Details

X-Ray Absorption and X-Ray Emission Spectroscopy


X-Ray Absorption and X-Ray Emission Spectroscopy

Theory and Applications
1. Aufl.

von: Jeroen A. van Bokhoven, Carlo Lamberti

224,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 14.01.2016
ISBN/EAN: 9781118844281
Sprache: englisch
Anzahl Seiten: 896

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra.<br /> <br /> X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications:</p> <ul> <li>Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe.</li> <li>Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years</li> <li>Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics,  medicine, environment/geology, and biomedical materials</li> </ul>
<p><b>VOLUME I</b></p> <p>List of Contributors</p> <p>Foreword</p> <p><b>I INTRODUCTION: HISTORY, XAS, XES, AND THEIR IMPACT ON SCIENCE</b></p> <p><b>1 Introduction: Historical Perspective on XAS</b></p> <p><i>Jeroen A. van Bokhoven and Carlo Lamberti</i></p> <p>1.1 Historical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering 1913−1971 Period</p> <p>1.2 About the Book: A Few Curiosities, Some Statistics, and a Brief Overview<b>II EXPERIMENTAL AND THEORY</b></p> <p><b>2 From Synchrotrons to FELs: How Photons Are Produced; Beamline Optics and Beam Characteristics</b></p> <p><i>Giorgio Margaritondo</i></p> <p>2.1 Photon Emission by Accelerated Charges: from the Classical Case to the Relativistic Limit</p> <p>2.2 Undulators, Wigglers, and Bending Magnets</p> <p>2.2.1 Undulators</p> <p>2.2.2 Wigglers</p> <p>2.2.3 Bending magnets</p> <p>2.2.4 High flux, high brightness</p> <p>2.3 The Time Structure of Synchrotron Radiation</p> <p>2.4 Elements of Beamline Optics</p> <p>2.4.1 Focusing devices</p> <p>2.4.2 Monochromators</p> <p>2.4.3 Detectors</p> <p>2.5 Free Electron Lasers</p> <p>2.5.1 FEL optical amplification</p> <p>2.5.2 Optical amplification in an X-FEL: details</p> <p>2.5.3 Saturation</p> <p>2.5.4 X-FEL time structure: new opportunities for spectroscopy</p> <p>2.5.5 Time coherence and seeding</p> <p><b>3 Real-Space Multiple-Scattering Theory of X-ray Spectra</b></p> <p><i>Joshua J. Kas, Kevin Jorisson and John J. Rehr</i></p> <p>3.1 Introduction</p> <p>3.2 Theory</p> <p>3.2.1 Independent-particle approximation</p> <p>3.2.2 Real-space multiple-scattering theory</p> <p>3.2.3 Many body effects in x-ray spectra</p> <p>3.3 Applications</p> <p>3.3.1 XAS, EXAFS, XANES</p> <p>3.3.2 EELS</p> <p>3.3.3 XES</p> <p>3.3.4 XMCD</p> <p>3.3.5 NRIXS</p> <p>3.3.6 RIXS</p> <p>3.3.7 Compton scattering</p> <p>3.3.8 Optical constants</p> <p>3.4 Conclusion</p> <p><b>4 Theory of X-ray Absorption Near Edge Structure</b></p> <p><i>Yves Joly and Stephane Grenier</i></p> <p>4.1 Introduction</p> <p>4.2 The x-ray Absorption Phenomena</p> <p>4.2.1 Probing material</p> <p>4.2.2 The different spectroscopies</p> <p>4.3 X-ray Matter Interaction</p> <p>4.3.1 Interaction Hamiltonian</p> <p>4.3.2 Absorption cross-section for the transition between two states</p> <p>4.3.3 State description</p> <p>4.3.4 The transition matrix</p> <p>4.4 XANES General Formulation</p> <p>4.4.1 Interaction times and the multi-electronic problem</p> <p>4.4.2 Absorption cross-section main equation</p> <p>4.5 XANES Simulations in the Mono-Electronic Scheme</p> <p>4.5.1 From multi- to mono-electronic</p> <p>4.5.2 The different methods</p> <p>4.5.3 The multiple scattering theory</p> <p>4.6 Multiplet Ligand Field Theory</p> <p>4.6.1 Atomic multiplets</p> <p>4.6.2 The crystal field</p> <p>4.7 Current Theoretical Developments</p> <p>4.8 Tensorial Approaches</p> <p>4.9 Conclusion</p> <p><b>5 How to Start an XAS Experiment</b></p> <p><i>Diego Gianolio</i></p> <p>5.1 Introduction</p> <p>5.2.1 Identify the scientific question</p> <p>5.2.2 Can XAS solve the problem?</p> <p>5.2.3 Select the best beamline and measurement mode</p> <p>5.2.4 Write the proposal</p> <p>5.3 Prepare the Experiment</p> <p>5.3.1 Experimental design</p> <p>5.3.2 Best sample conditions for data acquisition</p> <p>5.3.3 Sample preparation</p> <p>5.4 Perform the Experiment</p> <p>5.4.1 Initial set-up and optimization of signal</p> <p>5.4.2 Data acquisition</p> <p><b>6 Hard X-ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and Applications</b></p> <p><i>Pieter Glatzel, Roberto Alonso-Mori, and Dimosthenis Sokaras</i></p> <p>6.1 Introduction</p> <p>6.2 History</p> <p>6.3 Basic Theory of XES</p> <p>6.3.1 One- and multi-electron description</p> <p>6.3.2 X-ray Raman scattering spectroscopy</p> <p>6.4 Chemical Sensitivity of x-ray Emission</p> <p>6.4.1 Core-to-core transitions</p> <p>6.4.2 Valence-to-core transitions</p> <p>6.5 HERFD and RIXS</p> <p>6.6 Experimental x-ray Emission Spectroscopy</p> <p>6.6.1 Sources for x-ray emission spectroscopy</p> <p>6.6.2 X-ray emission spectrometers</p> <p>6.6.3 Detectors</p> <p>6.7 Conclusion</p> <p><b>7 QEXAFS: Techniques and Scientific Applications for Time-Resolved XAS</b></p> <p><i>Maarten Nachtegaal, Oliver Muller, Christian Konig and Ronald Frahm</i></p> <p>7.1 Introduction</p> <p>7.2 History and Basics of QEXAFS</p> <p>7.3 Monochromators and Beamlines for QEXAFS</p> <p>7.3.1 QEXAFS with conventional monochromators</p> <p>7.3.2 Piezo-QEXAFS for the millisecond time range</p> <p>7.3.3 Dedicated oscillating monochromators for QEXAFS</p> <p>7.4 Detectors and Readout Systems</p> <p>7.4.1 Requirements for detectors</p> <p>7.4.2 Gridded ionization chambers</p> <p>7.4.3 Data acquisition</p> <p>7.4.4 Angular encoder</p> <p>7.5 Applications of QEXAFS in Chemistry</p> <p>7.5.1 Following the fate of metal contaminants at the mineral–water interface</p> <p>7.5.2 Identifying the catalytic active sites in gas phase reactions</p> <p>7.5.4 Synthesis of nanoparticles</p> <p>7.5.5 Identification of reaction intermediates: modulation excitation XAS</p> <p>7.6 Conclusion</p> <p><b>8 Time-Resolved XAS Using an Energy Dispersive Spectrometer: Techniques and Applications</b></p> <p><i>Olivier Mathon, Innokenty Kantor and Sakura Pascarelli</i></p> <p>8.1 Introduction</p> <p>8.2 Energy Dispersive X-Ray Absorption Spectroscopy</p> <p>8.2.1 Historical development of EDXAS and overview of existing facilities</p> <p>8.2.2 Principles: source, optics, detection</p> <p>8.2.3 Dispersive versus scanning spectrometer for time-resolved experiments</p> <p>8.2.4 Description of the EDXAS beamline at ESRF</p> <p>8.3 From the Minute Down to the Ms: Filming a Chemical Reaction <i><i>in Situ </i></i></p> <p>8.3.1 Technical aspects</p> <p>8.3.2 First stages of nanoparticle formation</p> <p>8.3.3 Working for cleaner cars: automotive exhaust catalyst</p> <p>8.3.4 Reaction mechanisms and intermediates</p> <p>8.3.5 High temperature oxidation of metallic iron</p> <p>8.4 Down to the μs Regime: Matter under Extreme Conditions</p> <p>8.4.1 Technical aspects</p> <p>8.4.2 Melts at extreme pressure and temperature</p> <p>8.4.3 Spin transitions at high magnetic field</p> <p>8.4.4 Fast ohmic ramp excitation towards the warm dense matter regime</p> <p>8.5 Playing with a 100 ps Single Bunch</p> <p>8.5.1 Technical aspects</p> <p>8.5.2 Detection and characterization of photo-excited states in Cu+ complexes</p> <p>8.5.3 Opportunities for investigating laser-shocked matter</p> <p>8.5.4 Non-synchrotron EDXAS</p> <p>8.6 Conclusion</p> <p><b>9 X-Ray Transient Absorption Spectroscopy</b></p> <p><i>Lin X. Chen</i></p> <p>9.1 Introduction</p> <p>9.2 Pump-Probe Spectroscopy</p> <p>9.2.1 Background</p> <p>9.2.2 The basic set-up</p> <p>9.3 Experimental Considerations</p> <p>9.3.1 XTA at a synchrotron source</p> <p>9.3.2 XTA at X-ray free electron laser sources</p> <p>9.4 Transient Structural Information Investigated by XTA</p> <p>9.4.1 Metal center oxidation state</p> <p>9.4.2 Electron configuration and orbital energies of X-ray absorbing atoms</p> <p>9.4.3 Transient coordination geometry of the metal center</p> <p>9.5 X-Ray Pump-Probe Absorption Spectroscopy: Examples</p> <p>9.5.1 Excited state dynamics of transition metal complexes (TMCs)</p> <p>9.5.2 Interfacial charge transfer in hybrid systems</p> <p>9.5.3 XTA studies of metal center active site structures in metalloproteins</p> <p>9.5.4 XTA using the X-ray free electron lasers</p> <p>9.5.5 Other XTA application examples</p> <p>9.6 Perspective of Pump-Probe X-Ray Spectroscopy</p> <p><b>10 Space-Resolved XAFS, Instrumentations and Applications</b></p> <p><i>Yoshio Suzuki and Yasuko Terada</i></p> <p>10.1 Space-Resolving Techniques for XAFS</p> <p>10.2 Beam-Focusing Instrumentation for Microbeam Production</p> <p>10.2.1 Total reflection mirror systems</p> <p>10.2.2 Fresnel zone plate optics for x-ray microbeam</p> <p>10.2.3 General issues of beam-focusing optics</p> <p>10.2.4 Requirements on beam stability in microbeam XAFS experiments</p> <p>10.3 Examples of Beam-Focusing Instrumentation</p> <p>10.3.1 The total-reflection mirror system</p> <p>10.3.2 Fresnel zone plate system</p> <p>10.4 Examples of Applications of Microbeam-XAFS Technique to Biology and nenvironmental Science</p> <p>10.4.1 Speciation of heavy metals in willow</p> <p>10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit</p> <p>10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics</p> <p>10.4.4 Micro-XAFS studies of plutonium sorbed on tuff</p> <p>10.4.5 Micro-XANES analysis of vanadium accumulation in ascidian blood cell</p> <p>10.5 Conclusion and Outlook</p> <p><b>11 Quantitative EXAFS Analysis</b></p> <p><i>Bruce Ravel</i></p> <p>11.1 A Brief History of EXAFS Theory</p> <p>11.1.1 The n-body decomposition in GNXAS</p> <p>11.1.2 The exact curved wave theory in EXCURVE</p> <p>11.1.3 The path expansion in FEFF</p> <p>11.2 Theoretical Calculation of EXAFS Scattering Factors</p> <p>11.2.1 The pathfinder</p> <p>11.2.2 The fitting metric</p> <p>11.2.3 Constraints on parameters of the fit</p> <p>11.2.4 Fitting statistics</p> <p>11.2.5 Extending the evaluation of χ2</p> <p>11.2.6 Other analytic methods</p> <p>11.3 Practical Examples of EXAFS Analysis</p> <p>11.3.1 Geometric constraints on bond lengths</p> <p>11.3.2 Constraints on the coordination environment</p> <p>11.3.3 Constraints and multiple data set analysis</p> <p>11.4 Conclusion</p> <p><b>12 XAS Spectroscopy: Related Techniques and Combination with Other Spectroscopic and Scattering Methods</b></p> <p><i>Carlo Lamberti, Elisa Borfecchia, Jeroen A. van Bokhoven and Marcos Fernández-Garcia</i></p> <p>12.1 Introduction</p> <p>12.2 Atomic Pair Distribution Analysis of Total Scattering Data</p> <p>12.2.1 Theoretical description</p> <p>12.2.2 Examples of PDF analysis</p> <p>12.3 Diffraction Anomalous Fine Structure (DAFS)</p> <p>12.3.1 Theoretical description</p> <p>12.3.2 Examples of DAFS</p> <p>12.4 Inelastic Scattering Techniques</p> <p>12.4.1 Extended energy-loss fine structure (EXELFS)</p> <p>12.4.2 X-ray Raman scattering (XRS)</p> <p>12.5 β-Environmental Fine Structure (BEFS)</p> <p>12.6 Combined Techniques</p> <p>12.6.1 General considerations</p> <p>12.6.2 Selected examples</p> <p>12.7 Conclusion</p> <p><b>VOLUME II</b></p> <p>List of Contributors</p> <p>Foreword</p> <p><b>III APPLICATIONS: FROM SEMICONDUCTORS TO MEDICINE TO NUCLEAR MATERIALS</b></p> <p><b>13 X-Ray Absorption and Emission Spectroscopy for Catalysis</b></p> <p><i>Jeroen A. van Bokhoven and Carlo Lamberti</i></p> <p>13.1 Introduction</p> <p>13.2 The Catalytic Process</p> <p>13.2.1 From vacuum and single crystals to realistic pressure and relevant samples</p> <p>13.2.2 From chemisorption to conversion and reaction kinetics</p> <p>13.2.3 Structural differences within a single catalytic reactor</p> <p>13.2.4 Determining the structure of the active site</p> <p>13.3 Reaction Kinetics from Time-Resolved XAS</p> <p>13.3.1 Oxygen storage materials</p> <p>13.3.2 Selective propene oxidation over α-MoO3</p> <p>13.3.3 Active sites of the dream reaction, the direct conversion of benzene to phenol</p> <p>13.4 Sub-Micrometer Space Resolved Measurements</p> <p>13.5 Emerging Methods</p> <p>13.5.1 X-ray emission spectroscopy</p> <p>13.5.2 Pump probe methods</p> <p>13.6 Conclusion and outlook</p> <p><b>14 High Pressure XAS, XMCD and IXS 383</b></p> <p><i>Jean-Paul Itie, Francois Baudelet and Jean-Pascal Rueff</i></p> <p>14.1 Introduction</p> <p>14.1.1 Why pressure matters</p> <p>14.1.2 High-pressure generation and measurements</p> <p>14.1.3 Specific drawbacks of a high-pressure set-up</p> <p>14.2 High Pressure EXAFS and XANES</p> <p>14.2.1 Introduction</p> <p>14.2.2 Local equation of state</p> <p>14.2.3 Pressure-induced phase transitions</p> <p>14.2.4 Glasses, amorphous materials, amorphization</p> <p>14.2.5 Extension to low and high energy edges</p> <p>14.3 High-Pressure Magnetism and XMCD</p> <p>14.3.1 Introduction</p> <p>14.3.2 Transition metal</p> <p>14.3.3 Magnetic insulator</p> <p>14.3.4 The rare earth system</p> <p>14.4 High Pressure Inelastic X-Ray Scattering</p> <p>14.4.1 Electronic structure</p> <p>14.4.2 Magnetic transitions in 3d and 4f electron systems</p> <p>14.4.3 Metal insulator transitions in correlated systems</p> <p>14.4.4 Valence transition in mixed valent rare-earth compounds</p> <p>14.4.5 Low-energy absorption edges: chemical bonding and orbital configuration</p> <p>14.5 Conclusion</p> <p><b>15 X-Ray Absorption and RIXS on Coordination Complexes</b></p> <p><i>Thomas Kroll, Marcus Lundberg and Edward I. Solomon</i></p> <p>15.1 Introduction</p> <p>15.1.1 Geometric and electronic structure of coordination complexes</p> <p>15.1.2 X-ray probes of coordination complexes</p> <p>15.1.3 Extracting electronic structure from X-ray spectra</p> <p>15.2 Metal K-Edges</p> <p>15.2.1 The case of a single 3d hole: Cu(II)</p> <p>15.2.2 Multiple 3d holes: Fe(III) and Fe(II)</p> <p>15.3 Metal L-Edges</p> <p>15.3.1 The case of a single 3d hole: Cu(II)</p> <p>15.3.2 Multiple 3d holes: Fe(III) and Fe(II)</p> <p>15.4 Resonant Inelastic X-Ray Scattering</p> <p>15.4.1 Ferrous systems</p> <p>15.4.2 Ferric systems</p> <p>15.5 Conclusion</p> <p><b>16 Semiconductors</b></p> <p><i>Federico Boscherini</i></p> <p>16.1 Introduction</p> <p>16.2 XAS Instrumental Aspects</p> <p>16.3 Applications</p> <p>16.3.1 Dopants and defects</p> <p>16.3.2 Thin films and heterostructures</p> <p>16.3.3 Nanostructures</p> <p>16.3.4 Dilute magnetic semiconductors</p> <p>16.4 Conclusion</p> <p><b>17 XAS Studies on Mixed Valence Oxides</b></p> <p><i>Joaquýn Garcýa, Gloria Subýas and Javier Blasco</i></p> <p>17.1 Introduction</p> <p>17.1.1 X-ray absorption spectroscopy (XAS)</p> <p>17.1.2 XES and XAS</p> <p>17.1.3 Resonant x-ray scattering</p> <p>17.2 Solid State Applications (Mixed Valence Oxides)</p> <p>17.2.1 High tc superconductors</p> <p>17.2.2 Manganites</p> <p>17.2.3 Perovskite cobaltites</p> <p>17.3 Conclusion</p> <p><b>18 Novel XAS Techniques for Probing Fuel Cells and Batteries</b></p> <p><i>David E. Ramaker</i></p> <p>18.1 Introduction</p> <p>18.2 XANES Techniques</p> <p>18.2.1 Data analysis</p> <p>18.2.2 Data collection</p> <p>18.2.3 Comparison of techniques by examination of O(H)/Pt and CO/Pt</p> <p>18.3 <i><i>In Operando </i></i>Measurements</p> <p>18.3.1 Fuel cells</p> <p>18.3.2 Batteries</p> <p>18.4 Future Trends</p> <p>18.5 Appendix</p> <p>18.5.1 Details of the ΔμXANES analysis technique</p> <p>18.5.2 FEFF8 theoretical calculations</p> <p><b>19 X-ray Spectroscopy in Studies of the Nuclear Fuel Cycle</b></p> <p><i>Melissa A. Denecke</i></p> <p>19.1 Background</p> <p>19.1.1 Introduction</p> <p>19.1.2 Radioactive materials at synchrotron sources</p> <p>19.2 Application Examples</p> <p>19.2.1 Studies related to uranium mining</p> <p>19.2.2 Studies related to fuel</p> <p>19.2.3 Investigations of reactor components</p> <p>19.2.4 Studies related to recycle and lanthanide/actinide separations</p> <p>19.2.5 Studies concerning legacy remediation and waste disposal (waste forms, near-field and far-field)</p> <p>19.3 Conclusion and Outlook</p> <p><b>20 Planetary, Geological and Environmental Sciences</b></p> <p><i>Francois Farges and Max Wilke</i></p> <p>20.1 Introduction</p> <p>20.2 Planetary and Endogenous Earth Sciences</p> <p>20.2.1 Planetary materials and meteorites</p> <p>20.2.2 Crystalline deep earth materials</p> <p>20.2.3 Magmatic and volcanic processes</p> <p>20.2.4 Element complexation in aqueous fluids at P and T</p> <p>20.3 Environmental Geosciences</p> <p>20.3.1 General trends</p> <p>20.3.2 Environmentally relevant minerals and phases</p> <p>20.3.3 Mechanisms and reactivity at the mineral-water interfaces</p> <p>20.3.4 Some environmental applications of x-ray absorption spectroscopy</p> <p>20.4 Conclusion</p> <p><b>21 X-Ray Absorption Spectroscopy and Cultural Heritage: Highlights and Perspectives</b></p> <p><i>François Farges and Marine Cotte</i></p> <p>21.1 Introduction</p> <p>21.2 Instrumentation: Standard and Recently Developed Approaches</p> <p>21.2.1 From centimetric objects to micrometric cross-sections</p> <p>21.2.2 Improving the spectral resolution of XRF detectors</p> <p>21.2.3 From hard X-rays to soft X-rays</p> <p>21.2.4 Spectro-imaging in the hard X-ray domain</p> <p>21.3 Some Applications</p> <p>21.3.1 Glasses</p> <p>21.3.2 Ceramics</p> <p>21.3.3 Pigments and Paintings</p> <p>21.3.4 Inks</p> <p>21.3.5 Woods: from historical to fossils</p> <p>21.3.6 Bones and ivory</p> <p>21.3.7 Metals</p> <p>21.3.8 Rock-formed monuments</p> <p>21.4 Conclusion</p> <p><b>22 X-ray Spectroscopy at Free Electron Lasers</b></p> <p><i>Wojciech Gawelda, Jakub Szlachetko and Christopher J. Milne</i></p> <p>22.1 Introduction to X-ray Free Electron Lasers in Comparison to Synchrotrons</p> <p>22.1.1 Overview of facilities</p> <p>22.1.2 X-ray properties from an XFEL</p> <p>22.1.3 Scanning the X-ray energy</p> <p>22.1.4 Comparison with existing time-resolved techniques at synchrotrons</p> <p>22.2 Current Implementations of X-Ray Spectroscopy Techniques at XFELs</p> <p>22.2.1 X-ray absorption spectroscopy</p> <p>22.2.2 X-ray emission spectroscopy</p> <p>22.3 Examples of Time-Resolved X-Ray Spectroscopy at XFELs</p> <p>22.3.1 Ultrafast spin-crossover excitation probed with X-ray absorption spectroscopy</p> <p>22.3.2 Ultrafast spin cross-over excitation probed with X-ray emission spectroscopy</p> <p>22.3.3 Simultaneous measurement of the structural and electronic changes in Photosystem II after photoexcitation</p> <p>22.3.4 Investigating surface photochemistry</p> <p>22.3.5 Soft X-ray emission spectroscopy measurements of dilute systems</p> <p>22.4 Examples of Nonlinear X-Ray Spectroscopy at XFELs</p> <p>22.4.1 X-ray-induced transparency</p> <p>22.4.2 Sequential ionization and core-to-core resonances</p> <p>22.4.3 Hollow atoms</p> <p>22.4.4 Solid-density plasma</p> <p>22.4.5 Two-photon absorption</p> <p>22.5 Conclusion and Outlook</p> <p><b>23 X-ray Magnetic Circular Dichroism</b></p> <p><i>Andrei Rogalev, Katharina Ollefs and Fabrice Wilhelm</i></p> <p>23.1 Historical Introduction</p> <p>23.2 Physical Content of XMCD and the Sum Rules</p> <p>23.3 Experimental Aspects and Data Analysis</p> <p>23.3.1 Sources of circularly polarized x-rays</p> <p>23.3.2 Sample environment</p> <p>23.3.3 Detection modes</p> <p>23.3.4 Standard analysis</p> <p>23.4 Examples of Recent Research</p> <p>23.4.1 Paramagnetism of pure metallic clusters</p> <p>23.4.2 Magnetism in diluted magnetic semiconductors</p> <p>23.4.3 Photomagnetic molecular magnets</p> <p>23.5 Conclusion and Outlook</p> <p><b>24 Industrial Applications</b></p> <p><i>Simon R. Bare and Jeffrey Cutler</i></p> <p>24.1 Introduction</p> <p>24.2 The Patent Literature</p> <p>24.2.1 Catalysts</p> <p>24.2.2 Batteries</p> <p>24.2.3 Other applications</p> <p>24.3 The Open Literature</p> <p>24.3.1 Semiconductors, thin films, and electronic materials</p> <p>24.3.2 Fuel cells, batteries, and electrocatalysts</p> <p>24.3.3 Metallurgy and tribology</p> <p>24.3.4 Homogeneous and heterogeneous catalysts</p> <p>24.3.5 Miscellaneous applications: from sludge to thermographic films</p> <p>24.4 Examples of Applications from Light Sources</p> <p>24.4.1 Introduction</p> <p>24.4.2 Industrial science at the Canadian Light Source</p> <p>24.4.3 Use of SOLEIL beamlines by industry</p> <p>24.4.4 Industrial research enhancement program at NSLS</p> <p>24.4.5 The Swiss Light Source: cutting-edge research facilities for industry</p> <p>24.5 Examples of Applications from Companies</p> <p>24.5.1 Introduction</p> <p>24.5.2 Haldor Topsøe A/S</p> <p>24.5.3 UOP LLC, a Honeywell Company</p> <p>24.5.4 General Electric Company</p> <p>24.5.5 IBM Research Center</p> <p>24.6 Conducting Industrial Research at Light Sources</p> <p>24.7 Conclusion and Outlook</p> <p><b>25 XAS in Liquid Systems</b></p> <p><i>Adriano Filipponi and Paola D'Angelo</i></p> <p>25.1 The Liquid State of Matter</p> <p>25.1.1 Thermodynamic considerations</p> <p>25.1.2 Pair and higher order distribution functions</p> <p>25.2 Computer Modelling of Liquid Structures</p> <p>25.2.1 Molecular Dynamics simulations</p> <p>25.2.2 Classical Molecular Dynamics</p> <p>25.2.3 Born-Oppenheimer Molecular Dynamics</p> <p>25.2.4 Car-Parrinello Molecular Dynamics</p> <p>25.2.5 Monte Carlo simulation approaches</p> <p>25.3 XAFS Calculations in Liquids/Disordered Systems</p> <p>25.3.1 XAFS sensitivity and its specific role</p> <p>25.3.2 XAFS signal decomposition</p> <p>25.3.3 XAFS signal from the pair distribution</p> <p>25.3.4 The triplet distribution case in elemental systems</p> <p>25.4 Experimental and Data-Analysis Approaches</p> <p>25.4.1 Sample confinement strategies and detection techniques</p> <p>25.4.2 High pressure, temperature control, and XAS sensitivity to phase transitions</p> <p>25.4.3 Traditional versus atomistic data-analysis approaches</p> <p>25.5 Examples of Data Analysis Applications</p> <p>25.5.1 Elemental systems: icosahedral order in metals</p> <p>25.5.3 Transition metal aqua ions</p> <p>25.5.4 Lanthanide aqua ions</p> <p>25.5.5 Halide aqua ions: the bromide case</p> <p><b>26 Surface Metal Complexes and Their Applications</b></p> <p><i>Joseph D. Kistler, Pedro Serna, Kiyotaka Asakura and Bruce C. Gates</i></p> <p>26.1 Introduction</p> <p>26.1.1 Ligands other than supports</p> <p>26.1.2 Supports</p> <p>26.1.3 Techniques complementing x-ray absorption spectroscopy</p> <p>26.1.4 Data-fitting techniques</p> <p>26.2 Aim of the Chapter</p> <p>26.3 Mononuclear Iridium Complexes Supported on Zeolite HSSZ-53: Illustration of EXAFS Data Fitting and Model Discrimination</p> <p>26.4 Iridium Complexes Supported on MgO and on Zeolites: Precisely Synthesized Isostructural Metal Complexes on Supports with Contrasting Properties as Ligands</p> <p>26.5 Supported Chromium Complex Catalysts for Ethylene Polymerization Characterization of Samples Resembling Industrial Catalysts</p> <p>26.6 Copper Complexes on Titania: Insights Gained from Samples Incorporating Single-Crystal Supports</p> <p>26.7 Gold Complexes Supported on Zeolite NaY: Determining Crystallographic Locations of Metal Complexes on a Support by Combining EXAFS Spectroscopy and TEM</p> <p>26.8 Gold Supported on CeO2: Conversion of Gold Complexes into Clusters in a CO Oxidation Catalyst Characterized by Transient XAFS Spectroscopy</p> <p>26.9 Mononuclear Rhodium Complexes and Dimers on MgO: Discovery of a Catalyst for Selective Hydrogenation of 1,3-Butadiene</p> <p>26.10 Osmium Complexes Supported on MgO: Determining Structure of the Metal-Support Interface and the Importance of Support Surface Defect Sites</p> <p>26.11 Conclusion</p> <p><b>27 Nanostructured Materials</b></p> <p><i>Alexander V. Soldatov and Kirill A. Lomachenko</i></p> <p>27.1 Introduction</p> <p>27.2 Small Nanoclusters</p> <p>27.3 XAS and XES for the Study of Nanoparticles</p> <p>27.4 Nanostructures and Defects in Solids</p> <p>27.5 Conclusion and Outlook</p> <p>Index</p>
<p><strong>Jeroen van Bokhoven</strong> has been an Associate Professor of Heterogeneous Catalysis in the Department of Chemistry and Applied Biology at ETH since 2010. He completed a degree in chemistry at Utrecht University in 1995 and went on to obtain a PhD in inorganic chemistry and catalysis in 2000. From 1999 until 2002 he was head of the XAS (X-ray absorption spectroscopy) users - support group at Utrecht University. In 2006 he obtained an SNF assistant professorship in the Department of Chemistry and Applied Biology. He was the 2008 recipient of the Swiss Chemical Society Werner Prize. Van Bokhoven works in the field of heterogeneous catalysis and (X-ray) spectroscopy. His main interests are heterogeneous catalysts and developing advanced tools in X-ray spectroscopy to study the catalyst structure under catalytic relevant conditions. <p><strong>Carlo Lamberti</strong> achieved his degree in Physics in 1988 with a thesis in the field of many body Physics. From 1988 to 1993 he worked in the CSELT laboratories Torino, on the characterization of the interfaces of semiconductor heterostructures with high resolution XRD and X-ray absorption spectroscopies. He presented his PhD defense in solid state physics on this topic in Rome in 1993. He was appointed to the position of researcher in October 1998 at the Department of Inorganic, Physical and Materials Chemistry of the Torino University, and as Associate Professor in December 2006. In recent years he has become an expert in the techniques based on Synchrotron Radiation and Neutrons beams in the characterization of materials, performing more than 90 experiments approved by international committees on the following large scale facilities.<br />He has authored and co-authored more than 200 research articles and five book chapters and two books. He is member of the PhD School in Material Science of the Torino University, and is the Italian coordinator of the MaMaSELF European Master in Materials Science.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €