Details

Theory of Lift


Theory of Lift

Introductory Computational Aerodynamics in MATLAB/Octave
Aerospace Series 1. Aufl.

von: G. D. McBain, Peter Belobaba, Jonathan Cooper, Roy Langton, Allan Seabridge

86,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 22.05.2012
ISBN/EAN: 9781118346297
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, <i>Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave</i> takes the reader conceptually through from the fundamental mechanics of lift  to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries.</p> <p>The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods.</p> <p>This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages.</p> <p><b>Key features:</b></p> <ul> <li>Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization.</li> <li>Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave.</li> <li>Companion website (<a href="http://www.wiley.com/go/mcbain">www.wiley.com/go/mcbain</a>) hosting codes and solutions.</li> </ul> <p><i>Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave</i> is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.</p>
<p>Preface xvii</p> <p>Series Preface xxiii</p> <p><b>Part One Plane Ideal Aerodynamics</b></p> <p><b>1 Preliminary Notions 3</b></p> <p>1.1 Aerodynamic Force and Moment 3</p> <p>1.1.1 Motion of the Frame of Reference 3</p> <p>1.1.2 Orientation of the System of Coordinates 4</p> <p>1.1.3 Components of the Aerodynamic Force 4</p> <p>1.1.4 Formulation of the Aerodynamic Problem 4</p> <p>1.2 Aircraft Geometry 5</p> <p>1.2.1 Wing Section Geometry 6</p> <p>1.2.2 Wing Geometry 7</p> <p>1.3 Velocity 8</p> <p>1.4 Properties of Air 8</p> <p>1.4.1 Equation of State: Compressibility and the Speed of Sound 8</p> <p>1.4.2 Rheology: Viscosity 10</p> <p>1.4.3 The International Standard Atmosphere 12</p> <p>1.4.4 Computing Air Properties 12</p> <p>1.5 Dimensional Theory 13</p> <p>1.5.1 Alternative methods 16</p> <p>1.5.2 Example: Using Octave to Solve a Linear System 16</p> <p>1.6 Example: NACA Report No. 502 18</p> <p>1.7 Exercises 19</p> <p>1.8 Further Reading 22</p> <p>References 22</p> <p><b>2 Plane Ideal Flow 25</b></p> <p>2.1 Material Properties: The Perfect Fluid 25</p> <p>2.2 Conservation of Mass 26</p> <p>2.2.1 Governing Equations: Conservation Laws 26</p> <p>2.3 The Continuity Equation 26</p> <p>2.4 Mechanics: The Euler Equations 27</p> <p>2.4.1 Rate of Change of Momentum 27</p> <p>2.4.2 Forces Acting on a Fluid Particle 28</p> <p>2.4.3 The Euler Equations 29</p> <p>2.4.4 Accounting for Conservative External Forces 29</p> <p>2.5 Consequences of the Governing Equations 30</p> <p>2.5.1 The Aerodynamic Force 30</p> <p>2.5.2 Bernoulli’s Equation 33</p> <p>2.5.3 Circulation, Vorticity, and Irrotational Flow 33</p> <p>2.5.4 Plane Ideal Flows 35</p> <p>2.6 The Complex Velocity 35</p> <p>2.6.1 Review of Complex Variables 35</p> <p>2.6.2 Analytic Functions and Plane Ideal Flow 38</p> <p>2.6.3 Example: the Polar Angle Is Nowhere Analytic 40</p> <p>2.7 The Complex Potential 41</p> <p>2.8 Exercises 42</p> <p>2.9 Further Reading 44</p> <p>References 45</p> <p><b>3 Circulation and Lift 47</b></p> <p>3.1 Powers of z 47</p> <p>3.1.1 Divergence and Vorticity in Polar Coordinates 48</p> <p>3.1.2 Complex Potentials 48</p> <p>3.1.3 Drawing Complex Velocity Fields with Octave 49</p> <p>3.1.4 Example: k = 1, Corner Flow 50</p> <p>3.1.5 Example: k = 0, Uniform Stream 51</p> <p>3.1.6 Example: k =−1, Source 51</p> <p>3.1.7 Example: k =−2, Doublet 52</p> <p>3.2 Multiplication by a Complex Constant 53</p> <p>3.2.1 Example: w = const., Uniform Stream with Arbitrary Direction 53</p> <p>3.2.2 Example: w = i/z, Vortex 54</p> <p>3.2.3 Example: Polar Components 54</p> <p>3.3 Linear Combinations of Complex Velocities 54</p> <p>3.3.1 Example: Circular Obstacle in a Stream 54</p> <p>3.4 Transforming the Whole Velocity Field 56</p> <p>3.4.1 Translating the Whole Velocity Field 56</p> <p>3.4.2 Example: Doublet as the Sum of a Source and Sink 56</p> <p>3.4.3 Rotating the Whole Velocity Field 56</p> <p>3.5 Circulation and Outflow 57</p> <p>3.5.1 Curve-integrals in Plane Ideal Flow 57</p> <p>3.5.2 Example: Numerical Line-integrals for Circulation and Outflow 58</p> <p>3.5.3 Closed Circuits 59</p> <p>3.5.4 Example: Powers of z and Circles around the Origin 60</p> <p>3.6 More on the Scalar Potential and Stream Function 61</p> <p>3.6.1 The Scalar Potential and Irrotational Flow 61</p> <p>3.6.2 The Stream Function and Divergence-free Flow 62</p> <p>3.7 Lift 62</p> <p>3.7.1 Blasius’s Theorem 62</p> <p>3.7.2 The Kutta–Joukowsky Theorem 63</p> <p>3.8 Exercises 64</p> <p>3.9 Further Reading 65</p> <p>References 66</p> <p><b>4 Conformal Mapping 67</b></p> <p>4.1 Composition of Analytic Functions 67</p> <p>4.2 Mapping with Powers of ζ 68</p> <p>4.2.1 Example: Square Mapping 68</p> <p>4.2.2 Conforming Mapping by Contouring the Stream Function 69</p> <p>4.2.3 Example: Two-thirds Power Mapping 69</p> <p>4.2.4 Branch Cuts 70</p> <p>4.2.5 Other Powers 71</p> <p>4.3 Joukowsky’s Transformation 71</p> <p>4.3.1 Unit Circle from a Straight Line Segment 71</p> <p>4.3.2 Uniform Flow and Flow over a Circle 72</p> <p>4.3.3 Thin Flat Plate at Nonzero Incidence 73</p> <p>4.3.4 Flow over the Thin Flat Plate with Circulation 74</p> <p>4.3.5 Joukowsky Aerofoils 75</p> <p>4.4 Exercises 75</p> <p>4.5 Further Reading 78</p> <p>References 78</p> <p><b>5 Flat Plate Aerodynamics 79</b></p> <p>5.1 Plane Ideal Flow over a Thin Flat Plate 79</p> <p>5.1.1 Stagnation Points 80</p> <p>5.1.2 The Kutta–Joukowsky Condition 80</p> <p>5.1.3 Lift on a Thin Flat Plate 81</p> <p>5.1.4 Surface Speed Distribution 82</p> <p>5.1.5 Pressure Distribution 83</p> <p>5.1.6 Distribution of Circulation 84</p> <p>5.1.7 Thin Flat Plate as Vortex Sheet 85</p> <p>5.2 Application of Thin Aerofoil Theory to the Flat Plate 87</p> <p>5.2.1 Thin Aerofoil Theory 87</p> <p>5.2.2 Vortex Sheet along the Chord 87</p> <p>5.2.3 Changing the Variable of Integration 88</p> <p>5.2.4 Glauert’s Integral 88</p> <p>5.2.5 The Kutta–Joukowsky Condition 89</p> <p>5.2.6 Circulation and Lift 89</p> <p>5.3 Aerodynamic Moment 89</p> <p>5.3.1 Centre of Pressure and Aerodynamic Centre 90</p> <p>5.4 Exercises 90</p> <p>5.5 Further Reading 91</p> <p>References 91</p> <p><b>6 Thin Wing Sections 93</b></p> <p>6.1 Thin Aerofoil Analysis 93</p> <p>6.1.1 Vortex Sheet along the Camber Line 93</p> <p>6.1.2 The Boundary Condition 93</p> <p>6.1.3 Linearization 94</p> <p>6.1.4 Glauert’s Transformation 95</p> <p>6.1.5 Glauert’s Expansion 95</p> <p>6.1.6 Fourier Cosine Decomposition of the Camber Line Slope 97</p> <p>6.2 Thin Aerofoil Aerodynamics 98</p> <p>6.2.1 Circulation and Lift 98</p> <p>6.2.2 Pitching Moment about the Leading Edge 99</p> <p>6.2.3 Aerodynamic Centre 100</p> <p>6.2.4 Summary 101</p> <p>6.3 Analytical Evaluation of Thin Aerofoil Integrals 101</p> <p>6.3.1 Example: the NACA Four-digit Wing Sections 104</p> <p>6.4 Numerical Thin Aerofoil Theory 105</p> <p>6.5 Exercises 109</p> <p>6.6 Further Reading 109</p> <p>References 109</p> <p><b>7 Lumped Vortex Elements 111</b></p> <p>7.1 The Thin Flat Plate at Arbitrary Incidence, Again 111</p> <p>7.1.1 Single Vortex 111</p> <p>7.1.2 The Collocation Point 111</p> <p>7.1.3 Lumped Vortex Model of the Thin Flat Plate 112</p> <p>7.2 Using Two Lumped Vortices along the Chord 114</p> <p>7.2.1 Postprocessing 116</p> <p>7.3 Generalization to Multiple Lumped Vortex Panels 117</p> <p>7.3.1 Postprocessing 117</p> <p>7.4 General Considerations on Discrete Singularity Methods 117</p> <p>7.5 Lumped Vortex Elements for Thin Aerofoils 119</p> <p>7.5.1 Panel Chains for Camber Lines 119</p> <p>7.5.2 Implementation in Octave 121</p> <p>7.5.3 Comparison with Thin Aerofoil Theory 122</p> <p>7.6 Disconnected Aerofoils 123</p> <p>7.6.1 Other Applications 124</p> <p>7.7 Exercises 125</p> <p>7.8 Further Reading 125</p> <p>References 126</p> <p><b>8 Panel Methods for Plane Flow 127</b></p> <p>8.1 Development of the CUSSSP Program 127</p> <p>8.1.1 The Singularity Elements 127</p> <p>8.1.2 Discretizing the Geometry 129</p> <p>8.1.3 The Influence Matrix 131</p> <p>8.1.4 The Right-hand Side 132</p> <p>8.1.5 Solving the Linear System 134</p> <p>8.1.6 Postprocessing 135</p> <p>8.2 Exercises 137</p> <p>8.2.1 Projects 138</p> <p>8.3 Further Reading 139</p> <p>References 139</p> <p>8.4 Conclusion to Part I: The Origin of Lift 139</p> <p><b>Part Two Three-dimensional Ideal Aerodynamics</b></p> <p><b>9 Finite Wings and Three-Dimensional Flow 143</b></p> <p>9.1 Wings of Finite Span 143</p> <p>9.1.1 Empirical Effect of Finite Span on Lift 143</p> <p>9.1.2 Finite Wings and Three-dimensional Flow 143</p> <p>9.2 Three-Dimensional Flow 145</p> <p>9.2.1 Three-dimensional Cartesian Coordinate System 145</p> <p>9.2.2 Three-dimensional Governing Equations 145</p> <p>9.3 Vector Notation and Identities 145</p> <p>9.3.1 Addition and Scalar Multiplication of Vectors 145</p> <p>9.3.2 Products of Vectors 146</p> <p>9.3.3 Vector Derivatives 147</p> <p>9.3.4 Integral Theorems for Vector Derivatives 148</p> <p>9.4 The Equations Governing Three-Dimensional Flow 149</p> <p>9.4.1 Conservation of Mass and the Continuity Equation 149</p> <p>9.4.2 Newton’s Law and Euler’s Equation 149</p> <p>9.5 Circulation 150</p> <p>9.5.1 Definition of Circulation in Three Dimensions 150</p> <p>9.5.2 The Persistence of Circulation 151</p> <p>9.5.3 Circulation and Vorticity 151</p> <p>9.5.4 Rotational Form of Euler’s Equation 153</p> <p>9.5.5 Steady Irrotational Motion 153</p> <p>9.6 Exercises 154</p> <p>9.7 Further Reading 155</p> <p>References 155</p> <p><b>10 Vorticity and Vortices 157</b></p> <p>10.1 Streamlines, Stream Tubes, and Stream Filaments 157</p> <p>10.1.1 Streamlines 157</p> <p>10.1.2 Stream Tubes and Stream Filaments 158</p> <p>10.2 Vortex Lines, Vortex Tubes, and Vortex Filaments 159</p> <p>10.2.1 Strength of Vortex Tubes and Filaments 159</p> <p>10.2.2 Kinematic Properties of Vortex Tubes 159</p> <p>10.3 Helmholtz’s Theorems 159</p> <p>10.3.1 ‘Vortex Tubes Move with the Flow’ 159</p> <p>10.3.2 ‘The Strength of a Vortex Tube is Constant’ 160</p> <p>10.4 Line Vortices 160</p> <p>10.4.1 The Two-dimensional Vortex 160</p> <p>10.4.2 Arbitrarily Oriented Rectilinear Vortex Filaments 160</p> <p>10.5 Segmented Vortex Filaments 161</p> <p>10.5.1 The Biot–Savart Law 161</p> <p>10.5.2 Rectilinear Vortex Filaments 162</p> <p>10.5.3 Finite Rectilinear Vortex Filaments 164</p> <p>10.5.4 Infinite Straight Line Vortices 164</p> <p>10.5.5 Semi-infinite Straight Line Vortex 164</p> <p>10.5.6 Truncating Infinite Vortex Segments 165</p> <p>10.5.7 Implementing Line Vortices in Octave 165</p> <p>10.6 Exercises 166</p> <p>10.7 Further Reading 167</p> <p>References 167</p> <p><b>11 Lifting Line Theory 169</b></p> <p>11.1 Basic Assumptions of Lifting Line Theory 169</p> <p>11.2 The Lifting Line, Horseshoe Vortices, and the Wake 169</p> <p>11.2.1 Deductions from Vortex Theorems 169</p> <p>11.2.2 Deductions from the Wing Pressure Distribution 170</p> <p>11.2.3 The Lifting Line Model of Air Flow 170</p> <p>11.2.4 Horseshoe Vortex 170</p> <p>11.2.5 Continuous Trailing Vortex Sheet 171</p> <p>11.2.6 The Form of the Wake 172</p> <p>11.3 The Effect of Downwash 173</p> <p>11.3.1 Effect on the Angle of Incidence: Induced Incidence 173</p> <p>11.3.2 Effect on the Aerodynamic Force: Induced Drag 174</p> <p>11.4 The Lifting Line Equation 174</p> <p>11.4.1 Glauert’s Solution of the Lifting Line Equation 175</p> <p>11.4.2 Wing Properties in Terms of Glauert’s Expansion 176</p> <p>11.5 The Elliptic Lift Loading 178</p> <p>11.5.1 Properties of the Elliptic Lift Loading 179</p> <p>11.6 Lift–Incidence Relation 180</p> <p>11.6.1 Linear Lift–Incidence Relation 181</p> <p>11.7 Realizing the Elliptic Lift Loading 182</p> <p>11.7.1 Corrections to the Elliptic Loading Approximation 182</p> <p>11.8 Exercises 182</p> <p>11.9 Further Reading 183</p> <p>References 183</p> <p><b>12 Nonelliptic Lift Loading 185</b></p> <p>12.1 Solving the Lifting Line Equation 185</p> <p>12.1.1 The Sectional Lift–Incidence Relation 185</p> <p>12.1.2 Linear Sectional Lift–Incidence Relation 185</p> <p>12.1.3 Finite Approximation: Truncation and Collocation 185</p> <p>12.1.4 Computer Implementation 187</p> <p>12.1.5 Example: a Rectangular Wing 187</p> <p>12.2 Numerical Convergence 188</p> <p>12.3 Symmetric Spanwise Loading 189</p> <p>12.3.1 Example: Exploiting Symmetry 191</p> <p>12.4 Exercises 192</p> <p>References 192</p> <p><b>13 Lumped Horseshoe Elements 193</b></p> <p>13.1 A Single Horseshoe Vortex 193</p> <p>13.1.1 Induced Incidence of the Lumped Horseshoe Element 195</p> <p>13.2 Multiple Horseshoes along the Span 195</p> <p>13.2.1 A Finite-step Lifting Line in Octave 197</p> <p>13.3 An Improved Discrete Horseshoe Model 200</p> <p>13.4 Implementing Horseshoe Vortices in Octave 203</p> <p>13.4.1 Example: Yawed Horseshoe Vortex Coefficients 205</p> <p>13.5 Exercises 206</p> <p>13.6 Further Reading 207</p> <p>References 207</p> <p><b>14 The Vortex Lattice Method 209</b></p> <p>14.1 Meshing the Mean Lifting Surface of a Wing 209</p> <p>14.1.1 Plotting the Mesh of a Mean Lifting Surface 210</p> <p>14.2 A Vortex Lattice Method 212</p> <p>14.2.1 The Vortex Lattice Equations 213</p> <p>14.2.2 Unit Normals to the Vortex-lattice 215</p> <p>14.2.3 Spanwise Symmetry 215</p> <p>14.2.4 Postprocessing Vortex Lattice Methods 215</p> <p>14.3 Examples of Vortex Lattice Calculations 216</p> <p>14.3.1 Campbell’s Flat Swept Tapered Wing 216</p> <p>14.3.2 Bertin’s Flat Swept Untapered Wing 218</p> <p>14.3.3 Spanwise and Chordwise Refinement 219</p> <p>14.4 Exercises 220</p> <p>14.5 Further Reading 221</p> <p>14.5.1 Three-dimensional Panel Methods 222</p> <p>References 222</p> <p><b>Part Three Nonideal Flow in Aerodynamics</b></p> <p><b>15 Viscous Flow 225</b></p> <p>15.1 Cauchy’s First Law of Continuum Mechanics 225</p> <p>15.2 Rheological Constitutive Equations 227</p> <p>15.2.1 Perfect Fluid 227</p> <p>15.2.2 Linearly Viscous Fluid 227</p> <p>15.3 The Navier–Stokes Equations 228</p> <p>15.4 The No-Slip Condition and the Viscous Boundary Layer 228</p> <p>15.5 Unidirectional Flows 229</p> <p>15.5.1 Plane Couette and Poiseuille Flows 229</p> <p>15.6 A Suddenly Sliding Plate 230</p> <p>15.6.1 Solution by Similarity Variable 230</p> <p>15.6.2 The Diffusion of Vorticity 233</p> <p>15.7 Exercises 234</p> <p>15.8 Further Reading 234</p> <p>References 235</p> <p><b>16 Boundary Layer Equations 237</b></p> <p>16.1 The Boundary Layer over a Flat Plate 237</p> <p>16.1.1 Scales in the Conservation of Mass 237</p> <p>16.1.2 Scales in the Streamwise Momentum Equation 238</p> <p>16.1.3 The Reynolds Number 239</p> <p>16.1.4 Pressure in the Boundary Layer 239</p> <p>16.1.5 The Transverse Momentum Balance 239</p> <p>16.1.6 The Boundary Layer Momentum Equation 240</p> <p>16.1.7 Pressure and External Tangential Velocity 241</p> <p>16.1.8 Application to Curved Surfaces 241</p> <p>16.2 Momentum Integral Equation 241</p> <p>16.3 Local Boundary Layer Parameters 243</p> <p>16.3.1 The Displacement and Momentum Thicknesses 243</p> <p>16.3.2 The Skin Friction Coefficient 243</p> <p>16.3.3 Example: Three Boundary Layer Profiles 244</p> <p>16.4 Exercises 248</p> <p>16.5 Further Reading 249</p> <p>References 249</p> <p><b>17 Laminar Boundary Layers 251</b></p> <p>17.1 Boundary Layer Profile Curvature 251</p> <p>17.1.1 Pressure Gradient and Boundary Layer Thickness 252</p> <p>17.2 Pohlhausen’s Quartic Profiles 252</p> <p>17.3 Thwaites’s Method for Laminar Boundary Layers 254</p> <p>17.3.1 F(λ) ≈ 0.45 − 6λ 255</p> <p>17.3.2 Correlations for Shape Factor and Skin Friction 256</p> <p>17.3.3 Example: Zero Pressure Gradient 256</p> <p>17.3.4 Example: Laminar Separation from a Circular Cylinder 257</p> <p>17.4 Exercises 260</p> <p>17.5 Further Reading 261</p> <p>References 262</p> <p><b>18 Compressibility 263</b></p> <p>18.1 Steady-State Conservation of Mass 263</p> <p>18.2 Longitudinal Variation of Stream Tube Section 265</p> <p>18.2.1 The Design of Supersonic Nozzles 266</p> <p>18.3 Perfect Gas Thermodynamics 266</p> <p>18.3.1 Thermal and Caloric Equations of State 266</p> <p>18.3.2 The First Law of Thermodynamics 267</p> <p>18.3.3 The Isochoric and Isobaric Specific Heat Coefficients 267</p> <p>18.3.4 Isothermal and Adiabatic Processes 267</p> <p>18.3.5 Adiabatic Expansion 268</p> <p>18.3.6 The Speed of Sound and Temperature 269</p> <p>18.3.7 The Speed of Sound and the Speed 269</p> <p>18.3.8 Thermodynamic Characteristics of Air 270</p> <p>18.3.9 Example: Stagnation Temperature 270</p> <p>18.4 Exercises 270</p> <p>18.5 Further Reading 271</p> <p>References 271</p> <p><b>19 Linearized Compressible Flow 273</b></p> <p>19.1 The Nonlinearity of the Equation for the Potential 273</p> <p>19.2 Small Disturbances to the Free-Stream 274</p> <p>19.3 The Uniform Free-Stream 275</p> <p>19.4 The Disturbance Potential 275</p> <p>19.5 Prandtl–Glauert Transformation 276</p> <p>19.5.1 Fundamental Linearized Compressible Flows 277</p> <p>19.5.2 The Speed of Sound 278</p> <p>19.6 Application of the Prandtl–Glauert Rule 279</p> <p>19.6.1 Transforming the Geometry 279</p> <p>19.6.2 Computing Aerodynamical Forces 280</p> <p>19.6.3 The Prandlt–Glauert Rule in Two Dimensions 282</p> <p>19.6.4 The Critical Mach Number 284</p> <p>19.7 Sweep 284</p> <p>19.8 Exercises 285</p> <p>19.9 Further Reading 285</p> <p>References 286</p> <p><b>Appendix A Notes on Octave Programming 287</b></p> <p><b>A. 1 Introduction 287</b></p> <p><b>A. 2 Vectorization 287</b></p> <p>A.2. 1 Iterating Explicitly 288</p> <p>A.2. 2 Preallocating Memory 288</p> <p>A.2. 3 Vectorizing Function Calls 288</p> <p>A.2. 4 Many Functions Act Elementwise on Arrays 289</p> <p>A.2. 5 Functions Primarily Defined for Arrays 289</p> <p>A.2. 6 Elementwise Arithmetic with Single Numbers 289</p> <p>A.2. 7 Elementwise Arithmetic between Arrays 290</p> <p>A.2. 8 Vector and Matrix Multiplication 290</p> <p><b>A. 3 Generating Arrays 290</b></p> <p>A.3. 1 Creating Tables with bsxfun 290</p> <p><b>A. 4 Indexing 291</b></p> <p>A.4. 1 Indexing by Logical Masks 291</p> <p>A.4. 2 Indexing Numerically 291</p> <p><b>A. 5 Just-in-Time Compilation 291</b></p> <p><b>A. 6 Further Reading 292</b></p> <p>References 292</p> <p>Glossary 293</p> <p>Nomenclature 305</p> <p>Index 309</p>
<p>“This book is a very useful digest of key points from the literature, carefully structured and presented with helpful pointers as to how the successive aerodynamical models can be implemented in the ‘now so readily available interactive matrix computation systems.”  (<i>A</i><i>eronautical</i> <i>J</i><i>ournal</i><i>,</i> 1 August 2013)</p>
<b>Dr.</b> <b>Geordie Drummond McBain, Australia<br /></b>Geordie McBain is an engineering consultant based in Sydney, Australia. In 1995 he graduated top of his class from James Cook University with first class honours in mechanical engineering, earning him the Faculty Medal, and went on to receive his PhD there in 1999. In 2002 he was awarded a Sesquicentennial Postdoctoral Fellowship at the University of Sydney, researching fluid dynamics. During this period, he taught aerodynamics to students on the Aeronautical and Aerospace Engineering degree programmes.
Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift  to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. <p>The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods.</p> <p>This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages.</p> <p>Key features:</p> <ul> <li>Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization.</li> <li>Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave.</li> <li>Companion website (<a href="http://www.wiley.com/go/mcbain">www.wiley.com/go/mcbain</a>) hosting codes and solutions.</li> </ul> <p><i>Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave</i> is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.</p>

Diese Produkte könnten Sie auch interessieren:

Computational Acoustics
Computational Acoustics
von: David R. Bergman
EPUB ebook
116,99 €
Applied Mechanical Design
Applied Mechanical Design
von: Ammar Grous
PDF ebook
144,99 €
Movement Equations 4
Movement Equations 4
von: Michel Borel, Georges Vénizélos
EPUB ebook
139,99 €