Details

Transition-Metal-Mediated Aromatic Ring Construction


Transition-Metal-Mediated Aromatic Ring Construction


1. Aufl.

von: Ken Tanaka

164,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 09.07.2013
ISBN/EAN: 9781118629994
Sprache: englisch
Anzahl Seiten: 830

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>State-of-the-science methods, synthetic routes, and strategies to construct aromatic rings</b></p> <p>The development of new reactions for the synthesis of aromatic compounds is a highly active research area in organic synthesis, providing new functional organic materials, functional reagents, and biologically active compounds. Recently, significant advances in transition-metal-mediated reactions have enabled the efficient and practical construction of new aromatic rings with useful properties and applications. This book draws together and reviews all the latest discoveries and methods in transition-metal-mediated reactions, offering readers promising new routes to design and construct complex aromatic compounds.</p> <p>Integrating metal catalysis with aromatic compound synthesis, <i>Transition-Metal-Mediated Aromatic Ring Construction</i> offers a practical guide to the methods, synthetic routes, and strategies for constructing aromatic compounds. The book's five parts examine:</p> <ul> <li>[2+2+2], [2+2+1], and related cycloaddition reactions</li> <li>[4+2], [3+2], and related cycloaddition reactions</li> <li>Electrocyclization reactions</li> <li>Coupling and addition reactions</li> <li>Other important transformations, including methathesis reactions and skeletal rearrangement reactions</li> </ul> <p>Edited by Ken Tanaka, an internationally recognized expert in the field of transition-metal catalysis, the book features authors who are leading pioneers and researchers in synthetic reactions. Their contributions reflect a thorough review and analysis of the literature as well as their own firsthand laboratory experience developing new aromatic compounds.</p> <p>All chapters end with a summary and outlook, setting forth new avenues of research and forecasting new discoveries. There are also references at the end of each chapter, guiding readers to important original research reports and reviews.</p> <p>In summary, <i>Transition-Metal-Mediated Aromatic Ring Construction</i> offers synthetic chemists a promising new avenue for the development of important new aromatic compounds with a broad range of applications.</p>
<p><b>CONTRIBUTORS xvii</b></p> <p><b>PREFACE xxi</b></p> <p><b>PART I [2 + 2 + 2] AND RELATED CYCLOADDITION REACTIONS</b></p> <p><b>1 Cobalt-Mediated [2+2+2] Cycloaddition 3</b><br /> <i>Vincent Gandon</i></p> <p>1.1 Introduction, 3</p> <p>1.2 Synthesis of Benzenes, 4</p> <p>1.3 Synthesis of Heterocycles, 15</p> <p>1.4 Mechanistic Aspects, 24</p> <p>1.5 Synthetic Applications, 26</p> <p>1.6 Summary and Outlook, 30</p> <p>References, 31</p> <p><b>2 Nickel-Mediated [2+2+2] Cycloaddition 37</b><br /> <i>Puneet Kumar and Janis Louie</i></p> <p>2.1 Introduction, 37</p> <p>2.2 Synthesis of Benzenes, 37</p> <p>2.3 Cycloaddition of Alkynes and Nitriles, 45</p> <p>2.4 Cycloaddition of Alkynes and Imines, 49</p> <p>2.5 Cycloaddition of Alkynes and Carbon Dioxide, 50</p> <p>2.6 Cycloaddition of Alkynes and Isocyanates, 51</p> <p>2.7 Cycloaddition of Alkynes and Carbodiimide, 54</p> <p>2.8 Cycloaddition of Diynes and Ketenes, 54</p> <p>2.9 Cycloaddition of Arynes, 55</p> <p>2.10 Mechanism, 58</p> <p>2.11 Summary and Outlook, 69</p> <p>References, 69</p> <p><b>3 Ruthenium-Mediated [2+2+2] Cycloaddition 71</b><br /> <i>Yoshihiko Yamamoto</i></p> <p>3.1 Introduction, 71</p> <p>3.2 Synthesis of Benzenes, 72</p> <p>3.3 Synthesis of Heterocycles, 92</p> <p>3.4 Mechanism of Ruthenium-Catalyzed [2+2+2] Cycloadditions, 101</p> <p>3.5 Synthetic Applications, 111</p> <p>3.6 Summary and Outlook, 119</p> <p>References, 120</p> <p><b>4 Rhodium-Mediated [2+2+2] Cycloaddition 127</b><br /> <i>Ken Tanaka</i></p> <p>4.1 Introduction, 127</p> <p>4.2 Synthesis of Benzenes, 128</p> <p>4.3 Synthesis of Pyridines, 147</p> <p>4.4 Synthesis of Pyridones and Related Heterocycles, 153</p> <p>4.5 Summary and Outlook, 157</p> <p>References, 158</p> <p><b>5 Iridium-Mediated [2+2+2] Cycloaddition 161</b><br /> <i>Ryo Takeuchi</i></p> <p>5.1 Introduction, 161</p> <p>5.2 Synthesis of Benzene Derivatives, 162</p> <p>5.3 Synthesis of Heterocyclic Compounds, 169</p> <p>5.4 Mechanistic Aspects, 175</p> <p>5.5 Summary and Outlook, 179</p> <p>References, 179</p> <p><b>6 [2+2+2] and Related Cycloadditions Mediated by Other Transition Metals 183</b><br /> <i>Ken Tanaka and Yu Shibata</i></p> <p>6.1 Introduction, 183</p> <p>6.2 Palladium-Catalyzed [2+2+2] and [2+2+1] Cycloadditions, 183</p> <p>6.3 Iron-Catalyzed [2+2+2] Cycloaddition, 196</p> <p>6.4 Manganese-Catalyzed [2+2+2] Cycloaddition, 199</p> <p>6.5 Rhenium-Catalyzed [2+2+2], [2+1+2+1], and [2+2+1+1] Cycloadditions, 200</p> <p>6.6 Other Transition-Metal-Catalyzed [2+2+2] Cycloaddition, 202</p> <p>6.7 Summary and Outlook, 203</p> <p>References, 203</p> <p><b>7 Application to the Synthesis of Natural Products 207</b><br /> <i>Bernhard Witulski and Julien Grand</i></p> <p>7.1 Introduction, 207</p> <p>7.2 Construction of Benzene Rings, 209</p> <p>7.3 Construction of a Heterocyclic Ring, 226</p> <p>7.4 Miscellaneous, 231</p> <p>7.5 Summary and Outlook, 238</p> <p>References, 239</p> <p><b>8 Synthesis of Planar Chiral Aromatic Compounds via [2+2+2] Cycloaddition 243</b><br /> <i>Takanori Shibata and Ken Tanaka</i></p> <p>8.1 Introduction, 243</p> <p>8.2 Cobalt-Catalyzed [2+2+2] Cycloaddition, 246</p> <p>8.3 Rhodium-Catalyzed [2+2+2] Cycloaddition, 247</p> <p>8.4 Enantioselective [2+2+2] Cycloaddition, 249</p> <p>8.5 Summary and Outlook, 252</p> <p>References, 252</p> <p><b>9 Synthesis of Axially Chiral Aromatic Compounds via [2+2+2] Cycloaddition 255</b><br /> <i>Ken Tanaka and Takanori Shibata</i></p> <p>9.1 Introduction, 255</p> <p>9.2 Cobalt-Catalyzed Enantioselective [2+2+2] Cycloaddition, 256</p> <p>9.3 Iridium-Catalyzed Enantioselective [2+2+2] Cycloaddition, 258</p> <p>9.4 Rhodium-Catalyzed Enantioselective [2+2+2] Cycloaddition, 263</p> <p>9.5 Enantioselective Synthesis of Axially Chiral Anilides and Bezamides, 275</p> <p>9.6 Summary and Outlook, 278</p> <p>References, 278</p> <p><b>10 Synthesis of Helically Chiral Aromatic Compounds via [2+2+2] Cycloaddition 281</b><br /> <i>Ken Tanaka</i></p> <p>10.1 Introduction, 281</p> <p>10.2 Nonasymmetric Synthesis, 281</p> <p>10.3 Diastereoselective Synthesis, 287</p> <p>10.4 Enantioselective Synthesis, 290</p> <p>10.5 Summary and Outlook, 296</p> <p>References, 297</p> <p><b>11 Aromatic Ring Construction from Zirconocenes and Titanocenes 299</b><br /> <i>Shi Li and Tamotsu Takahashi</i></p> <p>11.1 Introduction, 299</p> <p>11.2 Aromatic Ring Construction from Zirconocenes, 300</p> <p>11.3 Aromatic Ring Construction from Titanocenes, 313</p> <p>11.4 Application to Synthesis of Substituted Acenes, 315</p> <p>11.5 Summary and Outlook, 317</p> <p>References, 318</p> <p><b>PART II [4+2], [3+2], AND RELATED CYCLOADDITION REACTIONS</b></p> <p><b>12 [4+2] and [3+2] Cycloaddition via Metallacycles 323</b><br /> <i>Takuya Kurahashi and Seijiro Matsubara</i></p> <p>12.1 Introduction, 323</p> <p>12.2 [4+2] Cycloaddition via Elimination of Small Molecules, 326</p> <p>12.3 [3+2] Cycloaddition via Elimination of Small Molecules, 332</p> <p>12.4 [4+2] Cycloaddition via C C Bond Activation, 334</p> <p>12.5 [4+2] Cycloaddition via C–H Bond Activation, 336</p> <p>12.6 Summary and Outlook, 339</p> <p>References, 339</p> <p><b>13 Diels–Alder Reactions 341</b><br /> <i>Gerhard Hilt and Florian P¨unner</i></p> <p>13.1 Introduction, 341</p> <p>13.2 Transition-Metal-Mediated Diels–Alder Reaction/Aromatization Sequence, 342</p> <p>13.3 Intramolecular Diels–Alder Reactions toward Dihydroaromatic and Aromatic Products, 349</p> <p>13.4 Synthetic Applications, 350</p> <p>13.5 Summary and Outlook, 352</p> <p>References, 352</p> <p><b>14 [4+2] Benzannulation of Enynes with Alkynes 355</b><br /> <i>Vladimir Gevorgyan and Olga V. Zatolochnaya</i></p> <p>14.1 Introduction, 355</p> <p>14.2 Benzannulation of Enyne with Alkyne: Gold-catalyzed Benzannulation Reaction, 356</p> <p>14.3 Benzannulation of Enyne with Enyne, 358</p> <p>14.4 Benzannulation of Enyne with Diyne, 365</p> <p>14.5 Synthetic Applications, 371</p> <p>14.6 Summary and Outlook, 376</p> <p>References, 376</p> <p><b>15 Formal [4+2] Benzannulation via Pyrylium Intermediates 379</b><br /> <i>Naoki Asao and Yoshifumi Ishikawa</i></p> <p>15.1 Introduction, 379</p> <p>15.2 Benzannulation of Pyrylium Salts, 380</p> <p>15.3 Benzannulation of O-Alkynylbenzaldehydes, 380</p> <p>15.4 Intramolecular [4+2] Benzannulation, 392</p> <p>15.5 Application to Natural Product Synthesis, 394</p> <p>15.6 Summary and Outlook, 395</p> <p>References, 396</p> <p><b>16 Utilization of 1,3-Dipolar Compounds 399</b><br /> <i>Yi-Feng Wang and Shunsuke Chiba</i></p> <p>16.1 Introduction, 399</p> <p>16.2 1,3-Dipolar Cycloaddition, 401</p> <p>16.3 Five-Membered Ring Construction via Decomposition of Azides, 410</p> <p>16.4 Six-Membered Ring Construction via Decomposition of Azides, 418</p> <p>16.5 Summary and Outlook, 421</p> <p>References, 422</p> <p><b>17 Utilization of Transition-Metal Carbenoids 425</b><br /> <i>James Wallace Herndon, Jr.</i></p> <p>17.1 Introduction, 425</p> <p>17.2 Five-membered Aromatic Ring Construction, 426</p> <p>17.3 Six-Membered Aromatic Ring Construction, 432</p> <p>17.3.1 D¨otz Benzannulation Reaction, 432</p> <p>17.4 Summary and Outlook, 450</p> <p>References, 450</p> <p><b>PART III ELECTROCYCLIZATION REACTIONS</b></p> <p><b>18 Intramolecular Hydroarylation of Alkynes, Alkenes, and Allenes 457</b><br /> <i>Tsugio Kitamura</i></p> <p>18.1 Introduction, 457</p> <p>18.2 Intramolecular Hydroarylation, 457</p> <p>18.3 Summary and Outlook, 482</p> <p>References, 483</p> <p><b>19 Intramolecular C X Bond Formation between C X or X H andAlkynes 485</b><br /> <i>Hiroaki Ohno</i></p> <p>19.1 Introduction, 485</p> <p>19.2 C X Bond Formation between C X and Alkynes, 485</p> <p>19.3 C X Bond Formation between X H and Alkynes, 510</p> <p>19.4 Summary and Outlook, 529</p> <p>References, 529</p> <p><b>20 Synthesis of Heterocycles via X H Bond Addition to Diynes 537</b><br /> <i>Takanori Matsuda</i></p> <p>20.1 Introduction, 537</p> <p>20.2 Synthesis of Pyrroles and Furans via Double trans Addition to 1,3-Diynes, 538</p> <p>20.3 Synthesis of Pyrroles via Hydroamination of 1,4- and 1,5-Diynes, 542</p> <p>20.4 Synthesis of Siloles and Germoles via Double trans Addition to 1,3-Diynes, 543</p> <p>20.5 Summary and Outlook, 546</p> <p>References, 546</p> <p><b>21 Cycloaromatization via Transition Metal–Cumulenylidenes 549</b><br /> <i>Yoshiaki Nishibayashi</i></p> <p>21.1 Introduction, 549</p> <p>21.2 Cycloaromatization via Chromium–, Molybdenum–, and Tungsten–Vinylidene Complexes, 550</p> <p>21.3 Cycloaromatization via Ruthenium–Vinylidene Complexes, 554</p> <p>21.4 Cycloaromatization via Rhodium–Vinylidene Complexes, 558</p> <p>21.5 Cycloaromatization via Gold–Vinylidene Complexes, 561</p> <p>21.6 Cycloaromatization via Ruthenium–Allenylidene Complexes, 565</p> <p>21.7 Summary and Outlook, 565</p> <p>References, 566</p> <p><b>PART IV COUPLING AND ADDITION REACTIONS</b><br /> <br /> <b>22 C C Bond-Forming Coupling Reactions 573</b><br /> <i>Masaki Shimizu</i></p> <p>22.1 Introduction, 573</p> <p>22.2 Cyclization, 574</p> <p>22.3 Annulation, 597</p> <p>22.4 Summary and Outlook, 612</p> <p>References, 612</p> <p><b>23 Synthesis of Carbazoles and Related Compounds via C E Bond-Forming Coupling Reactions 617</b><br /> <i>Koji Nakano</i></p> <p>23.1 Introduction, 617</p> <p>23.2 Synthesis of Carbazoles, 618</p> <p>23.3 Synthesis of Dibenzofurans and Dibenzothiophenes, 633</p> <p>23.4 Synthesis of Other Dibenzoheteroles, 637</p> <p>23.5 Summary and Outlook, 642</p> <p>References, 642</p> <p><b>24 Synthesis of Aromatic Benzo-Fused Five- and Six-Membered Heterocycles via Palladium- and Copper-Catalyzed C X Bond-Forming Reactions 645</b><br /> <i>Catherine J. Ball and Michael C. Willis</i></p> <p>24.1 Introduction, 645</p> <p>24.2 C N Bond Formation, 646</p> <p>24.3 C O Bond Formation, 662</p> <p>24.4 C S Bond Formation, 667</p> <p>24.5 Annulation of Anilines and Related Compounds with Alkynes, 671</p> <p>24.6 Summary and Outlook, 676</p> <p>References, 677</p> <p><b>25 Coupling Reactions of the sp2 C H Bond with Alkynes 683</b><br /> <i>Tetsuya Satoh and Masahiro Miura</i></p> <p>25.1 Introduction, 683</p> <p>25.2 Synthesis of Arenes, 685</p> <p>25.3 Synthesis of Heterocycles, 697</p> <p>25.4 Summary and Outlook, 716</p> <p>References, 716</p> <p><b>PART V OTHER IMPORTANT TRANSFORMATIONS</b></p> <p><b>26 Metathesis Reactions 721</b><br /> <i>Kazuhiro Yoshida</i></p> <p>26.1 Introduction, 721</p> <p>26.2 Alkene Metathesis, 722</p> <p>26.3 Ene–Yne Metathesis, 736</p> <p>26.4 Other Applications, 738</p> <p>26.5 Summary and Outlook, 740</p> <p>References and Notes, 741</p> <p><b>27 Skeletal Rearrangement Reactions 743</b><br /> <i>Itaru Nakamura</i></p> <p>27.1 Introduction, 743</p> <p>27.2 π-Electrophilic Transition-Metal-Mediated Aromatization Reactions, 743</p> <p>27.3 π-Electrophilic Transition-Metal-Mediated Aromatization Reactions, 768</p> <p>27.4 Summary and Outlook, 769</p> <p>References, 769</p> <p><b>28 Dearomatization–Aromatization Sequence 773</b><br /> <i>Hiroto Yoshida</i></p> <p>28.1 Introduction, 773</p> <p>28.2 Reactions via Arynes, 774</p> <p>28.3 Reactions via o-Quinodimethanes, 787</p> <p>28.4 Summary and Outlook, 793</p> <p>References, 794</p> <p><b>INDEX 797</b></p>
<p>“In summary, I personally have read Transition-Metal-Mediated Aromatic Ring Construction with great interest, and I believe this book is a rich source for both academic and industrial researchers.  It provides a valuable addition to the range of textbooks on organic synthesis, aromatic rings, and heterocyclic chemistry. Therefore, I warmly recommend this book and I will strongly encourage my students and colleagues to explore it.”  (<i>Angew. Chem. Int. Ed</i>, 1 May 2014)</p> <p> </p>
<p><b>KEN TANAKA</b> is Professor in the Department of Applied Chemistry at the Tokyo University of Agriculture and Technology. Previously, he worked for the Mitsubishi Chemical Corporation in organic process research. Dr. Tanaka has published more than 100 scientific papers concerning transition-metal catalysis.</p>
<p><b>State-of-the-science methods, synthetic routes, and strategies to construct aromatic rings</b></p> <p>The development of new reactions for the synthesis of aromatic compounds is a highly active research area in organic synthesis, providing new functional organic materials, functional reagents, and biologically active compounds. Recently, significant advances in transition-metal-mediated reactions have enabled the efficient and practical construction of new aromatic rings with useful properties and applications. This book draws together and reviews all the latest discoveries and methods in transition-metal-mediated reactions, offering readers promising new routes to design and construct complex aromatic compounds.</p> <p>Integrating metal catalysis with aromatic compound synthesis, <i>Transition-Metal-Mediated Aromatic Ring Construction</i> offers a practical guide to the methods, synthetic routes, and strategies for constructing aromatic compounds. The book's five parts examine:</p> <ul> <li>[2+2+2], [2+2+1], and related cycloaddition reactions</li> <li>[4+2], [3+2], and related cycloaddition reactions</li> <li>Electrocyclization reactions</li> <li>Coupling and addition reactions</li> <li>Other important transformations, including methathesis reactions and skeletal rearrangement reactions</li> </ul> <p>Edited by Ken Tanaka, an internationally recognized expert in the field of transition-metal catalysis, the book features authors who are leading pioneers and researchers in synthetic reactions. Their contributions reflect a thorough review and analysis of the literature as well as their own firsthand laboratory experience developing new aromatic compounds.</p> <p>All chapters end with a summary and outlook, setting forth new avenues of research and forecasting new discoveries. There are also references at the end of each chapter, guiding readers to important original research reports and reviews.</p> <p>In summary, <i>Transition-Metal-Mediated Aromatic Ring Construction</i> offers synthetic chemists a promising new avenue for the development of important new aromatic compounds with a broad range of applications.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €