McLean, III, Melissa M. Walwanis, and Amy E. Bolton</i></p> <p>10.1 Introduction 185</p> <p>10.2 Method 187</p> <p>10.2.1 Data Collection 187</p> <p>10.2.2 Data Analysis 188</p> <p>10.3 Results and Discussion 190</p> <p>10.3.1 Unseen Aircraft Within Visual Range 191</p> <p>10.3.2 Unexpected Virtual and Constructive Aircraft Behavior 193</p> <p>10.3.3 Complacency and Increased Risk Taking 194</p> <p>10.3.4 Human–Machine Interaction 195</p> <p>10.3.5 Exercise Management 196</p> <p>10.3.6 Big Picture Awareness 197</p> <p>10.3.7 Negative Transfer of Training to the Operational Environment 198</p> <p>10.4 Conclusion 199</p> <p>Acknowledgments 202</p> <p>References 202</p> <p><b>Section 4 Considering Human Characteristics </b><b>205</b></p> <p><b>11 Engineering a Trustworthy Private Blockchain for Operational Risk Management: A Rapid Human Data Engineering Approach Based on Human Systems Engineering </b><b>207<br /></b><i>Marius Becherer, Michael Zipperle, Stuart Green, Florian Gottwalt, Thien Bui-Nguyen, and Elizabeth Chang</i></p> <p>11.1 Introduction 207</p> <p>11.2 Human Systems Engineering and Human Data Engineering 207</p> <p>11.3 Human-Centered System Design 208</p> <p>11.4 Practical Issues Leading to Large Complex Blockchain System Development 208</p> <p>11.4.1 Human-Centered Operational Risk Management 208</p> <p>11.4.2 Issues Leading to Risk Management Innovation Through Blockchain 209</p> <p>11.4.3 Issues in Engineering Trustworthy Private Blockchain 209</p> <p>11.5 Framework for Rapid Human Systems–Human Data Engineering 210</p> <p>11.6 Human Systems Engineering for Trustworthy Blockchain 210</p> <p>11.6.1 Engineering Trustworthy Blockchain 210</p> <p>11.6.2 Issues and Challenges in Trustworthy Private Blockchain 212</p> <p>11.6.3 Concepts Used in Trustworthy Private Blockchain 213</p> <p>11.6.4 Prototype Scenario for Trusted Blockchain Network 214</p> <p>11.6.5 Systems Engineering of the Chain of Trust 214</p> <p>11.6.6 Design Public Key Infrastructure (PKI) for Trust 215</p> <p>11.6.6.1 Design of Certificate Authority (CA) 215</p> <p>11.6.6.2 Design the Trusted Gateways 216</p> <p>11.6.6.3 Involving Trusted Peers and Orderers 217</p> <p>11.6.6.4 Facilitate Trust Through Channels 217</p> <p>11.7 From Human System Interaction to Human Data Interaction 219</p> <p>11.8 Future Work for Trust in Human Systems Engineering 219</p> <p>11.8.1 Software Engineering of Trust for Large Engineered Complex Systems 219</p> <p>11.8.2 Human-Centered AI for the Future Engineering of Intelligent Systems 220</p> <p>11.8.3 Trust in the Private Blockchain for Big Complex Data Systems in the Future 220</p> <p>11.9 Conclusion 221</p> <p>Acknowledgment 222</p> <p>References 222</p> <p><b>12 Light’s Properties and Power in Facilitating Organizational Change </b><b>225<br /></b><i>Pravir Malik</i></p> <p>12.1 Introduction 225</p> <p>12.2 Implicit Properties and a Mathematical Model of Light 226</p> <p>12.3 Materialization of Light 230</p> <p>12.3.1 The Electromagnetic Spectrum 231</p> <p>12.3.2 Quantum Particles 232</p> <p>12.3.3 The Periodic Table and Atoms 233</p> <p>12.3.4 A Living Cell 235</p> <p>12.3.5 Fundamental Capacities of Self 237</p> <p>12.4 Leveraging Light to Bring About Organizational Change 239</p> <p>12.5 Summary and Conclusion 243</p> <p>References 243</p> <p><b>Section 5 From the Field </b><b>245</b></p> <p><b>13 Observations of Real-Time Control Room Simulation </b><b>247<br /></b><i>Hugh David with an editor introduction by Holly A. H. Handley</i></p> <p>13.1 Introduction 247</p> <p>13.1.1 What Is a “Real-Time Control Room Simulator”? 247</p> <p>13.1.2 What Is It Used For? 247</p> <p>13.1.3 What Does It Look Like? 248</p> <p>13.1.4 How Will They Develop? 249</p> <p>13.2 Future General-Purpose Simulators 249</p> <p>13.2.1 Future On-Site Simulators 250</p> <p>13.3 Operators 251</p> <p>13.4 Data 252</p> <p>13.5 Measurement 252</p> <p>13.5.1 Objective Measures 253</p> <p>13.5.1.1 Recommended 253</p> <p>13.5.1.2 Not Recommended 253</p> <p>13.5.2 Subjective Measures 254</p> <p>13.5.2.1 Recommended 255</p> <p>13.5.2.2 Not Recommended 255</p> <p>13.6 Conclusion 257</p> <p>Disclaimer 257</p> <p>References 257</p> <p><b>14 A Research Agenda for Human Systems Engineering </b><b>259<br /></b><i>Andreas Tolk</i></p> <p>14.1 The State of Human Systems Engineering 259</p> <p>14.2 Recommendations from the Chapter Contributions 260</p> <p>14.2.1 Data and Visualization Challenges 260</p> <p>14.2.2 Next-Generation Computing 261</p> <p>14.2.3 Advanced Methods and Tools 262</p> <p>14.2.4 Increased Integration of Social Components into System Artifacts 263</p> <p>14.3 Uniting the Human Systems Engineering Stakeholders 263</p> <p>14.3.1 Transdisciplinary Approach 264</p> <p>14.3.2 Common Formalisms 265</p> <p>14.3.3 Common Metrics 266</p> <p>14.4 Summary 266</p> <p>Disclaimer 267</p> <p>References 267</p> <p>Index 271</p>
<p><b>HOLLY A. H. HANDLEY, P<small>H</small>D,</b> is an Associate Professor in the Engineering Management and System Department at Old Dominion University. <p><b>ANDREAS TOLK, P<small>H</small>D,</b> is Senior Computer Science Principal and Modeling, Simulation, Experimentation, and Analytics Division Staff member at The MITRE Corporation.
<p><b>Explores the breadth and versatility of Human Systems Engineering (HSE) practices and illustrates its value in system development</b> <p><i>A Framework of Human Systems Engineering</i>: <i>Applications and Case Studies</i> offers a guide to identifying and improving methods to integrate human concerns into the conceptualization and design of systems. With contributions from a panel of noted experts on the topic, the book presents a series of Human Systems Engineering (HSE) applications on a wide range of topics: interface design, training requirements, personnel capabilities and limitations, and human task allocation. <p>Each of the book's chapters present a case study of the application of HSE from different dimensions of socio-technical systems. The examples are organized using a socio-technical system framework to reference the applications across multiple system types and domains. These case studies are based in real-world examples and highlight the value of applying HSE to the broader engineering community. This important book: <ul> <li>Includes a proven framework with case studies to different dimensions of practice, including domain, system type, and system maturity</li> <li>Contains the needed tools and methods in order to integrate human concerns within systems</li> <li>Encourages the use of Human Systems Engineering throughout the design process</li> <li>Provides examples that cross traditional system engineering sectors and identifies a diverse set of human engineering practices</li> </ul> <p>Written for systems engineers, human factors engineers, and HSI practitioners, <i>A Framework of Human Systems Engineering: Applications and Case Studies</i> provides the information needed for the better integration of human and systems and early resolution of issues based on human constraints and limitations.

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €