Details

Understanding MEMS


Understanding MEMS

Principles and Applications
1. Aufl.

von: Luis Castañer

76,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 06.10.2015
ISBN/EAN: 9781119055495
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The continued advancement of MEMS (micro-electro-mechanical systems) complexity, performance, commercial exploitation and market size requires an ever-expanding graduate population with state-of-the-art expertise.</b></p> <p><i>Understanding MEMS: Principles and Applications </i>provides a comprehensive introduction to this complex and multidisciplinary technology that is accessible to senior undergraduate and graduate students from a range of engineering and physical sciences backgrounds.</p> <p>Fully self-contained, this textbook is designed to help students grasp the key principles and operation of MEMS devices and to inspire advanced study or a career in this field.</p> <p>Moreover, with the increasing application areas, product categories and functionality of MEMS, industry professionals will also benefit from this consolidated overview, source of relevant equations and extensive solutions to problems.</p> <p>Key features:</p> <ul> <li>Details the fundamentals of MEMS, enabling readers to understand the basic governing equations and know how they apply at the micron scale.</li> <li>Strong pedagogical emphasis enabling students to understand the fundamentals of MEMS devices.</li> <li>Self-contained study aid featuring problems and solutions.</li> <li>Book companion website hosts Matlab and PSpice codes and viewgraphs.</li> </ul>
<p>Preface xiii</p> <p>About the Companion Website xv</p> <p><b>1 Scaling of Forces 1</b></p> <p>1.1 Scaling of Forces Model 1</p> <p>1.2 Weight 2</p> <p>1.2.1 Example: MEMS Accelerometer 2</p> <p>1.3 Elastic Force 3</p> <p>1.3.1 Example: AFM Cantilever 4</p> <p>1.4 Electrostatic Force 4</p> <p>1.4.1 Example: MEMS RF Switch 6</p> <p>1.5 Capillary Force 6</p> <p>1.5.1 Example: Wet Etching Force 8</p> <p>1.6 Piezoelectric Force 8</p> <p>1.6.1 Example: Force in Film Embossing 9</p> <p>1.7 Magnetic Force 10</p> <p>1.7.1 Example: Compass Magnetometer 10</p> <p>1.8 Dielectrophoretic Force 11</p> <p>1.8.1 Example: Nanoparticle in a Spherical Symmetry Electric Field 12</p> <p>1.9 Summary 13</p> <p>Problems 13</p> <p><b>2 Elasticity 15</b></p> <p>2.1 Stress 15</p> <p>2.2 Strain 18</p> <p>2.3 Stress–strain Relationship 20</p> <p>2.3.1 Example: Plane Stress 21</p> <p>2.4 Strain–stress Relationship in Anisotropic Materials 22</p> <p>2.5 Miller Indices 23</p> <p>2.5.1 Example: Miller Indices of Typical Planes 24</p> <p>2.6 Angles of Crystallographic Planes 25</p> <p>2.6.1 Example 25</p> <p>2.7 Compliance and Stiffness Matrices for Single-Crystal Silicon 26</p> <p>2.7.1 Example: Young’s Modulus and Poisson Ratio for (100) Silicon 27</p> <p>2.8 Orthogonal Transformation 29</p> <p>2.9 Transformation of the Stress State 31</p> <p>2.9.1 Example: Rotation of the Stress State 31</p> <p>2.9.2 Example: Matrix Notation for the Rotation of the Stress State 32</p> <p>2.10 Orthogonal Transformation of the Stiffness Matrix 32</p> <p>2.10.1 Example: C11 Coefficient in Rotated Axes 33</p> <p>2.10.2 Example: Young’s Modulus and Poisson Ratio in the (111) Direction 34</p> <p>2.11 Elastic Properties of Selected MEMS Materials 36</p> <p>Problems 36</p> <p><b>3 Bending of Microstructures 37</b></p> <p>3.1 Static Equilibrium 37</p> <p>3.2 Free Body Diagram 38</p> <p>3.3 Neutral Plane and Curvature 39</p> <p>3.4 Pure Bending 40</p> <p>3.4.1 Example: Neutral Plane for a Rectangular Cross-section 41</p> <p>3.4.2 Example: Cantilever with Point Force at the Tip 42</p> <p>3.5 Moment of Inertia and Bending Moment 43</p> <p>3.5.1 Example: Moment of Inertia of a Rectangular Cross-section 43</p> <p>3.6 Beam Equation 44</p> <p>3.7 End-loaded Cantilever 45</p> <p>3.8 Equivalent Stiffness 47</p> <p>3.9 Beam Equation for Point Load and Distributed Load 48</p> <p>3.10 Castigliano’s Second Theorem 48</p> <p>3.10.1 Strain Energy in an Elastic Body Subject to Pure Bending 50</p> <p>3.11 Flexures 51</p> <p>3.11.1 Fixed–fixed Flexure 51</p> <p>3.11.2 Example: Comparison of Stiffness Constants 53</p> <p>3.11.3 Example: Folded Flexure 53</p> <p>3.12 Rectangular Membrane 54</p> <p>3.13 Simplified Model for a Rectangular Membrane Under Pressure 55</p> <p>3.13.1 Example: Thin Membrane Subject to Pressure 57</p> <p>3.14 Edge-clamped Circular Membrane 58</p> <p>Problems 60</p> <p><b>4 Piezoresistance and Piezoelectricity 65</b></p> <p>4.1 Electrical Resistance 65</p> <p>4.1.1 Example: Resistance Value 66</p> <p>4.2 One-dimensional Piezoresistance Model 67</p> <p>4.2.1 Example: Gauge Factors 68</p> <p>4.3 Piezoresistance in Anisotropic Materials 69</p> <p>4.4 Orthogonal Transformation of Ohm’s Law 70</p> <p>4.5 Piezoresistance Coefficients Transformation 71</p> <p>4.5.1 Example: Calculation of Rotated Piezoresistive Components 𝜋′ 11, 𝜋′ 12 and 𝜋′ 16 for unit axes X′ [110], Y′ [ ̄110] and Z′ [001] 72</p> <p>4.5.2 Analytical Expressions for Some Rotated Piezoresistive Components 74</p> <p>4.6 Two-dimensional Piezoresistors 74</p> <p>4.6.1 Example: Accelerometer with Cantilever and Piezoresistive Sensing 76</p> <p>4.7 Pressure Sensing with Rectangular Membranes 79</p> <p>4.7.1 Example: Single-resistor Pressure Sensor 82</p> <p>4.7.2 Example: Pressure Sensors Comparison 85</p> <p>4.8 Piezoelectricity 86</p> <p>4.8.1 Relevant Data for Some Piezoelectric Materials 88</p> <p>4.8.2 Example: Piezoelectric Generator 89</p> <p>Problems 91</p> <p><b>5 Electrostatic Driving and Sensing 93</b></p> <p>5.1 Energy and Co-energy 93</p> <p>5.2 Voltage Drive 97</p> <p>5.3 Pull-in Voltage 97</p> <p>5.3.1 Example: Forces in a Parallel-plate Actuator 99</p> <p>5.4 Electrostatic Pressure 101</p> <p>5.5 Contact Resistance in Parallel-plate Switches 101</p> <p>5.6 Hold-down Voltage 101</p> <p>5.6.1 Example: Calculation of Hold-down Voltage 102</p> <p>5.7 Dynamic Response of Pull-in-based Actuators 102</p> <p>5.7.1 Example: Switching Transient 103</p> <p>5.8 Charge Drive 105</p> <p>5.9 Extending the Stable Range 105</p> <p>5.10 Lateral Electrostatic Force 106</p> <p>5.11 Comb Actuators 106</p> <p>5.12 Capacitive Accelerometer 108</p> <p>5.13 Differential Capacitive Sensing 108</p> <p>5.14 Torsional Actuator 110</p> <p>Problems 111</p> <p><b>6 Resonators 115</b></p> <p>6.1 Free Vibration: Lumped-element Model 115</p> <p>6.2 Damped Vibration 116</p> <p>6.3 Forced Vibration 117</p> <p>6.3.1 Example: Vibration Amplitude as a Function of the Damping Factor 120</p> <p>6.4 Small Signal Equivalent Circuit of Resonators 121</p> <p>6.4.1 Example: Series and Parallel Resonances 125</p> <p>6.4.2 Example: Spring Softening 125</p> <p>6.5 Rayleigh–Ritz Method 126</p> <p>6.5.1 Example: Vibration of a Cantilever 128</p> <p>6.5.2 Example: Gravimetric Chemical Sensor 129</p> <p>6.6 Resonant Gyroscope 130</p> <p>6.7 Tuning Fork Gyroscope 133</p> <p>6.7.1 Example: Calculation of Sensitivity in a Tuning Fork Gyroscope 134</p> <p>Problems 135</p> <p><b>7 Microfluidics and Electrokinetics 137</b></p> <p>7.1 Viscous Flow 137</p> <p>7.2 Flow in a Cylindrical Pipe 140</p> <p>7.2.1 Example: Pressure Gradient Required to Sustain a Flow 141</p> <p>7.3 Electrical Double Layer 142</p> <p>7.3.1 Example: Debye Length and Surface Charge 144</p> <p>7.4 Electro-osmotic Flow 144</p> <p>7.5 Electrowetting 146</p> <p>7.5.1 Example: Droplet Change by Electrowetting 148</p> <p>7.5.2 Example: Full Substrate Contacts 149</p> <p>7.6 Electrowetting Dynamics 151</p> <p>7.6.1 Example: Contact-angle Dynamics 153</p> <p>7.7 Dielectrophoresis 153</p> <p>7.7.1 Electric Potential Created by a Constant Electric Field 154</p> <p>7.7.2 Potential Created by an Electrical Dipole 155</p> <p>7.7.3 Superposition 156</p> <p>Problems 157</p> <p><b>8 Thermal Devices 159</b></p> <p>8.1 Steady-state Heat Equation 159</p> <p>8.2 Thermal Resistance 161</p> <p>8.2.1 Example: Temperature Profile in a Heated Wire 162</p> <p>8.2.2 Example: Resistor Suspended in a Bridge 165</p> <p>8.3 Platinum Resistors 166</p> <p>8.4 Flow Measurement Based on Thermal Sensors 166</p> <p>8.4.1 Example: Micromachined Flow Sensor 169</p> <p>8.5 Dynamic Thermal Equivalent Circuit 171</p> <p>8.6 Thermally Actuated Bimorph 172</p> <p>8.6.1 Example: Bimorph Actuator 174</p> <p>8.7 Thermocouples and Thermopiles 175</p> <p>8.7.1 Example: IR Detector 175</p> <p>Problems 176</p> <p><b>9 Fabrication 181</b></p> <p>9.1 Introduction 181</p> <p>9.2 Photolithography 182</p> <p>9.3 Patterning 183</p> <p>9.4 Lift-off 184</p> <p>9.5 Bulk Micromachining 184</p> <p>9.5.1 Example: Angle of Walls in Silicon (100) Etching 185</p> <p>9.6 Silicon Etch Stop When Using Alkaline Solutions 186</p> <p>9.6.1 Example: Boron drive-in at 1050◦C 186</p> <p>9.7 Surface Micromachining 186</p> <p>9.7.1 Example: Cantilever Fabrication by Surface Micromachining 187</p> <p>9.8 Dry Etching 188</p> <p>9.9 CMOS-compatible MEMS Processing 188</p> <p>9.9.1 Example: Bimorph Actuator Compatible with CMOS Process 189</p> <p>9.10 Wafer Bonding 190</p> <p>9.11 PolyMUMPs Foundry Process 190</p> <p>9.11.1 Example: PolyMUMPs Cantilever for a Fabry–Perot Pressure Sensor 191</p> <p>Problems 192</p> <p><b>APPENDICES 195</b></p> <p>A Chapter 1 Solutions 197</p> <p>B Chapter 2 Solutions 207</p> <p>C Chapter 3 Solutions 221</p> <p>D Chapter 4 Solutions 239</p> <p>E Chapter 5 Solutions 249</p> <p>F Chapter 6 Solutions 267</p> <p>G Chapter 7 Solutions 277</p> <p>H Chapter 8 Solutions 285</p> <p>I Chapter 9 Solutions 299</p> <p>References 307</p> <p>Index 311</p>
<b>Luis Castañer, Universitat Politecnica de Cataluña, Barcelona, Spain</b><br />Luis Castañer is a Professor at Universitat Politecnica de Cataluña, where he teaches courses focusing on semiconductor devices, analog circuits, photovoltaic systems, solar cells and MEMS.

Diese Produkte könnten Sie auch interessieren:

Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Shaping Light in Nonlinear Optical Fibers
Shaping Light in Nonlinear Optical Fibers
von: Sonia Boscolo, Christophe Finot
PDF ebook
127,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
EPUB ebook
171,99 €