Details

Thermoelectrics


Thermoelectrics

Design and Materials
1. Aufl.

von: HoSung Lee

102,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 12.09.2016
ISBN/EAN: 9781118848937
Sprache: englisch
Anzahl Seiten: 440

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Thermoelectrics: Design and Materials HoSung Lee, Western Michigan University, USA   A comprehensive guide to the basic principles of thermoelectrics   Thermoelectrics plays an important role in energy conversion and electronic temperature control. The book comprehensively covers the basic physical principles of thermoelectrics as well as recent developments and design strategies of materials and devices. The book is divided into two sections: the first section is concerned with design and begins with an introduction to the fast developing and multidisciplinary field of thermoelectrics. This section also covers thermoelectric generators and coolers (refrigerators) before examining optimal design with dimensional analysis. A number of applications are considered, including solar thermoelectric generators, thermoelectric air conditioners and refrigerators, thermoelectric coolers for electronic devices, thermoelectric compact heat exchangers, and biomedical thermoelectric energy harvesting systems. The second section focuses on materials, and covers the physics of electrons and phonons, theoretical modeling of thermoelectric transport properties, thermoelectric materials, and nanostructures.   Key features: Provides an introduction to a fast developing and interdisciplinary field. Includes detailed, fundamental theories. Offers a platform for advanced study.   Thermoelectrics: Design and Materials is a comprehensive reference ideal for engineering students, as well as researchers and practitioners working in thermodynamics.   Cover designed by Yujin Lee
Preface xiii 1 Introduction 1 1.1 Introduction 1 1.2 Thermoelectric Effect 3 1.2.1 Seebeck Effect 3 1.2.2 Peltier Effect 3 1.2.3 Thomson Effect 4 1.2.4 Thomson (or Kelvin) Relationships 4 1.3 The Figure of Merit 4 1.3.1 New-Generation Thermoelectrics 5 Problems 7 References 7 2 Thermoelectric Generators 8 2.1 Ideal Equations 8 2.2 Performance Parameters of a Thermoelectric Module 11 2.3 Maximum Parameters for a Thermoelectric Module 12 2.4 Normalized Parameters 13 Example 2.1 Exhaust Waste Heat Recovery 15 2.5 Effective Material Properties 17 2.6 Comparison of Calculations with a Commercial Product 18 Problems 19 Computer Assignment 21 References 22 3 Thermoelectric Coolers 23 3.1 Ideal Equations 23 3.2 Maximum Parameters 26 3.3 Normalized Parameters 27 Example 3.1 Thermoelectric Air Conditioner 29 3.4 Effective Material Properties 33 3.4.1 Comparison of Calculations with a Commercial Product 34 Problems 36 Reference 37 4 Optimal Design 38 4.1 Introduction 38 4.2 Optimal Design for Thermoelectric Generators 38 Example 4.1 Exhaust Thermoelectric Generators 46 4.3 Optimal Design of Thermoelectric Coolers 49 Example 4.2 Automotive Thermoelectric Air Conditioner 57 Problems 61 References 63 5 Thomson Effect, Exact Solution, and Compatibility Factor 64 5.1 Thermodynamics of Thomson Effect 64 5.2 Exact Solutions 68 5.2.1 Equations for the Exact Solutions and the Ideal Equation 68 5.2.2 Thermoelectric Generator 70 5.2.3 Thermoelectric Coolers 71 5.3 Compatibility Factor 71 5.4 Thomson Effects 79 5.4.1 Formulation of Basic Equations 79 5.4.2 Numeric Solutions of Thomson Effect 83 5.4.3 Comparison between Thomson Effect and Ideal Equation 85 Problems 87 Projects 88 References 88 6 Thermal and Electrical Contact Resistances for Micro and Macro Devices 89 6.1 Modeling and Validation 89 6.2 Micro and Macro Thermoelectric Coolers 92 6.3 Micro and Macro Thermoelectric Generators 94 Problems 97 Computer Assignment 97 References 98 7 Modeling of Thermoelectric Generators and Coolers With Heat Sinks 99 7.1 Modeling of Thermoelectric Generators With Heat Sinks 99 7.2 Plate Fin Heat Sinks 108 7.3 Modeling of Thermoelectric Coolers With Heat Sinks 111 Problems 119 References 119 8 Applications 120 8.1 Exhaust Waste Heat Recovery 120 8.1.1 Recent Studies 120 8.1.2 Modeling of Module Tests 122 8.1.3 Modeling of a TEG 126 8.1.4 New Design of a TEG 133 8.2 Solar Thermoelectric Generators 138 8.2.1 Recent Studies 138 8.2.2 Modeling of a STEG 138 8.2.3 Optimal Design of a STEG (Dimensional Analysis) 144 8.2.4 New Design of a STEG 146 8.3 Automotive Thermoelectric Air Conditioner 149 8.3.1 Recent Studies 149 8.3.2 Modeling of an Air-to-Air TEAC 150 8.3.3 Optimal Design of a TEAC 157 8.3.4 New Design of a TEAC 160 Problems 162 References 163 9 Crystal Structure 164 9.1 Atomic Mass 164 9.1.1 Avogadro’s Number 164 Example 9.1 Mass of One Atom 164 9.2 Unit Cells of a Crystal 165 9.2.1 Bravais Lattices 166 Example 9.2 Lattice Constant of Gold 169 9.3 Crystal Planes 170 Example 9.3 Indices of a Plane 171 Problems 171 10 Physics of Electrons 172 10.1 Quantum Mechanics 172 10.1.1 Electromagnetic Wave 172 10.1.2 Atomic Structure 174 10.1.3 Bohr’s Model 174 10.1.4 Line Spectra 176 10.1.5 De Broglie Wave 177 10.1.6 Heisenberg Uncertainty Principle 178 10.1.7 Schrödinger Equation 178 10.1.8 A Particle in a One-Dimensional Box 179 10.1.9 Quantum Numbers 181 10.1.10 Electron Configurations 183 Example 10.1 Electronic Configuration of a Silicon Atom 184 10.2 Band Theory and Doping 185 10.2.1 Covalent Bonding 185 10.2.2 Energy Band 186 10.2.3 Pseudo-Potential Well 186 10.2.4 Doping, Donors, and Acceptors 187 Problems 188 References 188 11 Density of States, Fermi Energy, and Energy Bands 189 11.1 Current and Energy Transport 189 11.2 Electron Density of States 190 11.2.1 Dispersion Relation 190 11.2.2 Effective Mass 190 11.2.3 Density of States 191 11.3 Fermi-Dirac Distribution 193 11.4 Electron Concentration 194 11.5 Fermi Energy in Metals 195 Example 11.1 Fermi Energy in Gold 196 11.6 Fermi Energy in Semiconductors 197 Example 11.2 Fermi Energy in Doped Semiconductors 198 11.7 Energy Bands 199 11.7.1 Multiple Bands 200 11.7.2 Direct and Indirect Semiconductors 200 11.7.3 Periodic Potential (Kronig-Penney Model) 201 Problems 205 References 205 12 Thermoelectric Transport Properties for Electrons 206 12.1 Boltzmann Transport Equation 206 12.2 Simple Model of Metals 208 12.2.1 Electric Current Density 208 12.2.2 Electrical Conductivity 208 Example 12.1 Electron Relaxation Time of Gold 210 12.2.3 Seebeck Coefficient 210 Example 12.2 Seebeck Coefficient of Gold 212 12.2.4 Electronic Thermal Conductivity 212 Example 12.3 Electronic Thermal Conductivity of Gold 213 12.3 Power-Law Model for Metals and Semiconductors 213 12.3.1 Equipartition Principle 214 12.3.2 Parabolic Single-Band Model 215 Example 12.4 Seebeck Coefficient of PbTe 217 Example 12.5 Material Parameter 221 12.4 Electron Relaxation Time 222 12.4.1 Acoustic Phonon Scattering 222 12.4.2 Polar Optical Phonon Scattering 222 12.4.3 Ionized Impurity Scattering 223 Example 12.6 Electron Mobility 223 12.5 Multiband Effects 224 12.6 Nonparabolicity 225 Problems 228 References 229 13 Phonons 230 13.1 Crystal Vibration 230 13.1.1 One Atom in a Primitive Cell 230 13.1.2 Two Atoms in a Unit Cell 232 13.2 Specific Heat 234 13.2.1 Internal Energy 234 13.2.2 Debye Model 235 Example 13.1 Atomic Size and Specific Heat 239 13.3 Lattice Thermal Conductivity 241 13.3.1 Klemens-Callaway Model 241 13.3.2 Umklapp Processes 244 13.3.3 Callaway Model 244 13.3.4 Phonon Relaxation Times 245 Example 13.2 Lattice Thermal Conductivity 247 Problems 249 References 250 14 Low-Dimensional Nanostructures 251 14.1 Low-Dimensional Systems 251 14.1.1 Quantum Well (2D) 251 Example 14.1 Energy Levels of a Quantum Well 255 14.1.2 Quantum Wires (1D) 256 14.1.3 Quantum Dots (0D) 258 14.1.4 Thermoelectric Transport Properties of Quantum Wells 260 14.1.5 Thermoelectric Transport Properties of Quantum Wires 261 14.1.6 Proof-of-Principle Studies 263 14.1.7 Size Effects of Quantum Well on Lattice Thermal Conductivity 264 Problems 267 References 267 15 Generic Model of Bulk Silicon and Nanowires 268 15.1 Electron Density of States for Bulk and Nanowires 268 15.1.1 Density of States 268 15.2 Carrier Concentrations for Two-band Model 269 15.2.1 Bulk 269 15.2.2 Nanowires 269 15.2.3 Bipolar Effect and Fermi Energy 269 15.3 Electron Transport Properties for Bulk and Nanowires 270 15.3.1 Electrical Conductivity 270 15.3.2 Seebeck Coefficient 270 15.3.3 Electronic Thermal Conductivity 270 15.4 Electron Scattering Mechanisms 271 15.4.1 Acoustic-Phonon Scattering 271 15.4.2 Ionized Impurity Scattering 272 15.4.3 Polar Optical Phonon Scattering 272 15.5 Lattice Thermal Conductivity 273 15.6 Phonon Relaxation Time 273 15.7 Input Data for Bulk Si and Nanowires 275 15.8 Bulk Si 275 15.8.1 Fermi Energy 275 15.8.2 Electron Mobility 275 15.8.3 Thermoelectric Transport Properties 275 15.8.4 Dimensionless Figure of Merit 276 15.9 Si Nanowires 276 15.9.1 Electron Properties 276 15.9.2 Phonon Properties for Si Nanowires 280 Problems 282 References 284 16 Theoretical Model of Thermoelectric Transport Properties 286 16.1 Introduction 286 16.2 Theoretical Equatons 287 16.2.1 Carrier Transport Properties 287 16.2.2 Scattering Mechanisms for Electron Relaxation Times 290 16.2.3 Lattice Thermal Conductivity 293 16.2.4 Phonon Relaxation Times 293 16.2.5 Phonon Density of States and Specific Heat 295 16.2.6 Dimensionless Figure of Merit 295 16.3 Results and Discussion 295 16.3.1 Electron or Hole Scattering Mechanisms 295 16.3.2 Transport Properties 299 16.4 Summary 315 Problems 316 References 316 Appendix A Physical Properties 323 Appendix B Optimal Dimensionless Parameters for TEGs with ZT12=1 353 Appendix C ANSYS TEG Tutorial 365 Appendix D Periodic Table 376 Appendix E Thermoelectric Properties 391 Appendix F Fermi Integral 399 Appendix G Hall Factor 402 Appendix H Conversion Factors 405 Index 409
HoSung Lee is a Professor in the Department of Mechanical and Aerospace Engineering at Western Michigan University. His main areas of research include energy conversion, and thermoelectrics with particular focus on optimal design and applications, thermal design and automotive engine cooling and fuel efficiency. He also teaches numerous courses in the area of thermodynamics and heat transfer.
Thermoelectrics: Design and Materials HoSung Lee, Western Michigan University, USA   A comprehensive guide to the basic principles of thermoelectrics   Thermoelectrics plays an important role in energy conversion and electronic temperature control. The book comprehensively covers the basic physical principles of thermoelectrics as well as recent developments and design strategies of materials and devices. The book is divided into two sections: the first section is concerned with design and begins with an introduction to the fast developing and multidisciplinary field of thermoelectrics. This section also covers thermoelectric generators and coolers (refrigerators) before examining optimal design with dimensional analysis. A number of applications are considered, including solar thermoelectric generators, thermoelectric air conditioners and refrigerators, thermoelectric coolers for electronic devices, thermoelectric compact heat exchangers, and biomedical thermoelectric energy harvesting systems. The second section focuses on materials, and covers the physics of electrons and phonons, theoretical modeling of thermoelectric transport properties, thermoelectric materials, and nanostructures.   Key features: Provides an introduction to a fast developing and interdisciplinary field. Includes detailed, fundamental theories. Offers a platform for advanced study.   Thermoelectrics: Design and Materials is a comprehensive reference ideal for engineering students, as well as researchers and practitioners working in thermodynamics.   Cover designed by Yujin Lee

Diese Produkte könnten Sie auch interessieren:

Dynamics of Lattice Materials
Dynamics of Lattice Materials
von: A. Srikantha Phani, Mahmoud I. Hussein
PDF ebook
102,99 €
From Microstructure Investigations to Multiscale Modeling
From Microstructure Investigations to Multiscale Modeling
von: Delphine Brancherie, Pierre Feissel, Salima Bouvier, Adnan Ibrahimbegovic
EPUB ebook
125,99 €
Design of Piles Under Cyclic Loading
Design of Piles Under Cyclic Loading
von: Alain Puech, Jacques Garnier
EPUB ebook
113,99 €